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There is recurrent interest in the orbital angular momentum (OAM) conveyed by optical vortices, which are
structured beams with a helically twisted wave front. Particular significance is attached to the issue of how
material interactions with light conveying OAM might prove sensitive to the handedness and degree of twist
in the optical wave front. As a result of recent experimental and theoretical studies, the supposition that beams
with OAM might enable spectroscopic discrimination between oppositely handed forms of matter has become a
renewed focus of attention. Some of the tantalizing conclusions that are beginning to emerge from this research
have, however, not yet established a definitive basis for a supporting mechanism. To resolve this problem requires
the development of theory to support a faithful representation, and a thorough understanding, of the fundamental
molecule-photon physics at play in such optical processes—even for processes as basic as absorption. The
present analysis establishes mechanisms at play that entail an unconventional manifestation of optical spin-orbit
interactions, engaging transition electric-quadrupole moments. Powerful symmetry principles prove to render
distinctively different criteria governing the exhibition of two-dimensional (2D) and 3D chirality. These results
elucidate the operation of such effects, identifying their responsibility for discriminatory optical interactions of
various forms in both chiral and achiral media.
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I. INTRODUCTION

In the broad realm of chiral interactions between light and
matter, three aspects of symmetry may come into play: the
structure of the material, the circularity of optical polariza-
tion, and potentially the sense of handedness of the optical
wave front. The possible significance of the third of these
has only recently become evident through studies of optical
vortex light. The primary character of an optical vortex, or
twisted light, is its chiral form: it is a feature throughout the
field of singular optics since a singularity in any propagating
wave form is associated with a local phase ramp [1]—and
three-dimensional (3D) helicity must inevitably result. It has
long been a topic of interest to speculate on whether, or by
what means, twisted light might engage in a characteristic
way with a chiral material. In the specific field of optical
interactions between light and molecules, an interplay of
material and optical chirality has already been seen to play
an extremely important role in many phenomena. In general,
chiroptical mechanisms interlace the chirality of molecules
with the helicity of light associated with polarization to exhibit
process rates and forces that are sensitive to changes of
either optical or material handedness in the total system [2].
Classic examples include circular dichroism [3], differential
Rayleigh and Raman scattering [4], resonance energy transfer
and discriminatory dispersion interactions [5,6], and optical
trapping and binding forces [7,8]. The latter examples are
relatively recent discoveries, which show a propensity for the
optical separation of enantiomers and identification of the
actual existence of chirality in a system [9].

The development of twisted light has led to the striking
identification and observation that such beams, and indeed

the single photons they comprise, possess an intrinsic optical
orbital angular momentum (OAM) [10–12]. While the intrin-
sic photon spin angular momentum (SAM) of ±h̄ is mani-
fest in left- and right-handed circular polarizations, crucially
involved in most of the chiroptical interactions mentioned
above, beams of light possessing a vortex structure exhibit an
orbital angular momentum per photon of ±�h̄, where the topo-
logical charge � may take any integer value. The topological
charge, or winding number, signifies the multiplicity (within a
wavelength) and direction of twists in the phase front. In such
structured forms of light, the handedness is due to the helical
form of the wave front, irrespective of polarization, whereas
for a circularly polarized beam, the origin lies in the helical
trace of the electric (and magnetic) field vectors.

An obvious question arises: just as the handedness of cir-
cularly polarized light produces chiroptical interactions, can
the handedness of a twisted beam also produce discriminatory
optical processes with matter? In other words, can any piece
of matter interact differently with a right-handed vortex beam
than with a left-handed one? An initial study, first presented
nearly two decades ago, concluded that the handedness of
a structured light beam should play no role in chiroptical
interactions [13]. Provoked by this theoretical work, comple-
mentary and supportive experimental observations followed,
based on experimental conditions assumed by the theory
[14,15]. However, in the last few years, further experimental
studies, looking at systems under different conditions, have
in contrast appeared to show the contrary—the handedness of
twisted light can exert a chiroptical influence. These studies
have been able to induce chiroptical effects with OAM by
utilizing the helicity-dependent intensity distributions aris-
ing from the spin-orbit interactions (SOI) [16] of focused
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nonparaxial vortex beams of circular polarization. Broadening
the definition of “circular dichroism,” fundamentally related
effects have been identified in nonchiral nanostructures [17];
effects of a similar kind have also been discovered in achiral
atomic matter [18], chiral mesostructures [19], and by the
use of so-called spin-orbit beams to characterize material
chirality [20]. Other studies have investigated the exploitation
of plasmonic coupling in material interactions with twisted
light to engineer chiroptical effects [21–27], with analogous
effects manifest in vortex electron beams [28], atomic Bose-
Einstein condensates [29], and OAM-induced x-ray dichroism
[30]. There are also reports of “magneto-orbital” dichroism,
an OAM analogue of magnetic circular dichroism [31], and
the use of stimulated parametric down conversion to produce
a dichroiclike effect through direct action of the OAM in an
incident field [32].

To date, relatively few studies describing the spin-orbit
interactions (SOI) of light appear to have been concerned
with freely propagating paraxial light [33,34]; most such
studies have involved nonparaxial optical fields (as in focused
or scattered light), focusing upon effects in inhomogeneous
media and at interfaces and metasurfaces, as well as through
the engagement of evanescent near fields [16,35]. These SOI
interactions lead to spin-to-orbit AM conversion of light, as
well as the spin-Hall and orbital-Hall effect of light. Most of
the theory, in both the classical and quantum regime, has been
restricted to the dipole approximation.

The rates of single-photon absorption of vortex photons de-
rived in this paper are distinctly different: in their derivation,
each photon in the beam is assumed to freely propagate in a
paraxial fashion, within the Rayleigh range. None of the SOI
addressed above are specifically applicable to this situation:
the effects to be identified relate to the direct interaction of
the light with individual particles of matter, without the beam
being subjected to any scattering or focusing, for example.
We significantly build upon the most recent theoretical work,
where a more intricate theory of quantum electrodynamics
(QED) has highlighted a discriminative mechanism in single-
photon absorption for chiral molecules, in which the key
roles of quadrupole interactions and molecular orientational
effects have been identified [36]. Although overlooked in
previous studies [13], the potential importance of electric
quadrupole moments had already been hinted at previously
[37]. Accounting for the specific optical process of circular
dichroism, recent theory has now created space for a host of
supplementary questions—such as why it appeared necessary
for the discriminating twisted light beam to also possess a
circular state of polarization. We shall see that, in fact, it
is not. It is therefore timely to progress from a relatively
simple investigation of how one can produce these OAM-
sensitive chiroptical interactions to securing the underlying
mechanisms, explaining why and how they work. Elucidating
the physics provides, inter alia, explicit manifestations of
spin-orbit interactions in the light. By carefully considering
the underlying symmetry principles, we identify results as-
sociated with 2D chirality—effects exhibiting a sensitivity to
the sense of wave-front twist, in material systems lacking the
conventional chirality of 3D structures.

In Sec. II, we begin with an outline of the general QED the-
ory for matter interacting with the most commonly employed

form of vortex light: Laguerre-Gaussian (LG) beams. The
origins of chiroptical effects with optical OAM are explicitly
highlighted with regards to the electric field gradient and
electric-quadrupole transition moments; Sec. III then deploys
these theoretical foundations to derive the rate of single-
photon absorption of LG photons in chiral matter. Section IV
extends the theory to account for chiroptical interactions with
vortex light in achiral matter; Sec. V highlights the fact that
the detailed chiroptical processes are actually manifestations
of a form of SOI. Finally, in Sec. VI, it is shown that certain
chiroptical effects are dependent on only either the topological
charge of the vortex beam or the circular polarization state,
and are thus not SOI (in contrast to the topics of the previous
sections); the role that 2D chirality plays in these exotic
interactions is then explained. We conclude by highlighting
potential routes to further this exciting field of research in the
immediate future.

II. QUANTUM ELECTRODYNAMICS
AND TWISTED LIGHT

The multipolar Hamiltonian is best used to study the
electrodynamics of light-matter interactions, and when it is
expressed in fully quantized form, as in QED, it is most
commonly referred to as the Power-Zienau-Woolley (PZW)
Hamiltonian [38]. This gauge-invariant PZW Hamiltonian
has clear advantages in noncovariant analyses (generally ap-
plicable where it is not necessary for electron motions to
be corrected for relativistic effects), and has recently even
provided application in condensed-matter systems [39–42].
The molecular electric and magnetic molecular multipole
moments couple directly to the physical electric and magnetic
fields:

Hint =
∑

ξ

[−μ(ξ ) · e⊥(Rξ ) − Qi j (ξ )∇ je
⊥
i (Rξ )

− m(ξ ) · b(Rξ ) · · · + h.o.t .] + e2

8m

∑
ξ,α

{[qα(ξ ) − Rξ ]

× b(Rξ )}2 · · · + · · · h.o.t ., (1)

where for a molecule ξ positioned at Rξ , μ is the transition
electric dipole (E1) moment operator, Q is the transition
electric-quadrupole (E2) operator, and m is the transition mag-
netic-dipole (M1) moment operator; the final term in (1) is
the leading-order diamagnetic interaction term [43,44] and
qα(ξ ) is the position vector of an electron α possessing a
charge e and mass m. The acronym “h.o.t .” indicates that the
Hamiltonian is an expansion series and thus includes higher-
order terms. Summation over subscript component indices
is implied throughout the paper. The first term in (1) thus
represents E1 coupling, the second E2, and the third M1;
e⊥(Rξ ) is the electric field and b(Rξ ) is the magnetic field.
The electric and magnetic field vacuum mode expansions
for Laguerre-Gaussian beams, in the paraxial approximation,
emerge as functions of cylindrical coordinates [45,46]: the
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off-axis radial distance r, axial position z, and azimuthal
angle φ;

e⊥(r) = i
∑

k,η,�,p

(
h̄ck

2ε0V

)1/2[
e�,p

(η)(k)a�,p
(η)(k) f�,p(r)e(ikz+i�φ)

− ē(η)
�,p(k)a�,p

†(η)(k) f̄�,p(r)e−(ikz+i�φ)
]
, (2)

b(r) = i
∑

k,η,�,p

(
h̄k

2ε0cV

)1/2[
b�,p

(η)(k)a�,p
(η)(k) f�,p(r)e(ikz+i�φ)

− b̄
(η)
�,p(k)a�,p

†(η)(k) f̄�,p(r)e−(ikz+i�φ)
]
, (3)

where a�,p
(η)(k) and a�,p

†(η)(k) are the annihilation and cre-
ation operators for a photon of mode (k, η, �, p); e�,p

(η)(k)
and b�,p

(η)(k) are the unit polarization vectors transverse to k,
such that b�,p

(η)(k) = k̂ × e�,p
(η)(k); and, for a beam of waist

w0, the radial distribution function f�,p(r) is

f�,p(r) = C|�|
p

w0

[√
2r

w0

]|�|
e(−r2/w2

0 )L|�|
p

(
2r2

w2
0

)
. (4)

In Eq. (4), C|�|
p is a normalization constant; L|�|

p is the
generalized Laguerre polynomial of order p. Notably, the
dependence of f�,p(r) on the topological charge rests on
the absolute value |�|, and not its sign. The most significant
part of (2) and (3) is the azimuthal angular dependence con-
tained in the term ei�φ . This azimuthal phase structure, which
confers OAM in Laguerre-Gaussian modes, gives rise to |�|
intertwined helical wave fronts per wavelength, and the wave
fronts propagate with either a clockwise or anticlockwise
twist. The direction of twist, determined by the sign of �,
gives the helices their handedness: by common definition, for
� > 0, beams twist to the left and for � < 0, to the right. In
the above equations, it is readily verified that for � = 0, the
mode expansions reduce to a structureless Gaussian form, in
the paraxial approximation. The above, with standard first-
order time-dependent perturbation techniques, accounts for
virtually all linear optical interactions with molecules [47].

In a recent paper [36], we used the same QED methods as
those outlined above to show what influence the sign of � has
on single-photon absorption with Laguerre-Gaussian beams.
Such efforts led to the particularly interesting phenomenon
termed circular-vortex dichroism (CVD). It may be argued
that the most important principle to emerge from that analysis
was the apparent necessity of the transition quadrupole mo-
ments (E2) to engage the handedness of a vortex beam in any
chiroptical interaction—as was originally shown, any combi-
nation of E1 and M1 dipole moments will never produce a
chiroptical sensitivity to the OAM of the beam.

In hindsight, this may seem obvious: if we want to observe
a chiroptical sensitivity due to the sign of �, which is a repre-
sentation of the phase front, we must clearly engage a molec-
ular multipole moment that is dependent upon the (OAM)
circulating phase gradient (while SAM is a rotating vector
property). Optical vortex beams possess both an axial field
gradient and a transverse (in-plane) gradient, both of which
can drive quadrupole transitions, the latter being manifest in
part through the azimuthal phase gradient. Evidently from (1),
both the E1 and M1 have a standard linear dependence on the
oscillating electric and magnetic fields, respectively. However,
the E2 is a function of the gradient of the dynamic electric
field. Thus, the operation represented by ∇ je⊥

i is extremely
important, and proves to pervade the associated theory:

∇ je
⊥
i ≈ ∇ j f�,p(r)e(ikz+i�φ)

= f�,p(r)∂r r̂ je
(ikz+i�φ) + f�,p(r)

1

r
∂φφ̂ je

(ikz+i�φ)

+ f�,p(r)∂zẑ je
(ikz+i�φ)

= r̂ j∂r f�,p(r)e(ikz+i�φ) + f�,p(r)
1

r
(i�φ̂ j − r̂ j )e

(ikz+i�φ)

+ f�,p(r)ikẑ je
(ikz+i�φ), (5)

where we have used the shorthand notation ∂/∂x = ∂x and
the fact that ∂φφ̂ = −r̂. It is immediately evident that by
taking the gradient of the electric field, we produce terms
linearly dependent on � (and hence its sign); in other words,
we elicit terms dependent on the phase gradient. Therefore,
the quadrupole transition interactions are dependent on the
amount the beam is twisting, and in which direction. There is
also clearly a dependence on � in the phase factors: nonethe-
less, in any incoherent optical process with distinct initial and
final states, the observable can be cast as a rate, quadratically
dependent on the matrix element when using the Fermi rate
rule, and the phase factors disappear in the modulus square. At
this stage, however, we cannot anticipate the general form for
any chiroptical effect or form of spin-orbit interaction; these
possibilities can be revealed only once optical rates are calcu-
lated for specific phenomena. By including and taking account
of E2 moments in an optical process, we can anticipate a
chiroptical influence originating from the sign of �. In passing,
it is worth observing that although typically small compared to
the generally dominant electric-dipole interaction, relatively
enhanced interactions can take place between quadrupole
transition moments and twisted light beams [48–51].

To proceed with calculating the optical rate of single-
photon absorption using the ideas presented above, we require
standard time-perturbation techniques and the Fermi golden
rule, such that the rate is for a molecule making a transition
from the initial state |0〉 to the final state | f 〉,

	 = 2π

h̄
ρf |M f i(ξ )|2 = 2π

h̄
ρf

∣∣−μ
f 0
i (ξ )〈(n − 1)|e⊥

i (r)|n〉︸ ︷︷ ︸
E1

−m f 0
i (ξ )〈(n − 1)|bi(r)|n〉︸ ︷︷ ︸

M1

−Q f 0
i j (ξ )〈(n − 1)|∇ je

⊥
i (r)|n〉︸ ︷︷ ︸

E2

∣∣2
, (6)

where ρf is the density of final states and M f i(ξ ) is the matrix
element. For the final term in square brackets (the E2 term)

in (6), we refer back to (5) to carry out the calculation.
Evidently, through the modulus square in (6), we produce
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a plethora of terms: E1E1, M1M1, and E2E2, but also the
interference terms E1M1, E1E2, and M1E2. As mentioned,
if we wish to observe a chiroptical effect due to the OAM
of the twisted photons, we must engage an E2 moment as a
minimum—therefore, for our purposes in this article, we may
now concentrate on the E1E2, M1E2, and E2E2 terms.

III. CHIRAL MEDIA

We now make an important connection between these
multipole transition moments and chirality. The spatial par-
ity signature of an E1 moment is odd, while that of the
E2 and M1 moments is even. Here, the selection rules for
electronic transitions come prominently into play. For any
process involving an electronic transition, the product of the
initial- and final-state electronic symmetries (specifically their
irreducible representations known as irreps) must contain the
symmetry irrep of one or more components of the multipole
under scrutiny. For any centrosymmetic molecule, it follows
that since every irrep has a definite parity, no transition can be
simultaneously allowed by both E1 (odd-parity) and E2 (even-
parity) moments; the same principle of exclusion applies to
E1 and M1 simultaneously. Thus, in the case of single-photon
absorption, the E1M1 and E1E2 (μm and μQ) cross terms
vanish. However, for noncentrosymmetric molecules (and,
indeed, for chiral species in general), such terms will indeed
be present in the rate equation [52]. Then, since the μm and
μQ products have odd parity, they can be supported only by
odd-parity combinations of the field vectors. On the other
hand, the M1E2 and E2E2 moment products can arise for both
achiral (nonchiral) and chiral molecules.

We now concentrate on the E1E2 moment products to
specifically entertain a situation where the material compo-
nent of the system is chiral. The principles are explained in
more detail in Ref. [47]. All electric-multipole moments are
assumed real, and isolating the E1E2 terms therefore gives

	E1E2 =
(

nh̄ck

2εoV

)
f�,p

2(r)eiēk

[(
r̂ j

1

f�,p(r)
∂r f�,p(r) − r̂ j

r

)

× (
μ

f 0
i Q f 0

k j + μ
f 0
k Q f 0

i j

) +
(

i
�

r
φ̂ j + ikẑ j

)

× (
μ

f 0
k Q f 0

i j − μ
f 0
i Q f 0

k j

)]
. (7)

For the present purposes, we extract the relevant terms
from (7) which exhibit a dependence on the sign of �; the
element of the absorption rate, for a twisted LG photon
of arbitrary polarization, that depends on the sign of the
topological charge by a molecule (identified in the following
expression by a prime on the 	) is thus secured as

	′
E1E2(�) = I (ω)

2ch̄2εo

1

r
f�,p

2(r)eiēki�φ̂ j (μkQi j − μiQk j ), (8)

where the density of final states for the radiation is cast
in terms of an irradiance per unit frequency I (ω) (yielding
intensity on integration over linewidth in frequency terms)
and, for visual clarity throughout the paper, we now drop the
superscript f 0 from the molecular transition moments. The
innocuous presence of “i” in (8) has a profound influence upon
the final result: the right-hand side of (8) will unphysically

represent an imaginary quantity, unless the product of
polarization components delivers an imaginary—or at least
complex-valued—result. Thus, it becomes evident that to
deliver a real, observable rate, it is necessary to invoke a
circular (or at least elliptical) polarization for the photon.
Accordingly, we deduce that for chiral molecules, to leading
order E1E2, linearly polarized twisted beams show no
chiroptical effects: optimally, light with an optical vortex
structure will be circularly polarized so that the beam
conveys both orbital and spin angular momentum along the
propagation direction. The polarization factor in (8) now
simplifies using the following identity [47]:

eL/R
i ēL/R

k = 1
2

[
(δik − k̂ik̂k ) ∓ iεikmk̂m

]
, (9)

which allows the rate to be expressed in terms of the helicity
eigenvalues σ for the circularly polarized state,

	
′(L/R)
E1E2 (�) = σ�

κ

r
εikmk̂mφ̂ jμkQi j, (10)

where σ = ±1 for left-handed (L) or right-handed
(R) circularly polarized photons respectively; as stated
previously, the topological charge can take any integer value,
without an upper limit. For conciseness of expression,
we also now introduce the notation for the constant
κ = I (ω) f�,p

2(r)/2ch̄2εo. The effect quantified by the rate
(10) is clearly dependent upon both the helicity of the
circularly polarized photons and the sign of the topological
charge through the product σ�, and therefore may legitimately
be considered a spin-orbit interaction. The underlying physics
of the SOI in Eq. (10) is discussed in detail in Sec. V.

Due to the twin dependence on σ� and on the molecular
handedness (through μkQi j), the rate (10) changes sign if
two of the three different forms of handedness in the system
(circular polarization state, topological charge, and molecular
handedness) are fixed and the other is changed. For example,
the rate is opposite in sign for an L-handed molecule absorb-
ing an L-handed vortex photon of L-handed polarization, from
that for the same molecule and the same optical vorticity,
subjected to a R-handed polarization. For a given molecular
handedness, the CVD effect is therefore invariant under the
transformation (σ, �) → (−σ,−�), but not (σ, �) → (−σ, �)
or (σ, �) → (σ,−�).

The analysis on CVD can be made more complete by
accounting for standard circular dichroism which will, due to
the presence of circularly polarized photons, contribute to the
signal in any experiment—whether or not based on structured
light. The differential rate of absorption for circularly polar-
ized photons is found to be

	(L(σ )) − 	(R(σ )) = �	CD + �
2κ

r
εikmk̂mφ̂ jμkQi j, (11)

�	CD = κ[c−1(δik − k̂ik̂k )(μim̄
′
k − μ̄km′

i )

+ 2kεikmk̂mẑ jμkQi j], (12)

where m′
i = imi. Here, the additional terms in (12) have

been derived in a similar method to the well-known results
presented by Power and Thirunamachandran [47,53], but with
use of the LG-mode expansions (2) and (3). In contrast to
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FIG. 1. Twisted beam, incident from the left, propagating
through an anisotropic system of molecules such as a liquid crystal
exemplified by two helical structures with a common orientation.
Positioned at opposite sides of the beam, each experiences with
regard to its own structure a different directional sense of the phase
gradient.

the CVD contribution given by (10) and (11), they exhibit no
dependence on the sign of �.

Under the usual conditions that provide for satisfaction of
Beer’s absorption law, the fractional absorption per molecule
determines the fractional absorption of a short-pathlength vol-
ume of the sample as a whole: in this respect, measurements of
the absorption (or differential absorption) of a structured beam
are indeed no different from any other beam in which there
are intensity variations across the beam. The differential ab-
sorption that is associated with circular dichroism is therefore
directly proportional to the differential transmission of the
input beam. While CD is historically quantified in terms of a
dissymmetry factor defined in terms of extinction coefficients
[2], a common expedient in recent studies, e.g., Ref. [17],
is simply to cast the measure of CD as the dimensionless
quantity (IL

t − IR
t )/(IL

t + IR
t ) ≡ �It/2It , where It denotes the

transmitted intensity. In terms of our results, this is deliv-
ered by 2�	CD/	, where the denominator is the textbook
electric-dipole term in the absorption rate. In other words, our
results link directly to the differential transmission measured
at different positions around the structured beam.

As it stands, the CVD rate (10) is applicable to a system
of one or more molecules individually fixed in orientation
within the beam—or the result may be taken as representative
of molecules in a system possessing a degree of orientational
order, such as a poled liquid crystal. If the interaction between
a molecule and the local wave vector at one specific point in
the beam has the same magnitude, but is opposite in sign to the
mirror-symmetric position across the beam, then for a system
of molecules with a common orientation, the CVD will vanish
if absorption is monitored across the whole beam profile (as is
usual in experimental studies). Then, only the quantity given
by the standard CD [Eq. (12)] persists; see Fig. 1. In such a
scenario, observation of the CVD effect would require probing
for locally differential absorption at different locations within
the beam. However, if the molecular system has only a partial
degree of orientational order across the beam, the extent of

CVD will be diminished—that is to say, the CVD effect for
molecules in mirror-symmetric position across the beam need
not necessarily cancel, as the molecules in question may have
slightly different orientations.

To complete the analysis, we now allow for a complete
lack of orientational order, as with conventional molecular
fluids. To account for this involves implementing an isotropic
rotational average on the right-hand side of (10), bringing into
effect a contraction of the third rank tensor μkQi j with the
corresponding isotropic Levi-Civita epsilon [54]. Random av-
eraging delivers 〈μkQi j〉 ≈ εi jkελμν〈μνQλμ〉 (where angular
brackets denote the rotational average, Latin indices denote
laboratory-fixed frame, and Greek indices denote molecule-
fixed frame). However, since the electric-quadrupole moment
is symmetric in its indices and the Levi-Civita tensor is fully
index antisymmetric, the molecular average is zero. There-
fore, the CVD rate (10) and E1E2 CD contribution in (11)
vanish for randomly oriented molecules. The first term in
(12), which represents the contribution from E1M1 coupling,
does not vanish on orientational averaging; it represents the
main source of CD in molecular fluids [3,54], even accounting
for the light source being a Laguerre-Gaussian beam. It may
therefore be concluded that observing the CVD effect in
isotropic molecular fluids would not be possible, and full
verification of the mechanism itself would involve resolving
the extent of absorption at local positions in the beam pro-
file of an ordered, or at least partially ordered, molecular
system.

IV. ACHIRAL MEDIA

We have to be careful to distinguish between the criteria
for chiroptical effects in randomly ordered or isotropic fluid
media and in systems with any degree of orientational order.
For freely rotating molecules, a capacity to exhibit chirality
can be correctly interpreted on the basis of a lack of reflec-
tion symmetry—the standard chemical definition: reflection,
coupled with π rotation about the normal to the reflection
plane, has the same effect as spatial inversion. This definition
would appear to exclude the possibility of isotropic media
comprising achiral components (possessing at least one ele-
ment of reflection symmetry or an axis of improper rotation),
exhibiting chiroptically differential effects. However, such a
conclusion depends on there being no time-independent local
field gradients: with structured light, it is no longer possible to
overlook such gradients.

Conversely, in systematically ordered media (whether the
orientational ordering is total or partial), a lack of full
rotational symmetry means that chiroptical effects can be
anticipated in either chiral or achiral samples [55–57]. As
was observed in Sec. III, E1E2 terms cannot contribute to
chiroptical effects in isotropic chiral or achiral media. It is the
next level of terms, E2E2, that we need to focus upon—noting
that the magnitude of effects associated with these terms is
generally lower in magnitude than the E1E2 terms for chiral
media. From (6), the total rate to single-photon absorption by
E2E2 contributions is seen to be

	E2E2 = κeiēkQi jQklA jĀl , (13)
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where

A =
[

r̂
1

f�,p(r)
∂r f�,p(r) + 1

r
(i�φ̂ − r̂) + ikẑ

]
. (14)

On inspection, it is possible to isolate the terms in (13) that
will exhibit SOI similar to that highlighted in the CVD effect
in Sec. III:

	′
E2E2(�) = κ

i�

r
eiēkQi jQkl

[
1

f�,p(r)
∂r f�,p(r)(φ̂ j r̂l − φ̂l r̂ j )

+ 1

r
(φ̂l r̂ j − φ̂ j r̂l )

]
. (15)

As in the previous section, we utilize identity (9), which
allows the rate to be expressed in terms of the helicity eigen-
values of the circularly polarized photons,

	
′(L/R)
E1E2 (�) = σ�

κ

2r
εikmk̂mQi jQkl (φ̂ j r̂l − φ̂l r̂ j )

×
[
∂r ln f�,p(r) − 1

r

]
. (16)

Once again, the result represents a chiroptical effect de-
pendent on the product σ�, whose origins lay in SOI. The
underlying mechanism for these SOI and in the chiroptical
processes highlighted in the previous section will be discussed
in detail in Sec. V. Distinctly different from the CVD effect,
the E2E2 rate (16) is only dependent on the handedness of
the radiation through σ�, and not the molecular handedness
as Qi jQkl which is invariant under the spatial parity operation.
Therefore, a chiroptical effect can be evinced in achiral matter,
solely through the interplay of handedness in the interacting
circularly polarized LG modes of light.

The averaging technique needed to address a system of
molecules in completely random orientation has to tackle
the fourth-rank tensor in (16) and is therefore a little more
involved than the previous case involving third-rank tensor
averaging. The procedure can be implemented using standard
results [54] for any set of mutually orthogonal axes in three-
dimensional space:

〈
	

′(L/R)
E1E2 (�)

〉 = σ�

(
2κ

3r

)
(QλλQππ − QπμQμπ )

×
[
∂r ln f�,p(r) − 1

r

]
. (17)

It emerges that the form of this result elicits some inter-
esting insights into the physics. Analogous to the CVD effect
(10), both (16) and (17) are invariant to the transformation
(σ, �) → (−σ,−�), but not (σ, �) → (−σ, �) or (σ, �) →
(σ,−�). Thus, for a fixed polarization handedness, the rate of
absorption will be different for a right-handed twist photon
than for a left-handed one (the same applies for a fixed
helicity of twist and differing handedness of polarization).
However, in contrast to the CVD case, the effect (17) does not
vanish under a full-rotational average and therefore persists
in an isotropic molecular fluid. Equally, since the local 3D
average is insensitive to any direction of field gradient, we can
conclude that the absorption rate contributions represented by
either Eq. (17) or (18), averaged over the whole cross section
of a structured beam, will be zero.

Before moving on to discuss the remaining terms that
exhibit discriminatory effects dependent on the SAM or OAM
in (13) (Sec. VI), we tackle in the next section the underly-
ing mechanism of the spin-orbit interaction—σ�—exhibited
in the CVD effect (10), along with (16) and (17) for the
dichroiclike effect in achiral media.

V. SPIN-ORBIT INTERACTIONS OF LIGHT

So far, we have derived equations to quantify and represent
the mathematics of several facets of the chiroptical processes
manifested in single-photon absorption. The underlying phys-
ical mechanism is yet to be fully illuminated: it is this that
we now aim to tackle. It has been explicitly highlighted how
the engagement of E2 or higher-order transition moments is
required to observe a chiroptical effect with sensitivity to the
handedness of vortex twist. This, however, is only one part
of the overall mechanism at play. As shown above, to secure
a real rate (and therefore represent a measurable quantity)
requires circularly polarized states to be utilized since the
equation involves the product σ�. It is worth dwelling on the
nature of such a feature which—in other connections to be dis-
cussed below—might be considered to exhibit a form of spin-
orbit coupling. At the outset, we should therefore be clear that
the sense in which we use the term “spin-orbit interaction”
(SOI) is simply as a marker for a mechanism necessitating the
presence of both kinds of optical angular momentum.

In the context of beam optics, changes in polarization
state (and thus an associated helicity) can be engaged in
manipulating intensity distributions and propagation direc-
tions, producing novel optical phenomena. Importantly, these
SOI become distinctly important at the microscopic, sub-
wavelength scale: nano-optics, photonics, and the light-matter
interactions that take place between photons and molecules,
for example. Well-known examples of spin-orbit coupling
include the spin- and orbital-Hall effects of light, and spin-to-
orbit AM conversion [17]. In the spin-Hall effect [35,58], light
experiences spin-dependent position or momentum of light.
These arise from coupling between SAM and extrinsic OAM,
and a similar vortex-dependent shift known as the orbital-Hall
effect occurs between intrinsic and extrinsic OAM [59,60].
The coupling that takes place between the intrinsic SAM and
OAM produces spin-to-orbit AM conversion [61–65]: through
a combination of anisotropic media and inhomogeneities,
the polarization, intensity, and phase distributions can all
be manipulated. These SOI effects, coupled with surface
plasmons, have already been utilized in the production of
chiroptical interactions sensitive to optical OAM [18,25] and
spin-controlled transmission of light [66]. However, in the
derivation of optical rates in this work, we have assumed
paraxial light, freely propagating without scatter of focus,
being absorbed in homogeneous collections of molecules.
Hence, the aforementioned spin-orbit couplings cannot ex-
plain the SOI taking place in (10) and (16).

The well-known plane waves, although technically un-
physical, offer exact solutions to Maxwell’s equations. These
waves have zero electric and magnetic field components in the
direction of propagation (k). The Laguerre-Gaussian modes
concentrated on in this paper are only approximate solutions
to Maxwell’s full theory [67]. In their application, the paraxial
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approximation is assumed, whereby the z dependence of
the field amplitude is neglected due to the relatively larger
transverse variation. Lax et al. [68] highlighted how such
an approximation leads to zeroth-order fields which are not
exact solutions to Maxwell’s equations, though contributing
the largest component to the approximate solution, and that
the first-, second-, and higher-order corrections to these parax-
ial solutions offer small corrections through an expansion
parameter (kw0)−1. The zeroth-order solutions represent com-
pletely transverse fields, whereas, due to the divergence-free
character of the fields, the small first-order component must
be longitudinal.

The mode expansions (2) and (3) have been derived within
the paraxial approximation [46,47], and, as can be seen from
the interaction Hamiltonian (1), both the E1 and M1 couplings
are clearly interacting with the zero-order transverse fields.
However, the E2 coupling that is dependent on both the trans-
verse and longitudinal field gradient is interacting with higher-
order fields. This is because the transverse gradient of the
zero-order field is clearly engaged in twisted light interactions
with E2 moments, through the ∂r and ∂φ operations in (5). Of
course, we have already seen that the most important feature
is that the ∂φ operation leads to the unique dependence on the
topological charge, which in turn emerges in the form of an
SOI through σ�.

In the equations that have exhibited discriminatory pho-
ton absorption through SOI, it is important to note that
all have been dependent on the transverse gradient of the
zero-order field, and as such can be seen to be interacting
with longitudinal field components: the E1E2 rate (10) came
from a ∂φ-dependent term; the E2E2 rate (16) came from a
∂φ∂r-dependent term. This explains why, in previous work
[14] restricted to the dipole interactions E1 and M1, no
role was found for the topological charge of a vortex beam
in chiroptical interactions: the underlying approximation did
not allow for longitudinal components of the field and thus
precluded SOI phenomena. Interestingly, beams with a lon-
gitudinal component have been shown to produce a similar
discriminatory effect in both achiral and chiral media [69,70]
and play an important role in twisted-light-matter interactions,
particularly for beams with antiparallel OAM and SAM [71].

It is worth highlighting a subtle point about the SOI optical
phenomena studied so far, and the relationship between parax-
ial and nonparaxial solutions to the wave equation. Adopting
the more generally applicable, nonparaxial form for an LG
mode would not lead to new physics, beyond what has already
been highlighted for the paraxial form, as we have shown
for single-photon absorption. Using a nonparaxial LG beam
would not introduce additional features beyond those already
extracted; their effect would only be to introduce terms with
marginal quantitative effect. This is because the azimuthal and
radial phase factor is left unchanged when transitioning from
a paraxial to a nonparaxial solution; as has been shown above,
it is this factor which produces chiroptical effects with regards
to the topological charge. In the construction of a nonparaxial
LG profile, satisfaction of the complete Helmholtz equation is
secured by simply changing the longitudinal phase factor only
in the paraxial form [72,73]. This is why the results presented
by Afanasev et al. [19] “remain large in a paraxial limit.” It
is worth emphasizing this: in the absorption of twisted light,

neither paraxial nor nonparaxial beams of light can produce
SOI involving only dipole (E1 and M1) coupling—they must
involve quadrupole or higher transition moments. E2 transi-
tions are important because they involve the transverse and
longitudinal gradient of the field, the transverse part of which
involves longitudinal electric field components coupling to the
matter. Terms that depend on ∂z differ between paraxial and
nonparaxial representations, but the extent of that difference
should be of only qualitative significance.

Another important issue is the exact role of angular mo-
mentum transfer in electronic transitions when photons are
absorbed by atoms and molecules. Just as the intrinsic SAM of
a photon is known to transfer to the orbital angular momentum
of an electron, i.e., the internal degrees of freedom of an atom
or molecule, the question has naturally been asked whether
the OAM of a twisted light beam might be transferred to
the electronic motion. Different theoretical studies provided
conflicting conclusions [74–78]: however, it became widely
agreed that in dipole transitions, any OAM is transferred to ex-
ternal degrees of freedom—i.e., those associated with move-
ment of the atom or molecule as a whole. Early theoretical
predictions [74] that optical OAM might indeed be transferred
to the internal degrees of freedom through electric-quadrupole
transitions have been vindicated by recent experimental ev-
idence [79]. In any such E2 transition, the intrinsic single
unit of SAM of a photon transfers to the electronic motion,
along with a unit of OAM from the beam, with the remaining
(� ± 1)h̄ OAM transferring to the center-of-mass motion. To
be clear, linearly polarized and circularly polarized photons
can both induce an electronic quadrupole transition: one
cannot assume a one-to-one correlation between a transition
multipole involved in absorption and the angular momentum
content of the incident field [80]. This is an extension of
the same principle that applies to photons possessing OAM.
Selection rules are based on changes in angular momentum
of the molecule, not solely the addition of angular momentum
from a photon.

Therefore, since in E2 transitions both SAM and OAM
are transferred to the electronic internal degrees of freedom
of the molecule—rather than the latter being conveyed to
the center-of-mass motion as happens in dipole transitions—
the intrinsic nature of the OAM of paraxial beams can in
fact be registered on a local scale. The SOIs that provide
a basis for the chiroptical effects in molecules are therefore
distinctively different from those occurring in nonparaxial
beams that have been focused or scattered, or those occurring
in plasmonic-enhanced vortex light-matter interactions. As
regards electric multipoles, both the SAM and OAM of light
must participate in transitions that are simultaneously electric-
dipole and electric-quadrupole allowed, in order to observe
local chiroptical effects in chiral molecules, or solely electric-
quadrupole allowed in achiral media.

VI. 2D CHIRALITY

In previous sections, we have highlighted certain kinds
of chiroptical effects that occur with twisted light in its
interactions with both chiral and achiral molecules. These
interactions, sensitive to the sense of twist and the circular
polarization of the input beam, have been shown to owe
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their primary origins to the SOI in a process entailing an E2
transition moment. However, calculating the total rate for
the E2E2 contributions (13) also produces terms exhibiting
chiroptical sensitivity to the wave-front twist or circularly
polarization state, and hence the OAM or the SAM of
light, but which are not SOI: it is these terms that we shall
concentrate upon in this section.

It transpires that a key feature of these terms, neglected
in previous treatments, is their manifestation in systems with
two-dimensional (2D) chirality [81–83]. The associated sym-
metry rules are distinctively different from the 3D form,
though equally strict. A surface or other locally ordered
structure feature may be achiral with regard to one specific
orientation of beam incidence, yet exhibit chirality with re-
spect to another. Indeed, the reason for the connection of
circular polarization with optical helicity is the propagating
character of light: the electric and magnetic vectors sweep out
a helical locus, rather than the circle that would otherwise
arise. When circularly polarized light encounters an orienta-
tionally fixed component, however, sensitivity to its helicity
demands satisfaction of only the conditions for 2D chirality,
for which it is sufficient to break reflection symmetry in one
plane containing the propagation vector. Indeed, much of the
recent research on chiral effects involving metasurfaces is
concerned with photonic interactions between optical beams
and sculpted material structures of just such a 2D chiral form
[84]. Gammadion surface features, which have C4 symmetry
within the surface plane, have become a common motif in
such studies [85]; however, the presence of one plane of re-
flection symmetry may still allow the exhibition of chiroptical
behavior [86].

In the present connection, it becomes evident that 2D
chirality can be exhibited with respect to incident light with
circular polarizations and/or a twisted wave front. Certain
terms in the generic single-photon rate equation (7), that can-
not support chiroptical effects in fluid media, may nonetheless
do so in ordered media, exploiting 2D chirality. The initial
contributions with this capacity are in fact the first terms on
the right-hand side of (14): these deserve special attention,
for they illustrate the possibility of a dichroic effect with
linearly polarized light. The two terms may together be cast
as ∂r ln f�,p(r), immediately signifying that for unstructured
light—a traditional plane wave, for example—the absence of
any dependence on distance from the beam center (or indeed
any axis) will mean that this E1E2 term in its entirety will
deliver a rate of zero contribution. For the structured forms
of light that are our focus, however, this is not the case.
Moreover, the field components signified by the indices i, j,
and k are necessarily coplanar—in the paraxial approxima-
tion. However, whereas the i and k components of a plane
polarized electric field might legitimately be referred to a
standard Cartesian basis in the plane perpendicular to ẑ, (the
x̂ and ŷ directions in a laboratory-fixed frame of reference,
for example, identifiable from 2D rotation of the r̂ and φ̂

directions at any chosen off-axis location and then applied
across the whole beam), the j component specifically refers
to a unit vector in the radial direction within that same plane.
The key distinction is that the latter is necessarily position
dependent, its sign dependent on the “side” of the beam;
clearly this does not apply to the i and k field components.

Thus, a molecule with 2D (or 3D) chirality positioned on
one side of the beam will generate an E1E2 rate contribution
opposite in sign from a diametrically opposed molecule of
the same conformation. Equally, a molecule of space-inverted
symmetry at the same original position will also generate
a rate contribution of the opposite sign. 3D chirality is not
required: 2D chirality suffices. In fact, in both instances, 2D
chirality signifies essentially the same effect: placing a mirror
across the center of the beam, along rather than transverse to
the beam axis, has the same effect of inverting 2D molecular
symmetry as inverting the radial unit vector. These considera-
tions elucidate the analysis that follows.

Evidently, as the total E2E2 rate (13) depends quadratically
on A(14), which itself contains 4 terms, there are in total 16
contributions to the E2E2 rate of single-photon absorption. It
is important to recognize that 8 of these 16 terms contribute to
the rate of absorption without any chiroptical significance—
they designate the appropriate contribution to E2E2 from an
LG beam just as they would for a plane-wave light beam.
These terms are in fact easily identified by being “quadrat-
ically” dependent on components of a single unit vector,
i.e., r̂i r̂ j , φ̂iφ̂ j , and ẑi ẑ j . The more interesting physics arises
from cross terms, one of which has already been explicitly
highlighted in the previous section through (16), which is, of
course, a cross term dependent on (φ̂, r̂). A further pair of
cross terms which involves (ẑ, r̂), since it carries a factor of i,
vanishes for plane polarizations: for circular polarizations, it
may be expressed as

	
′(L/R)
E1E2 (ẑ, r̂) = σ

k

2
κεikmk̂mQi jQkl (ẑ j r̂l − ẑl r̂ j )

×
[
∂r ln f�,p(r) − 1

r

]
. (18)

This term depends on the helicity of light, i.e., the handed-
ness of circular polarization [there is a dependence on topo-
logical charge through ∂r ln f�,p(r), but that again involves
only the modulus, |�|]. The last remaining pairs of cross terms
engage (ẑ, φ̂) and their contribution depends on the sign of the
topological charge,

	′
E2E2(ẑ, φ̂) = �

k

r
κeiēkQi jQkl (φ̂ j ẑl + ẑ j φ̂l ). (19)

Notably, this term persists even with linearly polarized light.
Indeed, similar chiroptical effects showing discriminatory be-
havior dependent on the sign of � for linearly polarized twisted
beams have been previously reported [22]. It is worth em-
phasizing that the 2D chiroptical phenomena detailed by (18)
and (19) both entail a dependence on the material symmetry
through the orientation-dependent products of E2 molecular
transition moments. This marks a distinction from the dis-
criminatory effects that occur in chiral plasmonics [87,88].

Before concluding, it is worth noting that the contribution
of M1E2 terms to the optical absorption rate will generally be
of the same order of magnitude as the E2E2 terms, and simple
extraction of the appropriate terms from (6) allows their rate
contribution to be secured. Notably, since both the magnetic-
dipole and electric-quadrupole operators have even parity,
this rate contribution can persist irrespective of the molecular
symmetry, provided the absorption transition is allowed by

023837-8



SPIN-ORBIT INTERACTIONS AND CHIROPTICAL … PHYSICAL REVIEW A 99, 023837 (2019)

both forms of multipole (as determined by the irreducible
representations of the initial and final state, in the point group
for the appropriate molecular symmetry). Accordingly, no
additional features of compelling interest arise from this term
and we consider it no further.

VII. CONCLUSION

This aim of this work has been to explicitly highlight the
major role that optical orbital angular momentum can play
in chiroptical light-matter processes. Specifically, we have
concentrated on single-photon absorption in both chiral and
achiral media. It was shown how in conventional 3D materials
such effects are manifest through SOI, and that in a system of
chiral molecules there must be a degree of orientational order
to observe the CVD effect; conversely, for achiral molecules,
the dichroiclike absorption persists even when the system
has full rotational symmetry. Alongside these chiroptical in-
teractions, manifest through SOI, we also identified further
phenomena which exists as a result of the optical OAM and
SAM interacting in a discriminatory fashion with systems
possessing 2D chirality. Once again, the unparalleled utility
of quantum electrodynamics for studying fundamental light-
matter interactions has been exhibited: even for the simplest of
optical processes, i.e., single-photon absorption, a multitude
of physical phenomena have been extracted and quantified.

A summary of the key findings in the general case of both
chiral and achiral molecules is as follows:

(1) Chiroptical interactions with twisted light necessitate
the engagement of electric-quadrupole (or higher) transition
moments as they depend on the transverse field gradient which
produces longitudinal field components—the cause of the
SOI.

(2) In both chiral and achiral media, chiroptical effects
have been identified that are sensitive to both the helicity of
light σ and the topological charge � through the product σ�.

(3) In addition to the chiroptical interactions that originate
due to SOI, further phenomena in molecular systems possess-
ing 2D chirality are seen to be sensitive to σor �, but not both
simultaneously.

We believe it is clearly evident that the field of chiroptical
interactions engaging the OAM of light has in recent years
began to flourish: with theoretical developments of the nature
highlighted in this paper, the true potential of the area will be
increasingly realized over the coming years. Our future efforts
will concentrate on scattering and more exotic multipho-
ton optical processes. Indeed, studies looking at differential
Raman [89,90] and Mie [91,92] scattering suggest that the
sign of � introduces a sensitivity to these scattering processes,
and in a recent study it has even emerged that there exists an
optical OAM-sensitive transmission rate of LG beams through
mouse brain tissue [93].
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