
PHYSICAL REVIEW A 99, 023839 (2019)

Zitterbewegung in a Kerr medium
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The evolution of a quantum particle propagating in a nonlinear medium and under the action of electric and
magnetic fields is studied. For this purpose, the integrable unification of the Dirac and Manakov equations is
derived. The integrability conditions of the system and the corresponding representation of the zero curvature
of the system are found. We have applied an approach based on the Riemann-Hilbert problem to derive soliton
solutions of the unified model. The study of the solution shows that the action of the electric and magnetic fields
leads to the Zitterbewegung in the nonlinear interaction mode. It was also found that the collision of two solitons
in the presence of an electric field can lead to the rectification of the particle trajectory and the disappearance of
its Zitterbewegung.
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I. INTRODUCTION

Originally predicted by Schrödinger in the study of the
Dirac equation, Zitterbewegung (ZB) refers to the trembling
motion of a freely moving relativistic quantum particle that
arises from the interference between the positive and negative
energy parts of the spinor wave function [1–3]. The notion
of ZB and resulting formalism, however, are not peculiar to
relativistic quantum dynamics, and phenomena analogous to
ZB, which underlie the same mathematical model of the Dirac
equation, have so far predicted in a wide variety of quantum
and even classical physical systems, including among others
semiconductors and quantum wells [4,5], trapped ions [6],
graphene [7,8], cold atoms [9,10], acoustic [11], and photonic
[12,13] systems. Simulations of relativistic quantum effects
using experimentally accessible physical setups, in which pa-
rameter tunability allows access to different physical regimes,
have seen in recent years an increasing interest, culminating to
the experimental observation of a quantum analog of ZB using
a single trapped ion set to behave as a free relativistic quantum
particle [14]. In the optical context, the use of photonic
systems to mimic quantum phenomena in the laboratory has
seen a continuous and increasing interest (see, for instance,
Ref. [15] and references therein); in particular, optical analogs
of the relativistic ZB have recently been proposed to occur in
photonic crystals [11], metamaterial slabs, and binary waveg-
uide array [13]. A classical analog of ZB can be observed in
a much simpler and well-known setup of nonlinear optics,
namely in the process of sum frequency generation of light
waves in a nonlinear χ (2) medium in the presence of temporal
(or spatial) walk off, which has been widely investigated es-
pecially in connection to the compression of ultrashort pulses
[16,17].

In the past decade, a large variety of experiments have
shown the existence of chiral spin selectivity in organic helical
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molecules [18–20]. This effect results from the spin-orbit
coupling (SOC) between the electronic momentum and the
molecular electric field created by the helical arrangement of
molecular dipoles. Many theoretical models have been pro-
posed to explain these experimental evidences within different
frameworks [21–23]. However, none of them was able to
provide a good quantitative agreement with experimental data
yet. Most recently, a few studies highlight the influence of the
electron-lattice interaction on spin transport in organic helical
molecules [24]. Accounting for nonlinear effects associated
with deformation of the molecular structure can improve
the predictive capabilities of such models [25]. Fundamental
types of spin-orbit coupling, well known from works on the
physics of semiconductors, may be simulated in the atomic
Bose-Einstein condensates (BEC); see [26] and references
within. In this regard, there are several theoretical studies
that predict the existence of a large variety of propagating
solitons depending on the interacting parameters in BECs
[27–30].

All these processes can be most thoroughly studied analyt-
ically in the framework of completely integrable systems of
equations. In earlier studies, a nonlinear generalization of the
Dirac equation was associated with equations of the relativis-
tic two-dimensional massive spinor field with current-current
interaction, such as Thirring equations [31] and others [32,33].
Kartashov and Konotov have studied the dynamics of BECs
with helical SOC and found that in the absence of Zeeman
splitting and for constant SOC coefficients the equations are
integrable [30]. These authors have used linear transform,
which allowed them to reduce the evolution equation to the
two-component nonlinear Schrödinger (NLS) or Manakov
equations [34]. The NLS equations have been widely rec-
ognized as an ubiquitous mathematical model for describing
the evolution of a slowly varying wave packet in a general
nonlinear wave system; thus it plays an important role in a
wide range of physical subjects [35]. The inverse scattering
transform method (ISTM) was first developed and applied to
the one-component NLS by Zakharov and Shabat [36]. In
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certain physical situations, two or more wave packets of
different carrier frequencies appear simultaneously, and their
interactions are then governed by the coupled NLS equa-
tions. Manakov showed that if the coupling is only through
cross-phase modulation and the self-phase modulation co-
efficient, then this system is integrable and developed the
respective ISTM [34]. Multisoliton solutions in the Manakov
system have also been extensively investigated by Hirota
and others methods in numerous studies; see, for instance,
Refs. [34,37–39] and an interesting phenomenon of polariza-
tion rotation after collision has been found.

It is of interest to find more general integrable nonlinear
Dirac equations and to study such phenomena as ZB in nonlin-
ear media. The Riemann-Hilbert (RH) problem is widely used
to solve different integrable equations [35], which have appli-
cation in various parts of physics, including BEC, nonlinear
optics, and many others; see, for instance, Refs. [35,40–42].
In this paper, we present the application of the RH problem
to the solution of an integrable version of the reduced Dirac
equations unified with the Manakov equations, which makes
it possible to investigate the ZB and other effects mediated by
soliton dynamics.

II. DIRAC-MANAKOV EQUATIONS

The expansion of the Dirac equation for the spin-1/2 par-
ticle of its mass and charge under an electromagnetic field
using the Foldy-Wouthuysen method [1,2] leads to the Pauli
equations i∂tψ = ĤPψ for the upper two components of the
four-component spinor. ĤP is the Pauli Hamiltonian, which
neglects the mass terms mc2 and the terms on the order higher
than m−2, which gives [43]

ĤP =
�̂P

2

2m
− Q

mc
�S · �B + V − Q

4m2c2
[̂�P · �S × �E + �S × �E · �̂P].

(1)

�̂P ≡ −i∇ − (Q/c)�A is the canonical momentum operator and
the magnetic field �B = ∇ × �A is the rotation of the vector
potential. �S = �σ/2 is the spin operator and �σ is the vector
Pauli matrix. The last term on the right-hand side of Eq. (1)
describes the spin-orbit interaction.

We consider a quasi-one-dimensional long thin tube mod-
eling some nonlinear system with the center line oriented
along the z axis and assume that the electron propagates
inside this tube along the z axis. Vector potential and electric
field are assumed to be transverse, i.e., �E (z, t ) = �exEx(z, t ) +
�eyEy(z, t ), and magnetic field is �B(z, t ) = �exBx(z, t ) +
�eyBy(z, t ) +�ezB‖(z, t ); here�eα, α = x, y, z are the unit vectors

of the Cartesian coordinate system. Then the operator �̂P
2

has the form �̂P
2 = −∂2

z − (∇⊥ − iQ�A⊥/c)
2
, where �A⊥ is a

transverse part of the vector potential. We add into the Pauli
equations a nonlinear part of the electron-matter interaction
NP = εnl l−2ψ†ψ with a real coefficient εnl ; here l is some
characteristic length of the medium and a confining in the
transverse directions potential V⊥.

Electric and magnetic fields may have different physical
sources. However, we assume that transverse electric E⊥ =
Ey − iEx and magnetic B⊥ = Bx − iBy fields have the same

phase, i.e., the transverse polarization components of the
magnetic and electric fields satisfy the condition

ExBx = EyBy. (2)

Then we can denote

Ql

2mc2
E⊥ ≡ E0e−2iφ, (3)

Ql2

c
B⊥ ≡ B02m e−2iφ, (4)

Ql2

c
B‖ ≡ Bz. (5)

In the geometry under consideration the longitudinal and
transverse variables may be separated. We use the transform

�ψ = {ψu, ψg}T = �χ‖(z, t )χ⊥(x, y)

= {χu(z, t ) exp[−iφ(z, t )], χg(z, t ) exp[iφ(z, t )]}Tχ⊥(x, y),

(6)

where scalar function χ⊥(x, y) obeys the equation

(∇⊥ − iQ �A⊥/c)
2
χ⊥ = V⊥χ⊥. Thus the Pauli equation

takes the form

�̇χ − [(φ′′ + 2φ′∂z + iφ̇ − iBz )σz + (E ′
0 + 2E0∂z + iB0)σx]�χ

= i
[
∂2

z + 2�χ†�χ
]
�χ + [∇2

⊥ + V⊥(x, y) − ε0E2
0 − (φ′)2]�χ,

(7)

where �χ = {χu, χg}T . We have changed variables as t =
t̃2ml2, z = z̃l. Below we will omit tildes over time and space
variables, i.e., we put z̃ → z, t̃ → t . σx, σz are the Pauli matri-
ces. We have also denoted ḟ ≡ ∂t f , f ′ ≡ ∂z f and added the
potential to the right side of Eq. (7) −ε0E2

0 , which describes
the change in the dielectric constant of the medium under the
influence of an external electric field with amplitude E0; here
ε0 is a real constant.

The system of equations (7) may be considered as unifica-
tion of the two-component reduction of the Dirac equations
[1–3]; see the left-hand side of the system, and the Manakov
equations [34], which consist of the first terms in the left-hand
side and the right-hand sides of system (7). Under some
restrictions to the forms of the electric and magnetic fields
the Dirac-Manakov equations (DM) (7) become integrable.
We can distinguish two cases that correspond to the slightly
different representations of the zero curvature (the Lax repre-
sentations):

E ′
0(z) = 0, ∀φ(z), ∀ε0, (8a)

∀E0(z), ∀φ(z), ε0 = −2m. (8b)

An additional condition that binds the phase and ampli-
tudes of the fields is the following:

[φ̇(t ) + Bz(t )]E0 = B0(t )φ′. (9)

All functions in (8) and (9) are real. Thus the DM equations
(7) are integrable if the equalities (2), (9) and one of the
equalities (8) hold.
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III. ISTM APPLICATION

A. Zero-curvature presentation of the model

Consider the following generalization of the DM equa-
tions (7):

�̇r + [(h′ + 2h∂z + iH )σz + (g′ + 2g∂z + iG)σx]�r

= i
[
∂2

z − 2�r†�r1 − ε0g2 − h2
]
�r, (10)

�̇r1 + [(h′ + 2h∂z − iH )σz + (g′ + 2g∂z − iG)σx]�r1

= i
[
∂2

z − 2�r†
1�r − ε0g2 − h2

]
�r1, (11)

where �r = {p, q}T ,�r1 = {p1, q1}T , G, H are functions
of t and g, h are functions of z. For h = −φ′(z), g =
−E0(z), G = −B0, H = −Bz − φ̇, and p1 = −p∗, q1 =
−q∗ system (10), (11) reduces to equations (7).

The system of equations (10), (11) with the equality, gen-
eralizing condition (9),

G(t )h(z) = g(z)H (t ) (12)

are the compatibility conditions of the following two linear
systems:

�z = L� ≡ (iλ
 + U )�, (13)

�t = (−2iλ2
 + V )�, (14)

where � is a 3 × 3 matrix-valued function, λ is a spectral
parameter, 
 = diag(1, 1,−1), U = U0 + U1, V = V 0 +
W − 2λU0,

U0 =
⎛
⎝ 0 0 p

0 0 q
p1 q1 0

⎞
⎠, U1 = i

⎛
⎝−h −g 0

−g h 0
0 0 0

⎞
⎠, (15)

V 0 = i

⎛
⎝−pp1 −pq1 p′

−p1q −qq1 q′

−p′
1 −q′

1 pp1 + qq1

⎞
⎠, (16)

W = −
⎛
⎝ iH iG gq + hp

iG −iH gp − hq
gq1 + hp1 gp1 − hq1 −W33

⎞
⎠, (17)

where W33 = −(1 − ε0)g2 and W33 = 0 for the integrability
conditions (51) and (52), respectively.

Consider, for simplicity, a particular case of conditions
(51), assuming that h(z) = const, g(z) = const. Let us denote
w =

√
h2 + g2 and w± =

√
h2 + g2 ± h. Use the gauge trans-

form � = HM�, where

M =
⎛
⎝ 1 −γ0 0

γ0 1 0
0 0 1

⎞
⎠, (18)

γ0 = w−/g, H = diag(e−iθ , eiθ , 1), and

θ = w

[
z +

∫ t

0

G(t ′)
g

dt ′
]
. (19)

This transform changes the spectral problem (13) as

�z = L� ≡ (H−1M−1LMH − H−1∂zH)�

=

⎛
⎜⎜⎝

iλ 0 L13

0 iλ L23

e−iθ
(

w+ p1

g + q1

)
eiθ

(
q1 − w− p1

g

)
−iλ

⎞
⎟⎟⎠�, (20)

where

L13 = eiθ (gq + w+ p)

2w
, (21)

L23 = e−iθ (qw+ − gp)

2w
. (22)

B. RH problem

We assume that potentials p and q decay to zero sufficiently
fast as z, t → ±∞. � in Eq. (20) is a fundamental matrix of
the two linear equations. From (20), we note that when z →
±∞, one has � → e(iλ
z). We introduce the new function

� = � eiλ
z, (23)

where � → I, z → ±∞, and I = diag(1, 1, 1). Inserting
(23) into (20) and (14) and taking into account previous gauge
transforms we obtain

�z = iλ[
,�] + U�, (24)

�t = −2iλ2[
,�] + V�, (25)

where [
,�] = 
� − �
 and V = H−1M−1V MH,

U = H−1M−1U MH.

From (24) we get tr U = 0. Then, for the Jost solutions �±
of (24) with the asymptotic condition �± → I, z → ±∞, we
obtain det(�±) = 1. Solutions � = �+E and � = �−E of
Eq. (24) are linear dependent

�−E = �+E S(λ), λ ∈ R, (26)

where E(z) = eiλ
z. The components of the scattering
matrix S are si j (λ), i, j = 1, 2, 3 and its determinant
det(S(λ)bm) = 1.

Analyzing of the Volterra equations which are obtained
by integrating Eq. (24) it can be found that the third column
of �− and the first two columns of �+ can be analytically
continued to the upper half plane C+. Similarly, we find that
the first two columns of �− and the third column of �+ can be
analytically continued to the lower half plane C−. Presenting
�± as �± = [φ[1]

± , φ
[2]
± , φ

[3]
± ], where φ

[ j]
± are the columns, we

find that the Jost matrix function

J+(λ) = [φ[1]
− , φ

[2]
− , φ

[3]
+ ]eiλ
z = �+(I − P) + �−P, (27)

where P = diag(1, 1, 0) is projector and is analytic in λ ∈ C+
and J+(λ) → I, λ ∈ C+ ∨ λ → ∞. The adjoint equation of
(24) is

�̃z = −iλ[
, �̃] − �̃U . (28)

The respective Jost functions for Eq. (28) are �̃± =
�−1

± . Denote the rows of solutions of Eq. (28) as �̃ =
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[φ̃[1], φ̃[2], φ̃[3]]
T
. The Jost functions

J− = e−iλ
z[φ̃[1]
+ , φ̃

[2]
+ , φ̃

[3]
− ]T = (I − P)�−1

+ + P�−1
− (29)

are analytic and J−(λ) → I as λ → ∞ for λ ∈ C−. Thus
matrix functions J+ and J− are analytic in C+ and C−,
respectively. The respective Riemann-Hilbert problem is

J+(λ)J−(λ) = G(λ), λ ∈ R, (30)

where

G(λ) = E

⎛
⎝ 1 0 s13

0 1 s23

s̃31 s̃32 1

⎞
⎠E−1, (31)

and s̃31 = s21s32 − s31s22, s̃32 = s31s12 − s11s32.
From the definition of J± and scattering matrix we have

det J+(λ) = s33, det J−(λ) = s̃33, (32)

where s̃33 = s11s22 − s21s12. Suppose that s33 has simple
zeros {λk ∈ C+, 1 � k � N} and s̃33 has simple zeros at
{λ̃k ∈ C−, 1 � k � N}. Kernels ker J+(λk ) and ker J−(λ̃k )
contain vectors vk and ṽk , respectively,

J+(λk )vk = 0, J− (̃λk )ṽk = 0, 1 � k � N. (33)

Solution J+ of the spectral problem (24) can be expanded as

J+(λk, s) = I + 1

λ
(s) + O

(
1

λ2

)
, λ → ∞. (34)

Substituting this series into Eq. (24) we derive for the first
degrees of 1/λ

L0 = i[
,] =
⎛
⎝ 0 0 −2i13

0 0 −2i23

2i31 2i32 0

⎞
⎠. (35)

C. Symmetry properties

Assume that

�r1 = ε�r ∗, ε ∈ R. (36)

Then from linear system (20) we obtain

L13 = L∗
31

w−
2εw

, L23 = L∗
32

w+
2εw

. (37)

Here Li j are the elements of matrix L in (20). For the system
of equations (7), ε = −1, so for definiteness we will use
this value of ε below. Thus the following symmetry property
holds:

L†(λ∗) = εC−1L(λ)C, (38)

where

C = diag

[−w−
2εw

,
−w+
2εw

, 1

]
. (39)

The symmetry property (38) of the matrix L yields the relation

�†
± = C�−1

± C−1 (40)

and the involution property

J†
+(λ∗) = CJ−(λ)C−1. (41)

Using definition of scattering matrix (26) we derive

S†(λ∗) = CS−1(λ)C−1, (42)

which yields λ̃k = λ∗
k for the zeros of s̃33(λ) and s33(λ),

respectively.
To obtain the symmetry properties for the eigenvectors vk

and ṽk , we take the Hermitian of the first equation in (33).
Upon the use of the involution properties (40) we get

v
†
kCJ−(λ̃k ) = 0. (43)

Then, comparing it with the second equation in (33), we find
the involution property

ṽk = v
†
kC. (44)

IV. SOLITON SOLUTIONS

To obtain soliton solutions, we set G = I in (30). The
solutions to this special Riemann-Hilbert problem have been
derived following Refs. [35] as

J+(λ) = I +
N∑

j,k=1

v jω
−1
jk ṽk

λ − λ̃k
, (45)

where

ω jk = ṽ jvk

λ∗
j − λk

. (46)

The zeros λk and λ̃k are time independent. To find the
spatial and temporal evolutions for vectors vk , we take the
z and t derivative to the equation (33). By using (24), (25),
respectively, one gets

vk (z, t ) = eiλk
z−2iλ2
k
+iνtv

(0)
k , (47)

ṽk (z, t ) = ṽ
(0)
k e−iλ∗

k 
z+2iλ∗2
k 
t−iνtC, (48)

where v
(0)
k , ṽ

(0)
k are some constants, which are determined by

the initial conditions and ν = (1 − ε0)g2.
Comparing Eqs. (34) and (45) we obtain

13 = i

⎡
⎣ N∑

j,k=1

v jω
−1
jk ṽk

⎤
⎦

13

, (49)

23 = i

⎡
⎣ N∑

j,k=1

v jω
−1
jk ṽk

⎤
⎦

23

, (50)

Denote θ j = iλ jz − 2iλ2
j t + ig2(1 − ε0)t and λ j = ξ j + iη j,

ξ j, η j ∈ R. We choose vectors v
(0)
k in the form v

(0)
k =

[αk, βk, 1]T, where αk and βk are arbitrary complex constants.
These constants are determined from the initial data.

Compare asymptotic (35) and (20) we derive the general
N-soliton solution of system (1):

p = − 2i

w+
(w+13e−iθ − g23eiθ ), (51)

q = − 2i

w+
(g13e−iθ + w+23eiθ ), (52)
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FIG. 1. Image of the average position of a soliton calcu-
lated by the formula (57) for h = H = 0 in dimensionless units.
The black dots, red triangles, and blue squares correspond to
the values g = 0.05, G = −4, g = 0.5, G = −4, and g = 0.5, G =
−1, respectively. Soliton parameters are η1 = 1, ξ1 = 0.4, α1 =
1, and β1 = 1.

where [
13

23

]
= −i

N∑
j,k=1

[
α j

β j

]
eθ j−θ∗

k ω−1
jk (53)

and

ω jk = 1

λ∗
j − λk

[Rjkeθ∗
j +θk + e−θ∗

j −θk ], (54)

Rjk = w−α∗
j αk + w+β∗

j βk

2w
. (55)

Let N = 1 and ε = −1. Denoting R11 = exp(−2ρ11) we
found the single pole solution[

p
q

]
= 2i η1e2i(η2

1t−ξ 2
1 t+w2t+ξ1z)

w+ cosh(4η1ξ1t − 2η1z + ρ11)

[
w+α1e−θ − gβ1eθ

gα1e−θ + w+β1eθ

]
.

(56)

V. ZB IN THE NONLINEAR SYSTEM

For the classical DM equations, ZB refers to the rapid
oscillatory motion of the expectation value of the particle
position

〈z〉 =
∫ ∞
−∞ z�r†�r dz∫ ∞
−∞�r†�r† dz

(57)

around its mean trajectory, which arises whenever negative-
and positive-energy eigenstates of the Dirac equation are
simultaneously excited by the initial condition. Wave packet
evolution of an initial solitonic state, showing ZB, is the
trembling oscillation of the center of mass; see Fig. 1. It is
found that ZB occurs only in the presence of the electric field,
i.e., for g �= 0. The solution shows that the amplitude of the
ZB increases with increasing amplitudes of the magnetic field.
For fixed g the amplitude of the ZB increases with increasing
amplitudes of the magnetic field. At a fixed amplitude of the

FIG. 2. Rectification of the soliton form due to collision for
h = H = 0, g = 0.25, and G = −1. The dependence of the abso-
lute values of the polarization component |p| on the dimensionless
variables x and t is shown. Soliton parameters are η1 = 1, η2 =
1, ξ1 = −0.4, ξ2 = 0.4, α1 = 0, α2 = −2, β1 = 1, and β2 = 1.

magnetic field and small |g| � 1, the time dependence of the
amplitude ZB is characterized by sharp spikes. As g increases,
this dependence becomes smoother and closer to the harmonic
form, Fig. 1.

Two-pole solutions describing the collision and interaction
of two solitons manifest some novel features. In Fig. 2 the
collision of two-soliton solutions is depicted. In the process
of the solitons’ collision, the depth of modulation of the pulse
amplitudes can change. The graphical representation of the
solution shows that the modulation of the soliton amplitude
associated with the action of the electric field can completely
disappear; see Fig. 2. This change in the amplitude modulation
due to the collision of solitons increases with |g|. The ZB
effect is directly related to the space-time modulation of the
shape of a soliton, which is determined by the amplitudes of
the magnetic and electric fields. Analysis of the initial data
showed that the most efficient effect is observed for solitons
with close amplitudes. Thus solitons’ collision may lead to
a significant change in the amplitude of the ZB for soliton
and straightening the electron trajectory of one of the colliding
solitons. Figure 2 shows that the amplitude modulation of one
of the solitons disappears after a collision, which corresponds
to the rectification of the electron trajectory. For g = 0 and for
any h, G, H , the collision of solitons has a character close to
the well-known one in the theory of the Manakov equations.
Since the model does not contain any losses, terms the form
of solitons and the modulation of their amplitude after the
collision conserve.

VI. CONCLUDING REMARKS

For completely integrable systems of equations, similar to
the Manakov equations, the collision of solitons leads to a
shift in their phases and a change in the amplitudes of the
polarization components. The paper presents the integrable
system of equations combining the two-component version of
the Dirac equations and the Manakov equations, generalizing
that of Kartashov and Konotop [30]. In the case considered
above, the gauge transformation leads to a linear combination
of potentials with multipliers having phases dependent on
the length and time. As a consequence, the interaction of
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solitons in collisions possessed new features. In particular, the
modulation of the parameters of ZB changes when solitons
collide. A more general case provides an opportunity to
explore new mechanisms for controlling the dynamics of an
electron within an exactly solvable model. For instance, it is
interesting to find out whether it is possible to control the
dynamics of solitons, dynamically influencing their phases.
Integrable model (7) allows one to find exact solutions for
a more general case describing the space-dependent phase
or space-dependent both phase and amplitude of the electric
field. This approach can be used to describe the local influence
of quantum dots with a large dipole momentum on the evolu-
tion of excitons in long curved molecules [44], including in

the framework of integrable models [42]. The DM equations
can be generalized to the case of some curvilinear nonlinear
media and used to analyze the evolution of polarization of an
exciton. We believe that results of the present paper may be
directly applied to study some one-dimensional models of the
BEC with the spin-orbital interactions.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for
Basic Research, Grant No. 18-02-00379, and by the Russian
Ministry of Science and Education, Reg. No. AAAA-A17-
117060810014-9.

[1] L. L. Foldy and S. A. Wouthuysen, On the Dirac theory of spin
1/2 particles and its non-relativistic limit, Phys. Rev. 78, 29
(1950).

[2] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum
Electrodynamics (Butterworth-Heinemann, London, 1982).

[3] W. Greiner, Relativistic Quantum Mechanics (Springer, Berlin,
1990).

[4] L. Ferrari and G. Russo, Nonrelativistic zitterbewegung in two-
band systems, Phys. Rev. B 42, 7454 (1990).

[5] J. Schliemann, D. Loss, and R. M. Westervelt, Zitterbewegung
of Electronic Wave Packets in III-V Zinc-Blende Semiconduc-
tor Quantum Wells, Phys. Rev. Lett. 94, 206801 (2005).

[6] L. Lamata, J. León, T. Schätz, and E. Solano, Dirac Equation
and Quantum Relativistic Effects in a Single Trapped Ion, Phys.
Rev. Lett. 98, 253005 (2007).

[7] J. Cserti and G. David, Unified description of Zitterbewegung
for spintronic, graphene, and superconducting systems, Phys.
Rev. B 74, 172305 (2006).

[8] T. M. Rusin and W. Zawadzki, Theory of electron Zitterbewe-
gung in graphene probed by femtosecond laser pulses, Phys.
Rev. B 80, 045416 (2009).

[9] J. Y. Vaishnav and C. W. Clark, Observing Zitterbewegung with
Ultracold Atom, Phys. Rev. Lett. 100, 153002 (2008).

[10] Q. Zhang, J. Gong, and C. H. Oh, Driven Dirac-like equation via
mirror oscillation: Controlled cold-atom Zitterbewegung, Phys.
Rev. A 81, 023608 (2010).

[11] X. Zhang and Z. Liu, Extremal Transmission and Beating Effect
of Acoustic Waves in Two-Dimensional Sonic Crystals, Phys.
Rev. Lett. 101, 264303 (2008).

[12] X. Zhang, Observing Zitterbewegung for Photons near the
Dirac Point of a Two-Dimensional Photonic Crystal, Phys. Rev.
Lett. 100, 113903 (2008).

[13] S. Longhi, Photonic analog of Zitterbewegung in binary waveg-
uide arrays, Opt. Lett. 35, 235 (2010).

[14] R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt,
and C. F. Roos, Quantum simulation of the Dirac equation,
Nature (London) 463, 68 (2010).

[15] S. Longhi, Quantum-optical analogies using photonic structure,
Laser Photon. Rev. 3, 243 (2009).

[16] R. W. Boyd, Nonlinear Optics (Academic, New York, 2003).
[17] S. Longhi, Zitterbewegung of optical pulses in nonlinear fre-

quency conversion, J. Phys. B 43, 205402 (2010).
[18] P. C. Mondal, C. Fontanesi, D. H. Waldeck, and R. Naaman,

Field and chirality effects on electrochemical charge transfer
rates, ACS Nano 9, 3377 (2015).

[19] V. Kiran, S. P. Mathew, S. R. Cohen, I. Hernández Delgado, J.
Lacour, and R. Naaman, Helicenes—a new class of organic spin
filter, Adv. Mater. 28, 1957 (2016).

[20] A. C. Aragonès, E. Medina, M. Ferrer-Huerta, N. Gimeno,
M.Teixidó, J. L. Palma, N.Tao, J. M. Ugalde, E. Giralt, I.
DíezPérez, and V. Mujica, Measuring the spin-polarization
power of a single chiral molecule, Small 13, 1602519 (2017).

[21] R. Gutierrez, E. Díaz, C. Gaul, T. Brumme, F. Domínguez-
Adame, and G. Cuniberti, Modeling spin transport in helical
fields: Derivation of an effective low-dimensional hamiltonian,
J. Phys. Chem. C 117, 22276 (2013).

[22] E. Medina, L. A. González-Arraga, D. Finkelstein-Shapiro, B.
Berche, and V. Mujica, Continuum model for chiral induced
spin selectivity in helical molecules, J. Chem. Phys. 142,
194308 (2015).

[23] R. A. Caetano, Spin-current and spin-splitting in helicoidal
molecules due to spin-orbit coupling, Sci. Rep. 6, 23452 (2016).

[24] S. Behnia, S. Fathizadeh, and A. Akhshani, DNA spintronics:
Charge and spin dynamics in DNA wires, J. Phys. Chem. C 120,
2973 (2016).

[25] P. Albares, E. Díaz, J. M. Cerveró, F. Domínguez-Adame, E.
Diez, and P. G. Estévez, Solitons in a nonlinear model of spin
transport in helical molecules, Phys. Rev. E 97, 022210 (2018).

[26] V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum
gases, Nature (London) 494, 49 (2013).

[27] V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, and D. E.
Pelinovsky, Matter-Wave Bright Solitons in Spin-Orbit Cou-
pled Bose-Einstein Condensates, Phys. Rev. Lett. 110, 264101
(2013).

[28] L. Wen, Q. Sun, Y. Chen, D.-S. Wang, J. Hu, H. Chen, W.-M.
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