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Time-dependent physical Stokes parameters and degree of polarization of light
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We extend the concept of the Eberly-Wódkiewicz time-dependent physical spectrum of light to electromag-
netic fields by considering the observable time dependence of four appropriately defined Stokes parameters. We
also define the concept of time-dependent physical degree of polarization of light by means of these parameters,
and discuss the measurement of these quantities using a tunable spectral filter and a detector with a finite response
time. The concepts are illustrated by examples with spectrally phase-modulated fully and partially coherent
model pulse trains.
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I. INTRODUCTION

The statistical properties of nonstationary light fields, such
as trains of ultrashort pulses, can be described (up to second
order) by means of two-time and two-frequency correlation
functions in temporal and spectral domains, respectively [1].
In their classic paper, Eberly and Wódkiewitz [2] introduced
the concept of time-dependent physical spectrum of light to
describe the outcome of an experiment in which a pulse train
with any state of temporal (or spectral) coherence passes
through a spectrally selective (tunable) filter and the time
dependence of the output pulses is measured by a square-law
detector. Because of the time-frequency uncertainly principle,
high spectral resolution implies low temporal resolution and
vice versa [2–5].

Correlations between the temporal intensity and spectrum
of light are also manifested in spectrograms used in modern
ultrashort-pulse characterization techniques [1,6]. If the pulse
train is fully coherent (chronocyclic), the spectral and tempo-
ral amplitudes and phases of the input pulses can be deter-
mined from spectrograms by numerical retrieval algorithms,
though the characterization of extremely complex pulses is a
challenging task [7]. If the pulse train is partially coherent, an
ensemble of pulses retrieved from single-shot measurements
is typically needed to construct the second-order temporal
and spectral correlations functions [1]. Such partially coherent
pulse trains are generated by many important light sources,
including supercontinuum pulses generated in bulk media
and optical fibers [8], chirped-pulse amplification systems [9]
and free-electron lasers [10]. These pulses can be extremely
complex, individual pulses can be too weak to allow single-
shot characterization, or the (mean) wavelength of the pulses
may be in such a domain (such as the x-ray regime) that
experimental generation of a spectrogram is difficult. Instead
of direct construction of correlation functions by single-shot
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measurements and retrieval, alternative techniques can be
applied at least in the visible region [11,12]. If one is primarily
interested in the spectral and temporal intensity profiles of the
pulse train (instead of coherence properties), straightforward
measurements of time-dependent physical spectra using band-
pass filters and square-law detectors remain important, and
can sometimes be the only viable option.

The theory of time-dependent physical spectra was given
by Eberly and Wódkiewitz in a scalar form, i.e., the polar-
ization of light was not considered. It is, however, conceiv-
able that the polarization properties of pulsed fields depend
on frequency. For example, polarization-sensitive spectral
modifications of light can take place in transmission though
scattering media, or be introduced on purpose by passing the
pulses through polarization-modulating optical elements with
spectrally variable properties [13–16]. In this case not only
the observable (physical) spectrum but also the state of po-
larization of pulses becomes time-dependent, which implies a
time-dependent degree of polarization in the case of partially
coherent pulse trains.

In this paper we present an electromagnetic extension of
the Eberly-Wódkiewitz theory by introducing a full set of four
“physical” Stokes parameters. These parameters enable us to
characterize the time-dependent state of polarization of light,
including the physically observable time-dependent degree of
polarization of random pulse trains.

In general, the state of polarization of an ensemble of
plane-wave electromagnetic pulses is described by a 2 × 2
polarization matrix with three independent components. This
matrix can be defined for pulsed fields either in the temporal
or the spectral domain [17]. Equivalently, in either domain,
one can characterize the state of polarization by four Stokes
parameters S0, S1, S2, and S3.

In order to fully characterize nonstationary fields of any
(second-order) spectral and temporal coherence, one needs to
employ matrices that depend on two frequency coordinates
in the spectral domain, and on two time coordinates in the
temporal domain. Such two-coordinate correlation matrices
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are, in fact, required to determine the spectral state of polar-
ization from the temporal properties of the pulse ensemble,
or to determine the time-domain state of polarization from
the spectral properties of the ensemble. In analogy with the
single-coordinate case, the state of coherence and polarization
of nonstationary light can alternatively be characterized by
two-frequency and two-time Stokes parameters, which will
defined in Secs. II and III, respectively, in analogy with their
spatial two-point counterparts [18,19].

The rest of the present paper is organized as follows. In
Sec. IV we extend the concept of Eberly-Wódkiewicz time-
dependent physical spectrum into the electromagnetic case by
introducing four time-dependent physical Stokes parameters
S0, S1, S2, and S3. Of these, S0 is the electromagnetic
extension of the Eberly-Wódkiewitz physical spectrum, while
S1, S2, and S3 specify the time-dependent physical state of
polarization of the field. In Sec. V we show that these pa-
rameters can be measured by passing the pulsed field through
suitable polarization-modulating elements, in analogy with
the measurement of the state of polarization of stationary light
(see, e.g., Sec. 6.2 of Ref. [20]). The type of effects that
may be expected will be presented in Sec. VI by means of a
mathematically convenient Gaussian Schell model for pulse
trains, which is an electromagnetic extension of the model
used to illustrate time-dependent physical spectra in Ref. [5].

II. SPECTRAL STOKES PARAMETERS

Considering pulsed optical fields in the space-frequency
domain, we denote the three-dimensional electric field as-
sociated with a single realization (an individual pulse) at
point r and frequency ω by a column vector E(r, ω). Both
coherence and polarization properties of the entire ensemble
of realizations in the spectral domain are fully described by
3 × 3 cross-spectral density matrix (CSDM) defined as

W(r1, r2; ω1, ω2) = 〈E∗(r1; ω1)ET(r2; ω2)〉, (1)

where the asterisk and superscript T mean the complex
conjugate and the transpose, respectively, and the brackets
denote ensemble averaging over all realizations. Because
of Maxwell’s divergence equation and the fact that the
CSDM is Hermitian, only three of the nine components of
W(r1, r2; ω1, ω2) are independent. It is therefore possible to
characterize the coherence and polarization properties of the
field using four space-frequency domain Stokes parameters
S j (r1, r2; ω1, ω2), j = 0, 1, 2, 3, that depend on two spatial
positions and two frequencies [17].

In the present context we are interested in measurements of
fields at a single spatial point r, which we leave implicit from
now on to shorten the notation (with the understanding that
all quantities to be discussed may depend on r). We assume
that the three independent components of the CSDM are its
cartesian xx, yy, and xy components, and therefore consider
the two-frequency CSDM

W(ω1, ω2) = 〈E∗(ω1)ET(ω2)〉

=
[
Wxx(ω1, ω2) Wxy(ω1, ω2)
Wyx(ω1, ω2) Wyy(ω1, ω2)

]
, (2)

where W∗(ω2, ω1) = W(ω1, ω2) due to Hermiticity. From
now on we will also assume that the field is beamlike, so
that the remaining components of the full 3 × 3 CSDM can
be neglected; collimated beams are typically used in practical
measurements of the spectrum and the state of polarization.
However, the results that follow can be extended to nonparax-
ial fields without formal difficulty.

The spectral polarization matrix of a pulsed beam is de-
fined by setting ω1 = ω2 in (2):

�(ω) = W(ω,ω) =
[
�xx(ω) �xy(ω)
�yx(ω) �yy(ω)

]
, (3)

where �∗
yx(ω) = �xy(ω). The spectral density (or spectrum)

of the pulsed beam is defined as

S0(ω) = tr W(ω,ω) = tr �(ω), (4)

where tr denotes the trace of a matrix, and the spectral degree
of polarization of a beamlike field is

P(ω) =
[

1 − 4 det �(ω)

tr2�(ω)

]1/2

. (5)

Finally, one can introduce the two-frequency Stokes
parameters

S0(ω1, ω2) = Wxx(ω1, ω2) + Wyy(ω1, ω2), (6a)

S1(ω1, ω2) = Wxx(ω1, ω2) − Wyy(ω1, ω2), (6b)

S2(ω1, ω2) = Wxy(ω1, ω2) + Wyx(ω1, ω2), (6c)

S3(ω1, ω2) = i[Wyx(ω1, ω2) − Wxy(ω1, ω2)] (6d)

as extensions of the more usual single-frequency Stokes
parameters

S0(ω) = �xx(ω) + �yy(ω), (7a)

S1(ω) = �xx(ω) − �yy(ω), (7b)

S2(ω) = �xy(ω) + �yx(ω), (7c)

S3(ω) = i[�yx(ω) − �xy(ω)] (7d)

for pulsed fields. This extension is fully analogous to the
generalization introduced in Ref. [18] in the spatial domain.
Obviously, the first single-point Stokes parameter S0(ω) is
precisely the spectrum defined in (4), and the spectral degree
of polarization in (5) takes the form

P(ω) =
[
S2

1 (ω) + S2
2 (ω) + S2

3 (ω)
]1/2

S0(ω)
(8)

when expressed in terms of the single-frequency Stokes
parameters.

III. TEMPORAL STOKES PARAMETERS

Second-order correlations of pulsed electromagnetic fields
in the time domain are described by the mutual coherence
matrix (MCM)

�(t1, t2) = 〈E∗(t1)ET(t2)〉

=
[
�xx(t1, t2) �xy(t1, t2)
�yx(t1, t2) �yy(t1, t2)

]
, (9)
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where

E(t ) =
∫ ∞

0
E(ω) exp(−iωt ) dω (10)

is the time-domain electric field vector (we have again
dropped the position dependence for brevity). By setting t1 =
t2 in (9) we obtain the temporal polarization matrix

J(t ) = �(t, t ) =
[

Jxx(t ) Jxy(t )
Jyx(t ) Jyy(t )

]
. (11)

The temporal intensity distribution is defined as

I (t ) = tr �(t, t ) = tr J(t ) (12)

and the time-domain degree of polarization as

P(t ) =
[

1 − 4 det J(t )

tr2J(t )

]1/2

. (13)

In analogy with definitions (6a)–(6d) in the spectral domain,
we can introduce the two-time Stokes parameters

S0(t1, t2) = �xx(t1, t2) + �yy(t1, t2), (14a)

S1(t1, t2) = �xx(t1, t2) − �yy(t1, t2), (14b)

S2(t1, t2) = �xy(t1, t2) + �yx(t1, t2), (14c)

S3(t1, t2) = i[�yx(t1, t2) − �xy(t1, t2)] (14d)

as extensions of the equal-time Stokes parameters

S0(t ) = Jxx(t ) + Jyy(t ), (15a)

S1(t ) = Jxx(t ) − Jyy(t ), (15b)

S2(t ) = Jxy(t ) + Jyx(t ), (15c)

S3(t ) = i[Jyx(t ) − Jxy(t )], (15d)

with which the time-domain degree of polarization in (13) can
be expressed in the alternative form

P(t ) =
[
S2

1 (t ) + S2
2 (t ) + S2

3 (t )
]1/2

S0(t )
. (16)

Obviously, the first equal-time Stokes parameter S0(t ) is pre-
cisely the temporal intensity distribution defined in (12).

Using the definitions in Eqs. (2) and (9), Eq. (10), and its
Fourier inverse, we obtain the relations

�(t1, t2) =
∫∫ ∞

0
W(ω1, ω2) exp[i(ω1t1 − ω2t2)] dω1 dω2

(17)

and

W(ω1, ω2) = 1

(2π )2

∫∫ ∞

−∞
�(t1, t2)

× exp[i(ω2t2−ω1t1)] dt1 dt2 (18)

between the two-time MCM and the two-frequency CSDM.
Since these relations apply to the matrices elementwise, and
the Stokes parameters are linear combinations of the matrix
elements, we also have the relations

S j (t1, t2) =
∫∫ ∞

0
S j (ω1, ω2) exp[i(ω1t1 − ω2t2)] dω1 dω2

(19)

and

S j (ω1, ω2) = 1

(2π )2

∫∫ ∞

−∞
S j (t1, t2)

× exp[i(ω2t2 − ω1t1)] dt1 dt2 (20)

between the two-time and two-frequency Stokes parameters
S j , j = 0, 1, 2, 3.

We can write t1 = t2 in (17) to obtain an expression for the
temporal polarization matrix in terms of the CSDM:

J(t ) =
∫∫ ∞

0
W(ω1, ω2) exp[i(ω1 − ω2)t] dω1 dω2. (21)

We can also write ω1 = ω2 in (18) to express the spectral
polarization matrix as

�(ω) = 1

(2π )2

∫∫ ∞

−∞
�(t1, t2) exp[iω(t2 − t1)] dt1 dt2. (22)

Analogously, we can set t1 = t2 is (19) to get

S j (t ) =
∫∫ ∞

0
S j (ω1, ω2) exp[i(ω1 − ω2)t] dω1 dω2, (23)

or ω1 = ω2 in (20) to arrive at

S j (ω) = 1

(2π )2

∫∫ ∞

−∞
S j (t1, t2) exp[iω(t2 − t1)] dt1 dt2. (24)

Thus we can express the temporal polarization matrix with the
aid of the CSDM, and the spectral polarization matrix with
the aid of the MCM [17]. Similarly, the equal-time Stokes
parameters can be expressed in terms of the two-frequency
Stokes parameters, and the single-frequency Stokes param-
eters in terms of the two-time Stokes parameters. However,
the knowledge of the spectral polarization properties of the
field is not sufficient for the determination of the temporal
polarization properties, or vice versa.

IV. SPECTRALLY FILTERED STOKES PARAMETERS

Let us assume that the field E(ω) passes through a de-
terministic frequency-selective filter characterized by a spec-
tral 2 × 2 transmission matrix T(ω,ωF), where ωF denotes
the “setting frequency” of the filter in the same sense as
in Ref. [2]. In the determination of the physical spectrum
T(ω,ωF) represents a narrow-band filter, for instance a tun-
able Fabry-Perot filter, a prism, or a grating [2–4], with
the passband centered around ω = ωF. In the ideal case
T(ω,ωF) = IT (ω,ωF), where I is a unit matrix; such a
polarization-insensitive response is well approximated by a
Fabry-Perot filter. However, the spectral response of a grat-
ing spectrometer is typically polarization-dependent and one
should write T(ω,ωF) = G(ω)T (ω,ωF), where G(ω) is the
grating response and T (ω,ωF) is determined by the spectral
resolution of the device. If conical mounting of the grating(s)
is used, G(ω) is a full 2 × 2 matrix. In a single-grating spec-
trometer with nonconical mounting it is a diagonal matrix,
where the diagonal elements are (generally complex-valued)
functions with magnitudes

√
ηTE(ω) and

√
ηTM(ω), where

ηTE(ω) and ηTM(ω) are the spectral diffraction efficiency
curves of the grating under TE and TM polarized illumination,
respectively.
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A. Basic definitions

The spectral field after transmission though the filter is
given by

E(ω,ωF) = T(ω,ωF)E(ω), (25)

where we have indicated explicitly the dependence of the
output field on the setting frequency. Using the definition in
(2) we then find that the CSDM of the transmitted field is

W(ω1, ω2, ωF) = 〈E∗(ω1, ωF)ET(ω2, ωF)〉
= T∗(ω1, ωF)W(ω1, ω2)TT(ω2, ωF). (26)

The two-frequency spectral Stokes parameters of this field are
defined as

S0(ω1, ω2, ωF) = Wxx(ω1, ω2, ωF) + Wyy(ω1, ω2, ωF), (27a)

S1(ω1, ω2, ωF) = Wxx(ω1, ω2, ωF) − Wyy(ω1, ω2, ωF), (27b)

S2(ω1, ω2, ωF) = Wxy(ω1, ω2, ωF) + Wyx(ω1, ω2, ωF), (27c)

S3(ω1, ω2, ωF) = i[Wyx(ω1, ω2, ωF) − Wxy(ω1, ω2, ωF)]

(27d)

in analogy with Eqs. (6a)–(6d). The single-frequency Stokes
parameters of the transmitted field and its spectral degree of
polarization can be defined in a strictly corresponding manner.

The mutual coherence matrix �(t1, t2, ωF) of the field
transmitted by the filter is obtained by applying (the obvious
extension of) (17) to (26). The associated two-time tempo-
ral Stokes parameters S j (t1, t2, ωF) can then be defined in
analogy with Eqs. (14a)–(14d), or alternatively by applying
relations of the form of (19) to Eqs. (27a)–(27d). In the present
context we are primarily interested in the equal-time Stokes
parameters observed after the spectral filter, defined as

S0(t, ωF) = Jxx(t, ωF) + Jyy(t, ωF), (28a)

S1(t, ωF) = Jxx(t, ωF) − Jyy(t, ωF), (28b)

S2(t, ωF) = Jxy(t, ωF) + Jyx (t, ωF), (28c)

S3(t, ωF) = i[Jyx(t, ωF) − Jxy(t, ωF)], (28d)

where Ji j (t, ωF) are elements of the physically observed po-
larization matrix

J(t, ωF) =
∫∫ ∞

0
T∗(ω1, ωF)W(ω1, ω2)TT(ω2, ωF)

× exp[i(ω1 − ω2)t] dω1 dω2. (29)

The parameter S0(t, ωF) = tr J(t, ωF) is the electromagnetic
extension of the Eberly-Wódkiewitz time-dependent physical
spectrum of light. The parameters S j (t, ωF), j = 1, 2, 3, char-
acterize the physically observable time-dependent polariza-
tion state of the field, reflecting the time-frequency uncertainty
relationship. With the aid of these physical Stokes parameters,
we can define the time-dependent physical degree of polariza-
tion of light as

P(t, ωF) =
[
S2

1 (t, ωF) + S2
2 (t, ωF) + S2

3 (t, ωF)
]1/2

S0(t, ωF)
, (30)

in analogy with (16). When the passband of the filter is
narrow, this quantity is a measure of the spectral degree of po-

larization, which generally depends on the setting frequency
ωF. Of course, most of the information on any possible time
dependence of the degree of polarization is then lost.

In the definitions given above the physical Stokes param-
eters were expressed in terms of the two-frequency CSDM
(or two-frequency Stokes parameters) of the incident field.
Alternatively, they can be expressed in terms of the two-time
MCM (or two-time Stokes parameters) of the incident field
since the CSDM and MCM are connected by Eqs. (17) and
(18). Let us define the temporal filter response matrix by a
Fourier integral

t(t, ωF) =
∫ ∞

0
T(ω,ωF) exp(−iωt ) dω (31)

with inverse

T(ω,ωF) = 1

2π

∫ ∞

−∞
t(t, ωF) exp(iωt ) dt, (32)

where (and in what follows) the lower temporal integration
limit extends to −∞ only formally. The temporal electric field
after the filter is, in view of (25) and the convolution theorem,
given by

E(t, ωF) = 1

2π

∫ ∞

−∞
t(t − t ′, ωF)E(t ′) dt ′ (33)

and the observed temporal polarization matrix

J(t, ωF) = 〈E∗(t, ωF)ET(t, ωF)〉 (34)

takes the form

J(t, ωF) = 1

(2π )2

∫∫ ∞

−∞
t∗(t − t1, ωF)

×�(t1, t2)tT(t − t2, ωF) dt1 dt2, (35)

which is the desired alternative representation of (29).
Whether the form given in (29) or the form in (35) is more
convenient depends on the circumstances and the models
under consideration.

B. Genuine representations

It should be stressed that not any form of W(ω1, ω2) de-
fined in (2) is physically meaningful since the CSDM must be
non-negative definite. In fact, the CSDM must be of “genuine”
form as discussed in the spatial domain in Refs. [21,22].
On transforming the spatial-domain definition of a genuine
CSDM into the spectral domain we have

W(ω1, ω2) =
∫

D
H∗(ω1, v)p(v)HT(ω2, v) dv, (36)

where the kernel H(ω, v) is arbitrary, the matrix p(v) has non-
negative diagonal elements and trace, and D is the domain
where p(v) is nonzero.

The two-frequency Stokes parameters also have genuine
representations, which follow immediately by substituting
appropriate elements of the CSDM from (36) into Eqs. (6a)–
(6d). On the other hand, on inserting from (36) into (17) we
find that the MCM has a genuine representation

�(t1, t2) =
∫

D
h∗(t1, v)p(v)hT(t2, v) dv, (37)
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where

h(t, v) =
∫ ∞

0
H(ω, v) exp(−iωt ) dω. (38)

Also the two-time Stokes parameters have genuine forms,
which follow by substituting from (37) into Eqs. (14a)–(14d).

An expression for the physically observable polarization
matrix in terms of the genuine representation of the CSDM of
the incident field can be obtained straightforwardly on insert-
ing from (36) into (29). Rearranging the order of integrations
and defining

h(t, ωF, v) =
∫ ∞

0
T(ω,ωF)H(ω, v) exp(−iωt ) dω (39)

we arrive at

J(t, ωF) =
∫

D
h∗(t, ωF, v)p(v)hT(t, ωF, v) dv. (40)

Alternatively, we may insert from (37) into (35). If we then
define

h(t, ωF, v) = 1

2π

∫ ∞

−∞
t(t − t ′, ωF)h(t ′, v) dt ′, (41)

we arrive at (40) again. The equivalence of the definitions (39)
and (41) can be easily seen with the aid of (31) or (32).

The genuine representations (36) and (37) have some im-
portant and physically transparent special cases, which follow
from specific forms of the matrix H. These special cases,
sometimes called elementary-field representations, have been
considered in some detail (in the scalar domain) in Ref. [23].
Even though these representations are not general, they apply
to a large class of fields with practical significance in spectral,
temporal, and spatial domains, including several mathemati-
cally convenient model fields.

Let us first assume that the matrix h(t, v) is of the shift-
invariant form h(t, v) = e(t − v). Then, in view of (37), the
MCM has an expression

�(t1, t2) =
∫

D
e∗(t1 − v)p(v)eT(t2 − v) dv. (42)

If p(v) = Iδ(v), where I is a unit matrix, we obtain �(t1, t2) =
e∗(t1)eT(t2), which describes a completely coherent and polar-
ized field. Since J(t ) = e∗(t )eT(t ), the polarization properties
(all four equal-time Stokes parameters) of this field may
depend on time. Hence, in general, (42) describes a partially
coherent and partially polarized pulsed beam as a continuous
incoherent superposition of fully coherent and polarized “ele-
mentary pulses” that are all identical but centered temporally
at instants of time t = v. The elementary pulses are weighted
by the matrix p(v), where v is interpreted physically as a
time variable. In this representation the physical polarization
matrix is of the form of (40) with

h(t, ωF, v) = 1

2π

∫ ∞

−∞
t(t − t ′, ωF)e(t ′ − v) dt ′. (43)

This expression can be interpreted as the physically observ-
able elementary pulse.

We may alternatively assume that the matrix H(ω, v) is of
the shift-invariant form H(ω, v) = g(ω − v). Then, according

to (36),

W(ω1, ω2) =
∫

D
g∗(ω1 − v)p(v)gT(ω2 − v) dv. (44)

Hence the CSDM is an incoherent superposition of a contin-
uum of spectrally shifted but functionally identical elementary
contributions g(ω), which are centered at frequencies ω = v

and weighted by the matrix p(v), where v is now interpreted
physically as a frequency variable. Defining

h(t, ωF, v) =
∫ ∞

0
T(ω,ωF)e(ω − v) exp(−iωt ) dω (45)

we again have (40).

C. Coherent-mode representations

The time-dependent physical polarization matrix and the
Stokes parameters can be expressed in yet other fully general
forms, which are sometimes convenient. Every (genuine) two-
frequency CSDM has a unique series representation of the
form [24]

W(ω1, ω2) =
∑

n

αnψ
∗
n(ω1)ψT

n (ω2), (46)

where the (column) vectors ψn(ω) represent fully coherent
electric fields and αn are non-negative coefficients. The co-
efficients αn and the so-called coherent modes ψn(ω) are the
eigenvalues and eigenfunctions, respectively, of a Fredholm
integral equation∫ ∞

0
ψT

n (ω1)W(ω1, ω2) dω1 = αnψ
T
n (ω2). (47)

On inserting from (46) into (21) we arrive immediately at a
representation

J(t, ωF) =
∑

n

αnψ
∗
n(t1, ωF)ψT

n (t2, ωF), (48)

where the vectors

ψn(t, ωF) =
∫ ∞

0
T(ω,ωF)ψn(ω) exp(−iωt ) dω (49)

represent the observable coherent modes transmitted by the
filter.

It follows directly from Eqs. (17) and (46) that the MCM
has a coherent-mode representation [24]

�(t1, t2) =
∑

n

αnψ
∗
n(t1)ψT

n (t2), (50)

where

ψn(t ) =
∫ ∞

0
ψn(ω) exp(−iωt ) dω. (51)

Inserting this representation into (35) and defining

ψn(t, ωF) = 1

2π

∫ ∞

−∞
T(t − t ′, ωF)ψn(t ′) dt ′ (52)

leads to (48). Hence we again have two alternative represen-
tations for the time-dependent physical polarization matrix.
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DF R P

R(t)

W(ω1, ω2)

T(ω, ωF)

W(ω1, ω2, ωF) Sj(t, ωF) Sj(t, ωF, TR)

FIG. 1. Schematic diagram for the measurement of time-
dependent physical Stokes parameters of a pulse train using a spectral
filter F with spectral response T(ω,ωF ), a retarder R with retardation
δ, a polarizer P oriented at an angle θ , and a square-law detector D
with temporal response R(t ).

V. OBSERVABLE STOKES PARAMETERS

The measurement of the time-dependent physical Stokes
parameters can be performed in full analogy with the mea-
surement of the usual equal-time Stokes parameters of station-
ary fields (see Fig. 1), using linear polarization-modulating
elements to convert polarization modulation into intensity
variations that can be observed using a square-law detector
(see Sec. 6.2 of Ref. [20]). Typically one employs a cascade
of a compensator with retardation δ and a linear polarizer with
its transmission axis rotated at an angle θ with respect to the
x axis. The action of such a cascade is described by a Jones
matrix

K =
[

cos2 θ sin θ cos θ exp(iδ)
sin θ cos θ sin2 θ exp(iδ)

]
, (53)

which generally depends on frequency since δ varies with ω

at least weakly. However, we leave this dependence implicit
(assuming effectively that the retarder is achromatic over the
spectral range of concern).

One of the typical schemes to measure the Stokes parame-
ters is to carry out six separate measurements Mq with differ-
ent forms Kq of the transformation matrix: M1 with param-
eter choices (θ, δ) = (0, 0), M2 with (θ, δ) = (π/2, 0), M3

with (θ, δ) = (π/4, 0), M4 with (θ, δ) = (−π/4, 0), M5 with
(θ, δ) = (π/4, π/2), and M6 with (θ, δ) = (−π/4, π/2).
The observed time-dependent intensity distributions then
become

Iq(t, ωF) = tr
[
K∗

qJ(t, ωF)KT
q

]
. (54)

Explicitly, we have

I1(t, ωF) = Jxx(t, ωF), (55a)

I2(t, ωF) = Jyy(t, ωF), (55b)

I3(t, ωF) = 1

2
tr J(t, ωF) + 1

2
[Jxy(t, ωF) + Jyx(t, ωF)], (55c)

I4(t, ωF) = 1

2
tr J(t, ωF) − 1

2
[Jxy(t, ωF) + Jyx(t, ωF)], (55d)

I5(t, ωF) = 1

2
tr J(t, ωF) − i

2
[Jyx(t, ωF) − Jxy(t, ωF)], (55e)

I6(t, ωF) = 1

2
tr J(t, ωF) + i

2
[Jyx(t, ωF) − Jxy(t, ωF)], (55f)

from which the time-dependent physical Stokes parameters
can be retrieved:

S0(t, ωF) = I1(t, ωF) + I2(t, ωF), (56a)

S1(t, ωF) = I1(t, ωF) − I2(t, ωF), (56b)

S2(t, ωF) = I3(t, ωF) − I4(t, ωF), (56c)

S3(t, ωF) = I6(t, ωF) − I5(t, ωF). (56d)

The use of measurement schemes described above re-
quires, of course, that the detector is sufficiently fast to follow
the temporal variations of the spectrally filtered field. This
is true, to a good approximation, if the filter passband is
sufficiently narrow. If not, the detector will perform some time
averaging. Let us assume that the detector has an impulse
response function R(t ) characterized by response time TR.
Then the detected intensity distributions are

Iq(t, ωF, R) =
∫ ∞

−∞
R(t − t ′)Iq(t ′, ωF) dt ′, (57)

where Iq(t, ωF), q = 1, . . . , 6, represent the quantities defined
in Eqs. (55a)–(55f). The polarization matrix observed with a
detector with finite response time is

J(t, ωF, R) =
∫ ∞

−∞
R(t − t ′)J(t ′, ωF) dt ′. (58)

More explicit forms of J(t, ωF, TR ) can be obtained using
any of the expressions for J(t, ωF) derived in Sec. IV. For
example, using (29), defining the frequency response Q(ω) of
the time-averaging detector via

R(t ) =
∫ ∞

0
Q(ω) exp(−iωt ) dω (59)

and assuming an ideal spectral device with T = IT (ω,ωF),
we can express the observed polarization matrix in the form

J(t, ωF, R) = 2π

∫∫ ∞

0
W(ω1, ω2)T ∗(ω1, ωF)T (ω2, ωF)

×Q(ω2 − ω1) exp[−i(ω2−ω1)t] dω1 dω2.

(60)

The Stokes parameters are then

S j (t, ωF, R) = 2π

∫∫ ∞

0
tr[L j (ω1, ω2)]T ∗(ω1, ωF)T (ω2, ωF)

×Q(ω2 − ω1) exp[−i(ω2 − ω1)t] dω1 dω2,

(61)

where j = 0, . . . , 3 and

L0(ω1, ω2) = K∗
1W(ω1, ω2)KT

1 + K∗
2W(ω1, ω2)KT

2 , (62a)

L1(ω1, ω2) = K∗
1W(ω1, ω2)KT

1 − K∗
2W(ω1, ω2)KT

2 , (62b)

L2(ω1, ω2) = K∗
3W(ω1, ω2)KT

3 − K∗
4W(ω1, ω2)KT

4 , (62c)

L3(ω1, ω2) = K∗
6W(ω1, ω2)KT

6 − K∗
5W(ω1, ω2)KT

5 . (62d)
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The time-dependent physical degree of polarization in the
presence of a detector with finite response time is defined, in
analogy with (30), as

P(t, ωF, R)

=
[
S2

1 (t, ωF, R) + S2
2 (t, ωF, R) + S2

3 (t, ωF, R)
]1/2

S0(t, ωF, R)
. (63)

In summary, the “work flow” for the determination of the
observable Stokes parameters proceeds as follows:

(1) Construction of a model for the pulse train to be
measured either is spectral or in temporal domain, i.e., the
matrix W(ω1, ω2) or �(t1, t2).

(2) Model for the spectral filter: matrix T(ω,ωF). Deter-
mination of the spectrally filtered polarization matrix J(t, ωF).

(3) Model for the impulse response of the detector: func-
tion R(t ). Determination of the observable polarization matrix
J(t, ωF, R), the associated Stokes parameters, and the degree
of polarization.

VI. APPLICATION TO VECTORIAL SCHELL-MODEL
PULSE TRAINS

We proceed to apply the formalism introduced above to
a class of vectorial model fields described in the spectral
domain by

W(ω1, ω2) = M∗(ω1)�(0)MT(ω2)W (0)(ω1, ω2), (64)

where M(ω) is a deterministic matrix, �(0) is a constant
polarization matrix, and W (0)(ω1, ω2) is a scalar function.
This representation can be interpreted by considering the
transmission of an incident pulse train with W(0)(ω1, ω2) =
�(0)W (0)(ω1, ω2) through a spectrally selective deterministic
polarization device that could be implemented, e.g., using the
methods described in Refs. [13–16].

We assume that the scalar part of the CSDM describes a
Gaussian Schell-model plane-wave pulse train [25]:

W (0)(ω1, ω2) = W0 exp

[
− (ω1 − ω0)2 + (ω2 − ω0)2


2

]

× exp

[
− (ω1 − ω2)2

2
2
μ

]
. (65)

Here ω0 is the center frequency of the pulses, 
 is the expec-
tation value of the pulse length, and 
μ represents the spectral
coherence width of the pulse train. It will be convenient to use
average and difference spectral coordinates ω̄ = 1

2 (ω1 + ω2)
and �ω = ω2 − ω1 because (65) is separable in these coordi-
nates: the transformation gives

W (0)(ω̄,�ω) = W0 exp

[
− 2(ω̄ − ω0)2


2

]
exp

(
− �ω2

2
2β2

)

(66)

with the parameter

β = [1 + (
/
μ)2]−1/2 (67)

introduced for brevity. This parameter represents the spectral
coherence of the incident field in a sense that it is limited
to the range 0 � β � 1, with the lower and upper bounds

representing spectral incoherence and full spectral coherence
of the pulse train, respectively.

If M(ω) = I is a frequency-independent unit matrix, the
MCM given by (17) is of the form �(t1, t2) = �(0)�(0)(t1, t2).
In average and difference temporal coordinates t̄ = 1

2 (t1 + t2)
and �t = t2 − t1 we have

�(0)(t̄,�t ) =
∫∫ ∞

−∞
W (0)(ω̄,�ω)

× exp[−i(ω̄�t + �ωt̄ )] dω̄ d�ω. (68)

In writing this expression we assume that the lower bound of
integration with respect to ω̄ can be replaced with −∞. On
inserting from (66) into (68) we then find that

�(0)(t̄,�t ) = �0 exp

(
− 2t̄2

T 2

)
exp

(
− �t2

2T 2β2

)

× exp(−iω0�t ), (69)

where �0 = 2πW0
/T and

T = 2/
β. (70)

In absolute temporal coordinates the scalar part of the MCM
in (69) takes the form

�(0)(t1, t2) = �0 exp

(
− t2

1 + t2
2

T 2

)
exp

[
− (t1 − t2)2

2T 2
γ

]

× exp(−iω0�t ) (71)

with

Tγ = T 
μ/
. (72)

The quantities T and Tγ thus represent the mean pulse du-
ration and coherence time of the incident Gaussian Schell-
model pulse train, respectively [25]. With the help of (72),
we can write the parameter β in an alternative form

β = [1 + (T/Tγ )2]−1/2. (73)

In view of (70), the time-bandwidth product of the pulse
train is 
T = 2/β, and in the spectrally incoherent (station-
ary) limit 
μ → 0 we have T → ∞ and Tγ → 2/
. Equa-
tion (70) establishes a temporal equivalence law for scalar
Gaussian Schell-model pulse trains: a family of pulse trains
with the same mean temporal pulse duration T (but different
coherence times Tγ ) is obtained if the spectral bandwidth is
chosen according to 
 = 2/T β.

From now on we assume that the incident pulse train is
spectrally unpolarized,

�(0) = 1

2

[
1 0
0 1

]
, (74)

and that M(ω) is, instead of a unit matrix, of the form

M(ω) =
[

1 0
0 A exp[iφ(ω)]

]
(75)

with

φ(ω) = φ0 + (ω − ω0)τ + κ


2
(ω − ω0)2, (76)

where τ is a constant with dimensions of time and κ is
(a dimensionless) chirp coefficient. Hence the polarization
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device modulates the amplitude of the y component of the
electric field by a constant real factor A � 1 and its phase
by a quadratic function φ(ω), while leaving the x component
unchanged.

In view of (64), the field that we wish to analyze is now
described by

W(ω̄,�ω) = 1

2

[
1 0
0 A2 exp[iϕ(ω̄,�ω)]

]
W (0)(ω̄,�ω),

(77)

where

ϕ(ω̄,�ω) = �ωτ + 2κ


2
(ω̄ − ω0)�ω. (78)

The single-frequency spectral Stokes parameters now read as

S0(ω) = 1

2
(1 + A2)W0 exp

[
− 2


2
(ω − ω0)2

]
, (79a)

S1(ω) = 1

2
(1 − A2)W0 exp

[
− 2


2
(ω − ω0)2

]
, (79b)

S2(ω) = S3(ω) = 0. (79c)

The spectral degree of polarization, defined in (5), is

P(ω) = 1 − A2

1 + A2
, (80)

thus being independent on frequency and the phase modula-
tion. Obviously, P(ω) = 0 if A = 1, meaning that the field is
spectrally unpolarized.

The mutual coherence matrix of our model field can be
determined using (17). It is also a diagonal matrix, with

�xx(t̄,�t ) = 1
2�(0)(t̄,�t ) (81)

and

�yy(t̄,�t ) = 1

2
�0A2B exp

[
− 2B2

T 2
(t̄ − τ )2

]

× exp

(
− B2

2T 2β2
�t2

)

× exp

[
− i2κB2

T 2
(t̄ − τ )�t

]
exp(−iω0�t ),

(82)

where

B = [1 + (2κ/
T )2]−1/2 = [1 + (κβ )2]−1/2. (83)

The equal-time Stokes parameters are therefore given by

S0(t ) = �0

2

{
exp

(
− 2t2

T 2

)
+ A2B exp

[
− 2B2

T 2
(t − τ )2

]}
,

(84a)

S1(t ) = �0

2

{
exp

(
− 2t2

T 2

)
− A2B exp

[
− 2B2

T 2
(t − τ )2

]}
,

(84b)

S2(t ) = S3(t ) = 0. (84c)

(a)

t/T

I j
(t

)

(b)

t/T

P
(t

)

FIG. 2. (a) Distributions of the x (thick solid) and y (colored)
components of the temporal intensity profile, normalized by I0 =
�0/2, and (b) the time-dependent degree of polarization P(t ) for the
model pulse train. Here β = 1, A = 1, κ = 0, and τ = 0.25T (solid
red), τ = 0.5T (dashed green), τ = T (dotted blue).

Clearly, in the absence of chirp, C = 1 and then the tempo-
ral intensity distribution Iy(t ) = Jyy(t ) = �yy(t, 0) associated
with the yy component of the MCM is simply an attenuated
and temporally shifted replica of the intensity Ix(t ) = Jxx(t ) =
�xx(t, 0) of the xx component. The time-domain degree of
polarization of our model field, defined in (16), has the form

P(t ) = |exp(−2t2/T 2) − A2B exp[−2B2(t − τ )2/T 2]|
exp(−2t2/T 2) + A2B exp[−2B2(t − τ )2/T 2]

.

(85)

Thus, even with A = 1, the time-domain degree of polariza-
tion can be varied within the temporal duration of the pulse by
spectral phase modulation. This occurs because the equal-time
temporal Stokes parameters depend on the two-frequency
spectral Stokes parameters.

Step 1 of the work flow is now complete. Figure 2 illus-
trates the distributions of Ix(t ), Iy(t ), and P(t ) when there is
no chirp (κ = 0) but the y component of the electric field
is delayed in time by various amounts τ . The degree of
polarization P(t ) has a zero at the instant of time when Ix(t ) =
Iy(t ), but has a finite value for all other values of t . Hence
the field is temporally unpolarized at only one instant of time.
The temporal distribution P(t ) is independent on spectral (or
temporal coherence of the pulse train (i.e., parameter β) when
plotted in normalized time units t/T . When chirp is present, as
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(a)

t/T

I j
(t

)

(b)

t/T

P
(t

)

FIG. 3. Same as Fig. 2 but τ = 0 and κ = 2. Solid red: β = 1.
Dashed green: β = 0.5. Dotted blue: β = 0.25.

shown in Fig. 3, P(t ) depends also on the degree of coherence
since the width of Iy(t ) varies with β. Again, zeros are seen
for each chosen value of β at the (two) instants of time when
Ix(t ) = Iy(t ).

Proceeding to consider the physically observable Stokes
parameters, we assume that the spectral filter has the ideal
form T = IT (ω,ωF) with a Gaussian spectral passband

T (ω,ωF) = exp

[
− (ω − ωF)2


2
F

]
, (86)

characterized by bandwidth 
F (Step 2 of the work flow).
Furthermore, we assume (Step 3) that the temporal response
of the detector has a Gaussian form

R(t ) =
√

2

π

1

TR
exp

(
− 2t2

T 2
R

)
(87)

with characteristic width TR. The spectral response of the
detector is then, in view of the inverse of (59),

Q(ω) = 1

2π
exp

(
− 1

8
T 2

R ω2

)
. (88)

This kind of Gaussian filter functions have been used in, e.g.,
Ref. [1], for their mathematical convenience. We stress, how-
ever, that they do not fully satisfy the causality requirements.

We can now apply Eqs. (60) and (61) to evaluate the
observed polarization matrix and physical Stokes parame-
ters (Step 4). When expressed in average and difference

coordinates, (60) reads as

J(t, ωF, R) = 2π

∫∫ ∞

−∞
W(ω̄,�ω)T ∗(ω̄ − �ω/2, ωF)

×T (ω̄ + �ω/2, ωF)Q(�ω)

× exp(−i�ωt ) dω̄ d�ω, (89)

where we extend frequency integration limits to ±∞ to keep
the mathematics simple. Thus also the negative frequency
components in Eqs. (86) and (88) are formally retained, which
is a good approximation provided that the filter passbands are
much narrower than the center frequencies.

Obviously, since W(ω̄,�ω) is diagonal in our example, so
is J(t, ωF, R). On inserting from Eqs. (77), (86), and (88) in
(89) we first obtain an expression for its xx component in the
form

Jxx(t, ωF, R) = πW0


F

TX
X
exp

(
− 2t2

T 2
X

)

× exp

[
− 2


2
X

(ωF − ω0)2

]
, (90)

where we have defined


X =
√


2 + 
2
F (91)

and

T 2
X = 4


2β2
+ 4


2
F

+ T 2
R = T 2 + 4


2
F

+ T 2
R . (92)

Thus the time-dependent (scalar) physical spectrum associ-
ated with this field component is a simple product of Gaussian
spectral and temporal intensity profiles with characteristic
widths 
X and TX that depend of the spectral width and the
degree of coherence of the incident pulse train, as well as
on the spectral and temporal resolutions 
F and TR of the
measurement device.

Correspondingly, we may evaluate the yy component of
J(t, ωF, R). The result may be expressed in the form

Jyy(t, ωF, R) = πW0A2 
D

TX
exp

[
− 2

T 2
Y

(t − τ )2

]

× exp

[
− 2


2
Y

(ωF − ω0)2

]

× exp[C(t − τ )(ωF − ω0)], (93)

where we have defined


Y = 
F√
1 − D2(
/
F)2

, (94)

TY = TX√
1 − D2(2κ/TX
)2

, (95)

C = 8κD2

T 2
X 
2

F

, (96)

1

D2
= 1 +

(




F

)2

+
(

2κ

TX


)2

. (97)

Clearly, 
Y is the observed width of the spectral profile at
t = τ and TY is the temporal width of the detected pulses at
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FIG. 4. Distributions of (normalized) time-dependent physical Stokes parameters (a, d) S0(t, ωF, R) and (b, e) S1(t, ωF, R), and (c, f) the
degree of polarization P(t, ωF, R) plotted as a function of t/T (time axis) and (ωF − ω0)/
 (frequency axis). Left column: parameters A = 1,
β = 1, τ = 0, κ = 5, 
F = 0.1
, and TR = 10T . Right column: parameters A = 1, β = 0.5, τ = T , κ = 5, 
F = 0.1
, and TR = 10T . The
plot range is [0,1] in (a, c, d, f), [−0.025, 0.04] in (b), and [−0.055, 0.055] in (e).

ωF = ω0. The new feature that arises due to chirp is the time-
frequency cross term.

It is readily seen from the formulas given above that,
if an instantaneous detector were available (TR → 0) and a

wide-band spectral filter 
F 	 
 were used, the temporal
variation of the degree of polarization P(t ) could be measured.
Indications of the temporal variation of P(t ) remain also in
physical measurements, are we will shortly demonstrate, if we
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filter the spectrum sufficiently to make the temporal evolution
of the ensuing pulses observable with available detectors.

Figure 4 illustrates the nonvanishing time-dependent
Stokes parameters S0(t, ωF, R) = Jxx(t, ωF, R) + Jyy(t, ωF, R)
and S1(t, ωF, R) = Jxx(t, ωF, R) − Jyy(t, ωF, R), as well as the
associated degree of polarization

P(t, ωF, R) = |S1(t, ωF, R)|
S0(t, ωF, R)

, (98)

as functions of normalized time and frequency coordinates
t/T and (ωF − ω0)/
. In the left column of Fig. 4 we
consider a fully coherent chirped (κ = 5) pulse train (β = 1)
with zero delay (τ = 0). We assume that 
F = 0.1
 and
TR = 10T ; such a response time is realistic for picosecond-
range pulses. The chirp (linear temporal change of carrier
frequency) is manifested in the (small) tilt of the physical
spectrum S0(t, ωF, R), which is seen more clearly in the plot of
parameter S1(t, ωF, R) and in the inclined cross-shape of the
minima of the physical degree of polarization. The horizontal
arm of this cross moves up or down in frequency scale when
τ 
= 0 (depending on its sign). When the degree of spectral
coherence is reduced, the cross becomes blurred and bent as

illustrated in right column of Fig. 4, where we have chosen
β = 0.5 and τ = T .

VII. DISCUSSION AND CONCLUSIONS

We have introduced the concepts of time-dependent phys-
ical Stokes parameters and the associated degree of polariza-
tion of light as extensions of the concept of time-dependent
physical spectrum in scalar theory on pulsed light. We have
also demonstrated that it is possible to find indications of time
variation of the degree of polarization using simple exper-
imental techniques involving spectral filtering and standard
polarization components. The analytical model presented here
could be extended to partially polarized fields by assuming a
general form for the polarization matrix �(0). Spectral filters
and detector responses of any realistic form could be treated
by numerical simulations. Experimental verification of the
results given here could be provided in laboratory conditions
by modulating a pulsed beam from a mode-locked laser by
systems described in Refs. [13–15]. The degree of spectral
coherence (the parameter β) of the pulsed beam could be con-
trolled using the techniques proposed in Ref. [26]. We intend
to carry out such simulations and experiments elsewhere.
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