
PHYSICAL REVIEW A 99, 023838 (2019)

On-demand generation of traveling cat states using a parametric oscillator
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We theoretically propose a method for on-demand generation of traveling Schrödinger cat states, namely,
quantum superpositions of distinct coherent states of traveling fields. This method is based on deterministic
generation of intracavity cat states using a Kerr-nonlinear parametric oscillator (KPO) via quantum adiabatic
evolution. We show that the cat states generated inside a KPO can be released into an output mode by dynamically
controlling the parametric pump amplitude. We further show that the quality of the traveling cat states can be
improved by using a shortcut-to-adiabaticity technique.
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I. INTRODUCTION

Quantum superposition is one of the most strange and
intriguing concepts in quantum mechanics and a useful re-
source for quantum information processing. Superpositions
of macroscopically distinct states are often referred to as
Schrödinger cat states, or cat states for short, named after
Schrödinger’s famous gedankenexperiment with a cat in a
superposition of alive and dead states [1,2]. In quantum optics,
superpositions of distinct coherent states are called cat states
[3], because coherent states are often regarded as the “most
classical” states of light.

Such cat states have been generated experimentally by var-
ious approaches. In the optical regime, cat states of small size,
which are sometimes called Schrödinger kittens, have been
generated by subtracting one photon from squeezed states of
light [4,5]. Optical cat states of a little larger size have been
generated by other methods [6,7]. Note that these optical cat
states are of traveling fields and generated probabilistically.

In the microwave regime, cat states of larger size have
been generated experimentally [8–11]. The generation using
Rydberg atoms [8] is heralded by measurement results of the
atomic states, where the parity, “even” or “odd,” of the cat
state is determined randomly according to the measurement
results. On-demand generations of microwave cat states have
been demonstrated using superconducting circuits by two
different approaches, one of which is based on conditional
operations using a superconducting quantum bit (qubit) [9]
and the other is based on two-photon driving and two-photon
loss larger than one-photon loss [10,11]. By extending the
former approach to a two-cavity case, entangled coherent
states in two cavities have been observed experimentally
[12]. Note that these microwave cat states are confined inside
cavities. Recently, the cat state generated inside a cavity has
been released by controlling the output coupling rate using
four-wave mixing in a qubit [13], which is, to our knowledge,
the first experimental demonstration of on-demand generation
of traveling cat states. This approach is a two-step process:

cat-state generation and its release. The nonlinear tunable
output coupler may limit the quality and generation rate of
the cat state.

In this paper, we propose a simple alternative method for
on-demand generation of traveling cat states. Our method
is based on a recent theoretical result that a Kerr-nonlinear
parametric oscillator (KPO) can generate intracavity cat states
deterministically via quantum adiabatic evolution [14,15].
(The KPO has recently attracted attention for its application
to quantum computing [14–19].) In the previous work, the
KPO is assumed to be lossless in ideal cases, and therefore
the cat states are confined inside the KPO. In the present work,
we theoretically investigate a coupled system of a KPO and a
one-dimensional system (output mode). It turns out that the
cat states generated inside a KPO can be released into the
output mode by dynamically controlling the parametric pump
amplitude, while the output coupling rate is constant. Hence
we can generate traveling cat states on demand by using a
KPO. Unlike the previous approach [13], our approach is a
single-step process and also needs no control of the output
coupling rate.

II. MODEL

The coupled system of a KPO and an output mode is
depicted in Fig. 1, where a superconducting-circuit imple-
mentation is supposed [15,17–20]. In a frame rotating at half
the pump frequency, ωp/2, of the parametric pumping and
in the rotating-wave approximation, the system is modeled
by the following Hamiltonian [14,15,21–24] (we use the units
h̄ = vp = 1, where vp is the phase velocity of the electromag-
netic fields in the output mode):

H (t ) = HKPO(t ) + Hout + Hc, (1)

HKPO(t ) = p(t )

2
(a†2 + a2) − K

2
a†2a2 + �a†a, (2)
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FIG. 1. On-demand generation of traveling cat states using an
KPO. Superconducting-circuit implementation of the KPO is as-
sumed [15,17–20], where the loop with two Josephson junctions
depicted by crosses is a dc superconducting quantum interference
device (SQUID). The KPO is capacitively coupled to a transmission
line for the output mode. Generated traveling cat states can be
directly observed by Wigner tomography.

Hout =
∫ ∞

−∞
ωb†(ω)b(ω) dω, (3)

Hc = i

√
κex

2π

∫ ∞

−∞
[b†(ω)a − a†b(ω)]dω, (4)

where a† and a are the creation and annihilation operators for
the KPO, p(t ) is the time-dependent pump amplitude, K is
the magnitude of the Kerr coefficient [25], � = ωKPO − ωp/2
is the detuning frequency (ωKPO is the one-photon resonance
frequency of the KPO), b†(ω) and b(ω) are the creation
and annihilation operators for photons of frequency (or wave
number) ωp/2 + ω in the output mode, and κex is the energy
decay rate of the KPO due to its coupling to the output
mode. Here we assume no internal loss of the KPO, which
is discussed later. Hereafter, we consider the resonance case
(� = 0).

If the KPO is a closed system (κex = 0), a cat state
|α0〉 + |−α0〉 can be generated from the vacuum state |0〉
via quantum adiabatic evolution by gradually increasing p(t )
from zero to p0 = Kα2

0 [14,15]. When the KPO is coupled
to the output mode, the photons inside the KPO will leak
to the output mode. As a result, the entanglement between
the KPO and the output mode arises during the generation.
Moreover, the decay of the KPO due to the leak may degrade
the adiabatic cat-state generation. Thus, it is not obvious
whether or not we can generate a traveling cat state using the
KPO.

III. PROPOSED METHOD

Our idea is based on the fact that any quantum state inside a
linear cavity results in a traveling pulse in the same quantum
state through the leak to the output mode, where the pulse
shape is exponential corresponding to the exponential decay
[26]. This property of linear cavities removes the concern
with the entanglement. The issue with the decay can also be
solved by generating a cat state faster than the decay, which is
possible if K is much larger than κex. The remaining problem
is that the KPO has a large Kerr effect, namely, it is not a linear
cavity.

Our solution is to switch off the parametric pumping as
p(t ) ∝ exp(−κext ) corresponding to the exponential decays
of coherent states inside the cavity after the cat-state prepa-
ration. This results in the following cancellation between the

pumping term and the Kerr term during the decays. Suppose
that at time t0, the KPO is prepared in a cat state |α0〉 + |−α0〉,
where α0 =

√
p0/K and p0 = p(t0). Since HKPO(t ) in Eq. (2)

is rewritten as

HKPO(t ) = −K

2

(
a†2 − p(t )

K

)(
a2 − p(t )

K

)

by dropping a c-number term, HKPO(t0)|±α0〉 ∝ α2
0 −

p0/K = 0, where a|±α0〉 = ±α0|±α0〉 [3]. Thus at t0, the am-
plitude starts decreasing as ±α(t ) = ±α0e−κex (t−t0 )/2 because
of the external coupling. If we set the pump amplitude as
p(t ) = p0e−κex (t−t0 ), HKPO(t )|±α(t )〉 ∝ α(t )2 − p(t )/K = 0,
that is, the Kerr term and the pumping term are canceled out
at any time t � t0. Thus, the KPO behaves like a linear cavity
during the release of the cat state, and therefore the cat state
prepared inside the KPO is faithfully released as a traveling
cat state.

IV. NUMERICAL SIMULATION

To examine the above method quantitatively, we numeri-
cally solve the Schrödinger equation with the Hamiltonian in
Eq. (1) and evaluate the fidelity between the output pulse and
an ideal cat state. An approach to such simulation is based
on the discretization of frequency ω (or wave number ω/vp)
[23,24]. In this work, we instead discretize the position, which
results in simpler equations as shown below.

We first introduce the annihilation operator with respect to
the position z:

b̃(z) = 1√
2π

∫ ∞

−∞
b(ω)eiωz dω. (5)

Then, we move to the interaction picture with the unitary
operator U (t ) = e−iHoutt as follows:

b̃I (z, t ) = U †(t )b̃(z)U (t ) = b̃(z − t ), (6)

HI (t ) = U †(t )[HKPO(t ) + Hc]U (t )

= HKPO(t ) + i
√

κex[b̃†(−t )a − a†b̃(−t )]. (7)

A pulse-mode operator for the interval [0, T ] with an envelope
function fp(z) is defined as

bp =
∫ T

0
fp(z)b̃I (z, T ) dz =

∫ T

0
fp(T − z)b̃(−z) dz,

where fp(z) satisfies the normalization condition∫ T

0
| fp(z)|2dz = 1.

In the present work, we define fp(z) as fp(z) ∝√
〈b̃†

I (z, T )b̃I (z, T )〉, where 〈b̃†
I (z, T )b̃I (z, T )〉 is the spatial

distribution of the output pulse at the final time T . Note that
in experiments, we can find such fp(z) from the measurement
of the output power from the KPO. It is also notable that
〈b̃†

I (z, T )b̃I (z, T )〉 is proportional to the average photon
number, 〈a†a〉, in the KPO at time T − z (see Appendix A).

Next, we divide the interval [0, T ] into J small intervals
[z j−1, z j] ( j = 1, 2, . . . , J), where the intervals �z j = z j −
z j−1 are set to small values (see Appendix B). Then, b̃(z) and
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TABLE I. Results and setting of numerical simulations. Fidelity: maximum fidelity between the output state and the ideal cat state with two

parameters: (|βcate
iθcat 〉 + |−βcate

iθcat 〉)/
√

2(1 + e−2β2
cat ), where βcat and θcat are the magnitude and phase of the cat-state amplitude, respectively.

β2
cat and θcat/π : values maximizing the fidelity. β2

cat is close to 2, which means that the photon number of the output pulse is about 2. nin: average
photon number in the KPO at the final time T . It : time integral of the average photon number in the KPO, that is, It = ∫ T

0 〈a†a〉 dt . In all the
cases, It ≈ 10K−1 = 2κ−1

ex , because κexIt corresponds to the photon number of the output pulse.

Fidelity β2
cat θcat/π nin KIt Shortcut κex/K B/K Ap KT J

Fig. 2(a) 0.962 2.01 0.03 6.2 × 10−4 9.63 unused 0.2 0.5 2.45 50 80
Fig. 2(b) 0.930 1.96 0.02 6.1 × 10−4 9.64 unused 0.2 1.0 2.15 45 80
Fig. 2(c) 0.983 2.03 0.02 6.4 × 10−4 9.63 used 0.2 0.5 2.50 50 80
Fig. 2(d) 0.993 2.02 0.01 6.4 × 10−4 9.60 used 0.2 1.0 2.25 45 80

fp(z) are discretized as follows (z ∈ [z j−1, z j]):

b̃(−z)
√

�z j → b̃ j, fp(T − z)
√

�z j → f j . (8)

Then, the commutation relation [b̃(z), b̃†(z′)] = δ(z − z′) be-
comes [b̃ j, b̃†

l ] = δ j,l and the normalization condition∫ T

0
| fp(z)|2dz = 1

becomes
J∑

j=1

| f j |2 = 1.

By transforming the integration with respect to z to the
summation with respect to j, we obtain

bp =
J∑

j=1

f j b̃ j, f j =
√√√√ 〈b̃†

j b̃ j〉∑J
l=1〈b̃†

l b̃l〉
. (9)

The Hamiltonian at time t ∈ [z j−1, z j] is given by

HI (t ) = HKPO(t ) + i
√

κex[b̃†
ja − a†b̃ j]. (10)

We numerically solve the Schrödinger equation with the
Hamiltonian in Eq. (10) (see Appendix B). Since the Hamilto-
nian includes only one of {b̃ j}, the corresponding Schrödinger
equation is simple. In the present work, we investigate the
cases where κex = 0.2K .

As explained above, p(t ) should satisfy the following
two conditions: p(t ) is increased fast enough to adiabatically
generate a cat state inside the KPO before the decay spoils it;
after that, p(t ) is decreased as p(t ) ∝ exp(−κext ) so that the
Kerr term and the pumping term are canceled out. To satisfy
these conditions simultaneously, we define p(t ) as the output
of the fourth-order low-pass filter (LPF) [27] with the input
pin(t ) = KAp exp(−κext ) (see Appendix C). The dimension-
less parameter Ap is used for tuning the photon number of the
traveling cat state. We set the photon number to about 2 which
is large enough for the two coherent states being distinct but
small enough to solve the Schrödinger equation numerically.
The bandwidth B of the LPF [27] (see Appendix C) is set to
B = 0.5K between κex and K . The final time T is set such
that the final photon number nin in the KPO is less than 10−3

(see Table I).
We obtain the density operator ρ describing the quantum

state of the output pulse using the moments Mm,n = 〈b†m
p bn

p〉
with bp in Eq. (9). The density matrix with respect to the Fock

states is given by [28]

ρm,n = 1√
m!n!

∞∑
l=0

(−1)l

l!
Mn+l,m+l . (11)

Using the density matrix, we calculate the correspond-
ing Wigner function W (β ) = 2

π
Tr[D(−β )ρD(β )P] [3,8,14],

where D(β ) = exp (βb†
p − β∗bp) (the asterisk denotes com-

plex conjugation) and P = exp (iπb†
pbp).

The results of the numerical simulation are shown in
Fig. 2(a) and the first row of Table I. Table I also provides the
setting of the simulation. Figure 2(a) shows that the photon
number in the KPO varies in a similar manner to the pump
amplitude, as expected. The Wigner function for the output
pulse in Fig. 2(a) clearly shows the interference fringe, which
is the evidence for the quantum superposition of the two
coherent states, that is, the output pulse is in a cat state.
(The tilt of the Wigner function, which corresponds to θcat

in Table I, is due to the residual Kerr effect.) As shown in
Table I, the maximum fidelity between this output state and
an ideal cat state is 0.962. Thus, the present method works
successfully as expected.

V. IMPROVEMENT BY SHORTCUT TO ADIABATICITY

The imperfection of the generated traveling cat state may
be partially due to the leak during the initial cat-state prepa-
ration. We can speed up the preparation by setting the LPF
bandwidth B to a larger value, e.g., B = K . Then, however,
nonadiabatic effects degrade the cat state. The simulation
results for B = K are shown in Fig. 2(b) and the second row
of Table I. The oscillation of 〈a†a〉 in Fig. 2(b) is due to
the nonadiabatic effects. Consequently, the maximum fidelity
between the output state and an ideal cat state decreases to
0.930 (see Table I).

To mitigate the nonadiabatic effects, we can use the tech-
nique called shortcut to adiabaticity [15,29,30]. To maintain
quantum adiabatic evolution, the shortcut-to-adiabaticity tech-
nique introduces the following counterdiabatic Hamiltonian
[29,30]:

Hcounter = i
∑

n

|φ̇n〉〈φn|, (12)

where |φn〉 is the nth instantaneous eigenstate of the slowly
varying Hamiltonian and the dot denotes the time derivative.
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FIG. 2. Simulation results of traveling cat-state generation using a KPO. Left: Time evolutions of the real part of the pump amplitude, p(t ),
and the average photon number in the KPO, 〈a†a〉, which is proportional to the square of the pulse envelope fp(z) (see Appendix A). In (c) and
(d), the imaginary part of the pump amplitude, p′(t ), for shortcut to adiabaticity is also plotted. Right: Wigner function, W (β ), of the output
pulse. See Table I for the settings of (a)–(d).

In the present case, the counterdiabatic Hamiltonian is
approximately given by [31] (see Appendix D)

Hcounter (t ) = i
p′(t )

2
(a†2 − a2), (13)

p′(t ) = ṗ(t )

p(t )
tanh

p(t )

K
. (14)

The physical meaning of the counterdiabatic Hamiltonian is
to add the imaginary part of the pump amplitude, p′(t ), to the
real one, p(t ). This is experimentally possible by controlling
the phase of the pump field.

The simulation results with the shortcut-to-adiabaticity
technique are shown in Figs. 2(c) and 2(d) and the third
and fourth rows of Table I, where p′(t ) is set to zero when
ṗ(t ) is negative. As shown in Fig. 2(d), the oscillation of
〈a†a〉 does not occur even when B = K , unlike Fig. 2(b).
This demonstrates that the shortcut-to-adiabaticity technique
works successfully. The fidelity is improved for both B =
0.5K and K . Contrary to the results without the shortcut-to-
adiabaticity technique, the fidelity is higher for larger B, and
the corresponding infidelity is lower than 1% when B = K
(see Table I). Thus, the shortcut-to-adiabaticity technique can
significantly improve the quality of the traveling cat state.

VI. INTERNAL LOSS

So far, internal loss of the KPO has not been taken into
account. However, any actual devices have internal loss, and
it degrades the coherence of the cat states. Here we briefly
examine the effect of the internal loss in the superconducting-
circuit implementation [17–20].

Assuming that K/(2π ) = 10 MHz and ωKPO/(2π ) = 10
GHz as typical values, κex = 0.2K in the present simulations
corresponds to the external quality factor, Qex = ωKPO/κex,
of 5 × 103. On the other hand, the probability of losing a
photon inside the KPO, which gives an upper bound on the
infidelity due to the internal loss, is approximately given by

κinIt , where κin is the internal-loss rate and It = ∫ T
0 〈a†a〉 dt .

In Table I, It ≈ 10K−1 = 2κ−1
ex in all the cases. Thus, in order

to have an intra-KPO photon-loss probability below, e.g.,
10%, the required condition is κinIt ≈ 10κin/K � 0.1, which
is equivalent to the internal quality factor of Qin � 105. These
values of Qex and Qin seem feasible with current technologies.

VII. CONCLUSION

We have shown that the cat states deterministically gener-
ated inside a KPO via quantum adiabatic evolution can be re-
leased into an output mode by controlling the pump amplitude
properly. Thus, on-demand generation of traveling cat states
can be realized using a KPO. We have further shown that
a shortcut-to-adiabaticity technique, where the phase of the
pump field is controlled dynamically in time, can improve the
quality of the traveling cat state significantly. In experiments,
the cat-state fidelity may be limited by the internal loss rate
of the KPO. In a superconducting-circuit implementation, a
fidelity higher than 90% requires an internal quality factor
higher than 105, which seems feasible for current technolo-
gies.

The traveling cat states generated by a KPO can be di-
rectly observed by, e.g., homodyne or heterodyne detection
of the output field. Thus, this can be used for experimentally
demonstrating the ability of a KPO to generate cat states
deterministically.
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APPENDIX A: PULSE SHAPE OF THE OUTPUT FIELD

Here we show that the spatial distribution of the output
pulse at the final time T , 〈b̃†

I (z, T )b̃I (z, T )〉, is proportional
to the average photon number 〈a†a〉 in the KPO at time T − z.
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First, from Eq. (6), we have b̃I (z, T ) = b̃(z − T ). Next, we
consider the Heisenberg picture with the Hamiltonian given
by Eq. (7). The Heisenberg equation for b̃(z − T ) is given by

d

dt
b̃H (z − T, t ) = √

κexaH (t )δ(z − T + t ),

where b̃H (z − T, t ) and aH (t ) are the Heisenberg operators
corresponding to b̃(z − T ) and a, respectively, and δ denotes
the delta function. At the final time T , we have

b̃H (z − T, T ) = √
κex

∫ T

0
aH (t )δ(z − T + t ) dt

= √
κexaH (T − z).

Thus, we obtain

〈b̃†
I (z, T )b̃I (z, T )〉 = 〈ψ0|b̃†

H (z − T, T )b̃H (z − T, T )|ψ0〉
= κex〈ψ0|a†

H (T − z)aH (T − z)|ψ0〉,
where |ψ0〉 is the initial state. This means that the pulse shape
of the output field at the final time T is directly given by the
average photon number in the KPO at time T − z.

APPENDIX B: NUMERICAL SIMULATION METHOD

In the present simulations, we truncate the photon number
in the output mode at 6, which is sufficiently large to express
a cat state with average photon number of 2. Then, the state
vector |ψ〉 describing the coupled system is represented as
follows:

|ψ〉 =
N0∑

n=0

ψ0(n)|n〉|0〉 +
N1∑

n=0

J∑
j1=1

ψ1(n, j1)|n〉| j1〉 +
N2∑

n=0

J∑
j1=1

j1∑
j2=1

ψ2(n, j1, j2)|n〉| j1, j2〉

+
N3∑

n=0

J∑
j1=1

j1∑
j2=1

j2∑
j3=1

ψ3(n, j1, j2, j3)|n〉| j1, j2, j3〉 +
N4∑

n=0

J∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

ψ4(n, j1, j2, j3, j4)|n〉| j1, j2, j3, j4〉

+
N5∑

n=0

J∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4∑
j5=1

ψ5(n, j1, j2, j3, j4, j5)|n〉| j1, j2, j3, j4, j5〉

+
N6∑

n=0

J∑
j1=1

j1∑
j2=1

j2∑
j3=1

j3∑
j4=1

j4∑
j5=1

j5∑
j6=1

ψ6(n, j1, j2, j3, j4, j5, j6)|n〉| j1, j2, j3, j4, j5, j6〉, (B1)

where the first and second ket vectors represent the Fock
states of the KPO and the output mode, respectively, and Nl

(l = 0, 1, . . . , 6) is the number at which the photon number
in the KPO is truncated when the photon number in the
output mode is l . In the present simulations, we set N0 = N1 =
N2 = 6, N3 = 5, N4 = 4, N5 = 3, and N6 = 2. The second
ket vector is defined with the creation operators, e.g., as
follows:

| j1, j2, j3〉 = N ( j1, j2, j3)b̃†
j1

b̃†
j2

b̃†
j3
|0〉, (B2)

where the normalization factor N is defined as

N ( j1, j2, j3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 . . . j1 > j2 > j3,

1/
√

2! . . . j1 = j2 > j3,

1/
√

2! . . . j1 > j2 = j3,

1/
√

3! . . . j1 = j2 = j3.

(B3)

Using this representation, we numerically solved the
Schrödinger equation with the Hamiltonian in Eq. (10). Since
the Hamiltonian includes only one of {b̃ j}, the correspond-
ing Schrödinger equation is simple. Moreover, at time t ∈
[z j−1, z j], |ψ〉 includes only the output-mode photons satis-
fying j1 � j in Eq. (B1). This enables fast implementation of
the simulation.

Since the photon number in the KPO is large (small) in the
first (second) half of the whole process, we set correspond-
ingly the intervals �z j to small (large) values. More con-
cretely, we set �z j = (T/2)/(4J/5) for j = 1, 2, . . . , 4J/5

and �z j = (T/2)/(J/5) for j = 4J/5 + 1, 4J/5 + 2, . . . , J .
(So we set J to multiples of 5.) We use the fourth-order
Runge-Kutta method for numerically solving the Schrödinger
equation, where the time steps are set to about 0.1K−1. These
time steps are defined by dividing �z j by appropriate integers.

We set J = 80 in the present simulations. The follow-
ing results show that this value of J is sufficiently large.
Figure 3 shows the J dependence of the final photon number,
nout = ∑J

j=1〈b̃†
j b̃ j〉, in the output mode. These data, the circles

in Fig. 3, are well fitted with n0 − b/J , the solid lines in
Fig. 3, where n0 and b are the fitting parameters. This is
natural because the position discretization is the first-order
approximation with respect to J−1. The dashed lines in Fig. 3
show nout = n0, which are the estimated values of nout in the
limit J → ∞. From the small discrepancies between the data
and n0, indicated by arrows in Fig. 3, the numerical errors due
to finite J are estimated to be less than 1%. This indicates that
J is sufficiently large.

APPENDIX C: PULSE SHAPE CONTROL
USING LOW-PASS FILTERS

In the present simulations, we define the pulse shape of the
pump amplitude p(t ) as the output of the fourth-order low-
pass filter (LPF) [27] with the input pin(t ) = KAp exp(−κext ).
The input-output relation of a LPF is given by pout (t ) =∫ t

0 Be−B(t−s) pin(s) ds [27], where B is the bandwidth of
the LPF and pin(s) = 0 (s < 0) is assumed. Note that
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FIG. 3. J dependence of the final photon number,
nout = ∑J

j=1〈b̃†
j b̃ j〉, in the output mode. (a)–(d) correspond to

Figs. 2(a)–2(d), respectively. Circles represent simulation results.
Solid lines are fitted curves with nout (J ) = n0 − b/J , where n0

and b are the fitting parameters. Horizontal dashed lines represent
nout (J ) = n0. Arrows indicate the discrepancies between the data
and n0.

ṗout (t ) = −B[pout (t ) − pin(t )], where the dot denotes the time
derivative. Thus, we can calculate the output of the LPF by
numerically solving this differential equation. The nth order
LPF is defined as the output of the LPF the input of which is
the output of the (n − 1)th order LPF.

APPENDIX D: SHORTCUT TO ADIABATICITY FOR KPO

Here we derive the approximate counterdiabatic Hamil-
tonian given by Eqs. (13) and (14) and provide numerical
evidence for its validity.

First, using the completeness relation
∑

n |φn〉〈φn| = I (I
is the identity operator), the counterdiabatic Hamiltonian in
Eq. (12) is rewritten as follows:

Hcounter = i

2

∑
n

(|φ̇n〉〈φn| − |φn〉〈φ̇n|). (D1)

Among {|φn〉}, we are interested only in the following even
cat state:

|C+[p(t )]〉 =
∣∣√p(t )/K

〉 + ∣∣−√
p(t )/K

〉
√

2(1 + e−2p(t )/K )
. (D2)

Note that HKPO(t )|C+[p(t )]〉 = p(t )2

2K |C+[p(t )]〉, and therefore
the even cat state is one of the energy eigenstates. Disregard-
ing the energy eigenstates other than |C+〉, the counterdiabatic
Hamiltonian in Eq. (D1) is approximately given by

Hcounter ≈ i

2
(|Ċ+〉〈C+| − |C+〉〈Ċ+|). (D3)

Using the odd cat state

|C−[p(t )]〉 =
∣∣√p(t )/K

〉 − ∣∣−√
p(t )/K

〉
√

2(1 − e−2p(t )/K )
, (D4)

|Ċ+〉 becomes

|Ċ+〉 = − ṗ

2K
tanh

p

K
|C+〉 + ṗ

2
√

K p

√
tanh

p

K
a†|C−〉. (D5)
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FIG. 4. Simulation results for shortcut to adiabaticity. (a) Pump
amplitudes p(t ) (black long-dashed line), p′(t ) in our method (cyan
solid line), and p′(t ) in Ref. [15] (red short-dashed line). (b) Average
photon number in KPO, 〈a†a〉. (c) Fidelity between the final state
and the ideal even cat state with amplitude of

√
2. (d) Magnification

of (c) around the final time. In (b)–(d), cyan solid, red short-dashed,
and black long-dashed lines correspond to our method, the method
proposed in Ref. [15], and the case of no p′(t ) (without shortcut-to-
adiabaticity technique), respectively.

Substituting Eq. (D5) into Eq. (D3), we obtain

Hcounter ≈ − i

2

(
ṗ

2K
tanh

p

K
|C+〉〈C+|

+ ṗ

2
√

K p

√
tanh

p

K
|C+〉〈C−|a

)
+ H.c., (D6)

where H.c. denotes the Hermitian conjugate.

Using a2|C+〉 = p

K
|C+〉 and

(|C+〉〈C−|a)|C+〉 =
√

p

K
tanh

p

K
|C+〉

=
√

K

p
tanh

p

K
a2|C+〉, (D7)

Hcounter acting on |C+〉 is approximated as follows:

Hcounter ≈ − i

2

(
ṗ

2p
tanh

p

K
a2

+ ṗ

2
√

K p

√
tanh

p

K

√
K

p
tanh

p

K
a2

)
+ H.c.

= − i

2

ṗ

p
tanh

p

K
a2 + H.c. (D8)

Thus, we obtain Eqs. (13) and (14).
To confirm the validity of the above derivation, we per-

formed numerical simulations of a KPO without the output
coupling, where the pump amplitude p(t ) is increased linearly
from 0 to 2K at time 10K−1. The results are summarized in
Fig. 4 together with the results in the cases without shortcut-
to-adiabaticity technique and with the shortcut-to-adiabaticity
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technique proposed in Ref. [15]. The technique proposed in
Ref. [15] also uses an imaginary pump amplitude p′(t ), but it
is defined as

p′(t ) = 2α̇0

√
1 − 2e−2|α0|2

1 + 2α0
= ṗ

√
1 − 2e−2p/K

√
K p + 2p

, (D9)

where α0 = √
p/K is used. While the results with the

technique in Ref. [15] exhibit oscillations, the results
with our technique change monotonically and the final fi-
delity is almost perfect. These results clearly show the
usefulness of our shortcut-to-adiabaticity technique for a
KPO.
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