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Quantum Zeno effect and nonclassicality in a PT -symmetric system of coupled cavities
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The interplay between the nonclassical features and the parity-time (PT ) symmetry (or its breaking) is studied
here by considering a PT -symmetric system consisting of two cavities with gain and loss. The conditions for
PT invariance are obtained for this system. The behavior of the average photon number corresponding to the
gain and loss modes for different initial states (e.g., vacuum, NOON, coherent, and thermal states) has also
been obtained. With the help of the number operators, quantum Zeno and anti-Zeno effects are studied, and the
observed behavior is compared in PT -symmetric (PTS) and PT -symmetry-broken (PTSB) regimes. It has been
observed that the relative phase of the input coherent fields plays a key role in the occurrence of these effects.
Further, some nonclassicality features are witnessed using criteria based on the number operator(s). Specifically,
intermodal antibunching, sum, and difference squeezing are investigated for specific input states. It is found that
the various nonclassical features, including the observed quantum Zeno and anti-Zeno effects, are suppressed
when one goes from the PTS to PTSB regime. In other words, the dominance of the loss or gain rate in the field
modes over the coupling strength between them diminishes the nonclassical features of the system.
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I. INTRODUCTION

Quantum systems are in many ways different from their
classical counterparts. The most fundamental distinction is
in the way they respond to a measurement or an interaction.
The interaction of a quantum system with the measuring de-
vice has profound consequences on its subsequent dynamics
and can even suppress the time evolution if the interaction
is frequent enough, a phenomenon known as the quantum
Zeno effect (QZE) [1]. More precisely, decay of an unstable
particle in a short time regime can be described by a quadratic
function of time instead of the usual exponential function.
By performing infinitely many measurements in a finite time
interval, such that decay remains quadratic in small intervals
between two measurements, almost unit survival probability
(that the particle remains undecayed) can be attained [1,2].
The QZE has been recently realized in many experiments
and its applications have been reported in quantum informa-
tion [3], avoiding decoherence [4–6], to sustain entanglement
[7,8], in the purification of quantum systems [9], to suppress
intermolecular forces [10], and to realize direct counterfac-
tual communication [11]. The converse phenomenon of QZE
is referred to as the quantum anti-Zeno effect (QAZE) in
which the time evolution of the quantum system speeds up
when the measurements are frequent enough. The QZE and
QAZE have been observed in many systems—for example,
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in trapped ions and atoms [12,13], superconducting qubits
[14–16], Bose-Einstein condensates [17], nanomechanical os-
cillators [18], quantum cavity systems [19], and nuclear spin
systems [20–22]. In [23–30], QZE and QAZE have also been
studied in the context of open quantum systems. Another
interesting feature of QZE that has been studied in recently
is the formulation of a joint strategy by two or more players
leading to their emerging as winners, broadly referred to as
quantum Parrondo’s game [31–34].

The quantum Zeno effect is just one nontrivial conse-
quence of the interaction between two quantum systems.
There are many more. For example, the interactions between
two systems can also lead to inseparability of their quantum
states, i.e., entanglement. Various optical and optomechanical
systems have also been designed to generate the desired non-
classical states [35] of radiation, thereby bringing quantum
aspects into table-top experiments. Different facets of non-
classicality, characterized by the negative values of Glaubler-
Sudarshan P function [36,37], have been extensively investi-
gated in various systems. A set of single-mode nonclassical
features ([38] and references therein), such as sub-Poissonian
photon statistics, antibunching, and squeezing of a field, have
been reported to be useful in the development of quantum
inspired technology [39,40]. Two field modes may show
nonlocal correlations such as entanglement [41], steering [42],
and Bell nonlocality [43], having applications in secure quan-
tum communication [44,45]. Various witnesses of quantum-
ness, including the ones mentioned here, have been studied
in many systems, viz., cavity and optical systems [46–50],
Bose-Einstein condensates [51,52], optomechanical systems
[47,53], atoms and quantum dots [54,55], single and interact-
ing qubits [56,57], and engineered quantum states [58,59].
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Contemporary to the development of quantum optics has
been the emergence of parity-time (PT ) symmetric optics,
where the notion of PT symmetry is introduced to explain
the real spectrum of non-Hermitian Hamiltonians [60,61].
The non-Hermitian Hamiltonian becomes indispensable when
one tries to describe an quantum open system, that is, when
the system is allowed to interact with the ambient environ-
ment [62]. Traditionally, non-Hermitian Hamiltonians have
been used to describe a wider range of phenomena, from
dissipative processes such as radioactivity [61] to dynamical
phase transitions [63]. Further, the phase lapses observed
in experiments of Aharonov-Bohm rings [62] cannot be ex-
plained by Hermitian quantum physics and one needs non-
Hermitian Hamiltonians to explain this phenomenon. The
open quantum-mechanical treatment of the nuclear system
leads to a non-Hermitian model—the continuum shell model
[64]. Interest in the non-Hermitian Hamiltonians with PT
symmetry has escalated in recent times [65–82]. The PT -
symmetric (PTS) Hamiltonian (H) can have a real eigen-
value spectrum despite being non-Hermitian [60]. Specifi-
cally, [H, PT] = 0 assures the real eigenvalue spectrum of
H . For example, p̂2 + ix̂3 and p̂2 − x̂4 are not Hermitian
but PTS and possess real eigenvalues. In fact, these two
Hamiltonians are special cases of the general parametric
family of PTS Hamiltonians H = p̂2 + x̂2(ix̂)ε , such that
for ε � 0 all the eigenvalues are real while for ε < 0 they
are complex. These two regimes are respectively known as
PTS and PT -symmetry-broken (PTSB) regimes [61]. An
equivalence of a quantum system possessing PT symme-
try and a quantum system having a Hermitian Hamilto-
nian was shown in [83]. In [72], a system was realized
whose dynamics is governed by a PT Hamiltonian. Many
optomechanical properties have been investigated for PTS
systems, such as the cavity optomechanical properties un-
derlying the phonon lasing action [84], PTS chaos [85],
cooling of mechanical oscillators [86], cavity-assisted metrol-
ogy [87], optomechanically induced transparency [88], and
optomechanically induced absorption [89]. The possibility
of spontaneous generation of photons in PTS systems is
illustrated in [90]. In [91], the gain in the quantum am-
plification by the superradiant emission of radiation was
shown to be a consequence of the broken PT symme-
try. Further, the exceptional points for an optical coupler
with one lossy waveguide and polarization-entangled input
states were obtained in [92]. Nonclassicality in the coher-
ent states for non-Hermitian systems was also reviewed
recently [93].

In this work, we aim to study the behavior of the various
nonclassical features of a system as one goes from the PTS
to the PTSB regime. We analyze the effect of this transition
on the possibility of the presence of QZE and QAZE as well
as the nonclassical features, such as intermodal antibunching
and the sum and difference squeezing for different choices
of input states. The rest of the paper is planned as follows.
In Sec. II, we discuss the model and the solution to the
equations of motion of cavity field modes in the Heisenberg
picture. Section III is devoted to the discussion of various non-
classical features of the field modes. We finally conclude in
Sec. IV.

FIG. 1. The model. Two cavities bearing modes a1 and a2 cou-
pled through coupling constant g are also interacting with baths B1

and B2, respectively. The baths cause gain γ1 and loss γ2 in the first
and second cavity, respectively.

II. MODEL AND SOLUTION

In this work, we are interested in studying the interplay
between PT symmetry and various facets of nonclassicality.
To this effect, we consider the system sketched in Fig. 1. Two
optical cavities bearing modes a1 and a2, with corresponding
frequencies ω1 and ω2, are connected by coupling constant g.
The Hamiltonian for this system can be written as

HS = ω1a†
1a1 + ω2a†

2a2 + g(a†
1a2 + H.c.), (1)

where H.c. stands for the Hermitian conjugate. Throughout
this paper we are going to work in the natural units (h̄ =
c = 1). To bring the PT -symmetric effects, we allow the
cavities in the system of interest to interact with the ambi-
ent environmental degrees of freedom. We denote the baths
(reservoirs) as B1 and B2 and consider them to be coupled to
the cavities bearing modes a1 and a2, respectively. We further
assume that the former cavity has a gain rate γ1 and the latter
has a loss rate γ2. The Hamiltonian pertaining to the baths
(HB) and the system-bath interaction (HSB) are respectively
given by

HB =
∑

k

νkm†
kmk +

∑
k′

νk′n†
k′nk′ , (2a)

HSB =
{∑

k

gkm†
ka1 +

∑
k′

gk′n†
k′a2 + H.c.

}
. (2b)

Here, mk and n′
k are the annihilation operators corresponding

to the baths B1 and B2, respectively, and are coupled to the
corresponding cavity modes a1 and a2 with coupling strengths
gk and gk′ . Using Eqs. (1), (2a), and (2b), we obtain the
following Langevin equations:

ȧ1(t ) = −iω1a1(t ) + γ1a1(t ) + f1(t ) − iga2(t ), (3a)

ȧ2(t ) = −iω2a2(t ) − γ2a2(t ) + f2(t ) − iga1(t ). (3b)

Here, f1(t ) and f2(t ) are the noise operators given by
−i

∑
l glbl (0)e−iνl t , where bl (0) denotes the corresponding

bath operator. The noise operators satisfy the following prop-
erties [38]:

〈 f †
1 (t ) f1(t ′)〉 = 2γ1δ(t − t ′), 〈 f1(t ) f †

1 (t ′)〉 = 0, (4a)

〈 f2(t ) f †
2 (t ′)〉 = 2γ2δ(t − t ′), 〈 f †

2 (t ) f2(t ′)〉 = 0. (4b)
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The action of the parity operator P and the time-reversal
operator T on modes a1 and a2 can be summarized as

P : a1 ↔ −a2, a†
1 ↔ −a†

2, (5a)

T : a1 ↔ a1, a†
1 ↔ a†

1, a2 ↔ a2, a†
2 ↔ a†

2. (5b)

The action of the time-reversal operator also flips the sign of
the complex number i. Thus, the PT invariance of Eqs. (3a)
and (3b) demands that

ω1 = ω2 = ω and γ1 = γ2 = γ . (6)

To investigate the PT invariance further, let us rede-
fine the annihilation operators as ã1(t ) = e−iωt a1(t ), ã2(t ) =
e−iωt a2(t ), and the noise operator Fi(t ) = e−iωt fi(t ). With this
transformation Eqs. (3a) and (3b) become

˙̃a1(t ) = γ ã1(t ) + F1(t ) − igã2(t ), (7a)

˙̃a2(t ) = −γ ã2(t ) + F2(t ) − igã1(t ). (7b)

One can write the formal solution of the above equations
as follows:(

ã1(t )

ã2(t )

)
= e−iKt

(
ã1(0)

ã2(0)

)
+

∫ t

0
ds e−iK(t−s)

(
F1(s)

F2(s)

)
. (8)

Here, K is identified as the effective Hamiltonian for the
system given by

K =
(

iγ g

g −iγ

)
(9)

with eigenvalues

λ± =
{

±
√

g2 − γ 2 for g � γ ,

±i
√

γ 2 − g2 for g < γ .
(10)

Apart from the conditions given in Eq. (6), the complete PT
invariance demands that the eigenvalues of K are real, that
is, γ � g. Naturally, the PTSB regime is characterized by
γ > g. In other words, the dominance of the gain and/or loss
over the coupling strength breaks the PT symmetry of the
system. The transition from the PTS to PTSB regime is
governed by the eigenvalues of the effective Hamiltonian.
Figure 2 shows the behavior of the eigenvalues with respect to
the coupling strength g and the gain (loss) rate γ . The two real
branches of eigenvalues coalesce at g = γ and become com-
plex for g < γ . These points at which the transition from the
real to the complex spectrum occurs are known as exceptional
points [92].

We can now rewrite the solution given in Eq. (8) by setting
Q = e−iKt . With K given in Eq. (9), it can be shown that

Q =
(

cosh(�t ) + γ

�
sinh(�t ) −ig

�
sinh(�t )

−ig
�

sinh(�t ) cosh(�t ) − γ

�
sinh(�t )

)
.

(11)

Here, � =
√

γ 2 − g2 controls the transition from PTS to
PTSB phase. Finally, the solution turns out to be

ã1(t ) = Q11(t )ã1(0) + Q12(t )ã2(0)

+
∫ t

0
ds(Q11(t − s)F1(s) + Q12(t − s)F2(s)), (12)

FIG. 2. The real part of the eigenvalues λ± is plotted as a function
of the coupling strength g and the gain (loss) rate γ . The points where
the two eigenvalues coalesce are called exceptional points. In (a),
the blue (solid) and red (dashed) curves correspond to λ+ and λ−,
respectively. All the parameters are in units of sec(−1) in this figure,
while in the rest of the paper, all the quantities are dimensionless
unless stated otherwise.

ã2(t ) = Q21(t )ã1(0) + Q22(t )ã2(0)

+
∫ t

0
ds(Q21(t − s)F1(s) + Q22(t − s)F2(s)). (13)

One can obtain the solution at the exceptional points by taking
appropriate limits, specifically, by considering � → 0 we can
obtain

Q|�→0 =
(

1 + γ t −igt

−igt 1 − γ t

)
. (14)

Having obtained the solution for the two field modes ã1(t ) and
ã2(t ), we now proceed to study some properties of the output
fields, for example, the average photon numbers with different
input states, and also look for the nonclassical features of the
fields. Since the phase factor in ãk (t ) = e−iωt ak (t ) (k = 1, 2)
is not relevant in our study, in what follows we drop the tilde.

III. SOME PROPERTIES OF THE OUTPUT FIELDS

In this section, we analyze some properties associated with
the field modes a1 (gain) and a2 (loss), and their behavior in
the PTS and PTSB regimes.

Average photon number: We begin this study with the
average photon number nai = 〈a†

i (t )ai(t )〉 corresponding to
the mode ai (i = 1, 2) by choosing different initial states.
For example, with the input state as vacuum, one can obtain
the following closed-form expressions for the average photon
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number:

na1 = 2γ 2� cosh(2�t ) − (�2 + γ 2)γ sinh(2�t ) − 2γ�(γ + g2t )

2�3
,

na2 = g2γ

2�2

[
− 2t + sinh(2�t )

�

]
. (15)

Similarly, we have considered different initial states, such
as coherent state |α1, α2〉, NOON state (|1, 0〉 + |0, 1〉)/

√
2,

and thermal state ρ0 = (1 − eβ )2 exp[−β(a†
1a1 + a†

2a2)] (see
Appendix) to compute the average photon numbers in the
two cavities. The average photon number in each case is
plotted in Fig. 3. The parameters γ (gain or loss rate) and
g (coupling strength) are chosen such that the system is
either in the PTS or PTSB regime. In the PTS regime,
the average photon number for the gain and loss modes is

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. Average photon number na1 = 〈a†
1(t )a1(t )〉 (solid blue

curve) and na2 = 〈a†
2(t )a2(t )〉 (dashed red curve) with respect to the

dimensionless parameter gt for PTS (left panel) and PTSB (right
panel) cases. The value of γ is 0.5g and 1.1g corresponding to the
PTS and PTSB regimes, respectively. The input states are (a, b)
vacuum state |00〉, (c, d) coherent state |α1α2〉 with αk = rkeiθk for
k = 1, 2 and coherent state parameters r1 = r2 = 1, θ1 = θ2 = π/4,
(e, f) NOON state (|10〉 + |01〉)/

√
2, and (g, h) thermal state ρ0 =

(1 − eβ )2 exp[−β(a†
1a1 + a†

2a2)] with β = h̄ω/kT . Here we have
chosen β = 1.

observed to grow together, waning the distinction between
gain and loss cavities. In PTSB regime, however, the av-
erage photon number in the gain cavity grows faster as
compared to the average photon number in the lossy cavity.
This is due to the fact that in the PTSB phase, the gain and/or
loss dominates the coupling strength between the two cavities.
The oscillatory behavior of the curves in the PTS case can
be attributed to the fact that the elements of the Q matrix
change from a hyperbolic to a sinusoidal function as one goes
from PTSB to the PTS regime. The rapid increase in the
photon number as a spontaneous photon generation process
in the context of PT symmetry was also reported in [90] in a
system of two coupled waveguides. In all these cases, in the
PTS regime one can clearly see initial decay in the average
photon number in the lossy cavity, which is compensated
later by its interaction with the gain medium. In the set of
possible input states, we have considered vacuum (shown
to play an important role in PTS property [90]), a quantum
state with positive (coherent state) and negative (NOON state)
Glauber-Sudarshan P function, and a mixed (thermal) state
having positive P function. Average photon numbers of two
cavities does not give any signature of quantumness. There-
fore, in what follows we investigate the QZE and QAZE and
some nonclassical features, like intermodal antibunching and
squeezing, in the field modes, which will use the number
operators calculated so far.

Quantum Zeno and anti-Zeno effects. A more general defi-
nition of QZE involves the dynamics for which the interaction
part may be defined as a “continuous gaze” on the system
under consideration (see [94] for a review). This interaction
may be a measurement operator to explain QZE as introduced
in [1]. In the present case, the two cavity model (in Fig. 1) can
be considered as a system-probe configuration, where one of
the cavities (considered system) are under a constant influence
of the other cavity (probe). The occurrence of QZE and
QAZE in the system-probe setting can be studied by defining
(dimensionless) Zeno parameter, introduced in [95,96]:

ζai (t ) = nai − nai |g=0∏
i=1,2

nai

, (16)

with nai = 〈a†
i (t )ai(t )〉. Here, we have normalized the Zeno

parameter by dividing by the product of the average number
of photons of the two modes. A positive (negative) value of
the Zeno parameter ζai implies an increase (decrease) in the
average photon numbers corresponding to the mode ai as a
consequence of the coupling (g) with the probe field. The
scenarios ζai (t ) < 0 and ζai (t ) > 0 are respectively known as
QZE and QAZE.

Figure 4 depicts the Zeno parameter with different initial
states, viz., vacuum state (a), NOON state (|10〉 + |01〉)/

√
2
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FIG. 4. The Zeno parameter as defined in Eq. (16), plotted with
respect to time t (sec) and loss/gain rate γ (sec−1), ζa1 (blue surface)
and ζa2 (red surface) with input state as vacuum (a), NOON state
(|10〉 + |01〉)/

√
2 (b), and thermal state (c). In all cases, the lossy

mode (a2) shows the QAZE while the gain mode (a1) shows the QZE.
Here we have chosen coupling strength g = 1 so that γ < 1 and γ >

1 correspond to the PTS and PTSB regimes, respectively.

(b), and thermal state (c). In all the cases, mode a2 (red
surface) shows the QAZE effect while QZE is displayed by
mode a1 (blue surface). This nature is observed due to the fact
that the number of photons generated under an independent
evolution of the gain cavity is suppressed (which is described
as QZE) due to its interaction with the lossy cavity. In contrast,
an increase in the number of photons (which is described as
QAZE) in the lossy cavity is the outcome of its interaction
with the gain cavity. This increase and/or decrease in the num-
ber of photons also depends upon the values of parameters
deciding the PT symmetry property of the system.

We separately discuss the case when both the cavity fields
are initially in the coherent states as in this case, the transi-
tion between the QZE and QAZE can be controlled by the
parameters of the input fields. Specifically, Fig. 5 depicts
the Zeno parameter corresponding to modes a1 and a2 with
input state as the coherent state |α1α2〉, such that αk = rkeiθk

with k = 1, 2. Figure 5(a) shows the variation of the Zeno

FIG. 5. Zeno parameter, as defined in Eq. (16), is plotted with
respect to time t (sec), and the phase difference �θ (radians), with
input state as coherent state |r1eiθ1 , r2eiθ2 〉 for r1 = r2 = 1. In (a),
θ1 = π, θ2 = −π/4. The blue and red surfaces correspond to ζa1

and ζa2 , respectively. Here the coupling strength between the cavities
g = 1. (b) Variation with respect to the relative phase parameter
�θ = θ1 − θ2. The color scheme is as follows: blue for ζa1 , red for
ζa2 with γ = 0.5g, that is, PTS regime; green for ζa1 and gray for
ζa2 with γ = 1.5g, PTSB regime. The parameter �θ decides which
of the two modes (a1 or a2) would show the QZE or QAZE. The
maxima and minima in the plot occur at �θ = π/2, 3π/2.

parameters with respect to the gain and loss rate γ and
time t . In the PTS regime (γ < g), the QZE and QAZE are
more prominent as compared to PTSB regime (γ > g). The
observed behavior can be attributed to the fact that in the
PTS phase, the coupling is dominant and has a pronounced
effect, i.e., losses in cavity mode a2 are supplemented by the
gain cavity due to strong coupling between them. This causes
large variation in the Zeno parameter in the PTS phase when
compared with the PTSB phase. In Fig. 5(b), the Zeno param-
eter is shown as a function of the relative phase (difference
of the phases corresponding to the coherent states of the two
modes) �θ = θ1 − θ2 and time t . It is clear that the presence
of QZE or QAZE in modes a1 and a2 depends on the value
of �θ . In this case, for �θ > π , the mode a1 dominantly
shows QAZE, while for �θ < π it shows QZE. Therefore,
a transition between QZE and QAZE can be controlled by the
relative phase of the input coherent states, while variation in
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FIG. 6. Intermodal antibunching with input state as coherent
state |α1, α2〉 (a) and NOON state (|10〉 + |01〉)/

√
2 (b). In the

former α1 = r1eiθ1 and α2 = r2eiθ2 with r1 = 1, r2 = 2, θ1 = θ2 =
π/2. The nonclassical behavior corresponds to A(a1a2) < 0. The
behavior in the PTS regime (γ < g) is very different from the PTSB
regime (γ > g).

the amount of the Zeno parameter also depends upon whether
the system is in the PTS/PTSB phase.

Intermodal antibunching: For the field modes a1 and a2,
the condition for intermodal antibunching is given as follows:

A(a1a2) = 〈a†
1a†

2a1a2〉 − 〈a†
1a1〉〈a†

2a2〉 < 0. (17)

The first term in the right-hand side corresponds to the si-
multaneous detection in the outputs of two cavities, while the
second term represents the product of individual detections in
the outputs. In order to compute the first expectation value,
we make use of the following decoupling relation ([48] and
references therein):

〈ABCD〉 ≈ 〈AB〉〈CD〉 + 〈AD〉〈BC〉 + 〈AC〉〈BD〉
− 2〈A〉〈B〉〈C〉〈D〉. (18)

Thus, we obtain the average value of the witness of intermodal
antibunching A(a1a2) for different initial states, which detects
the presence of nonclassicality for the negative values of the
witness A(a1a2). Figure 6 depicts the variation of the inter-
modal antibunching witness A(a1a2) with input state as (a)
coherent state and (b) NOON state. The nonclassical features
are observed in both the cases as depicted by the negative
values of the witness. Further, it is clear that the behavior in
PTS and PTSB regimes is remarkably different, revealing that

FIG. 7. Sum squeezing parameter V (a1, a2) (a) and difference
squeezing parameter W (a1, a2) (b) as defined in Eqs. (20) and (21),
plotted against dimensionless parameter γ t with vacuum as the
initial state. A state is sum (difference) squeezed if V (a1, a2) <

0 [W (a1, a2) < 0]. Here, we used φ = π/4.

the PTS phase favors nonclassicality compared to the PTSB
phase.

Sum squeezing criterion: Hillery’s sum squeezing criterion
[97] is defined in terms of a generalized two-mode quadrature
operator of the form

Vφ = e−iφa1a2 + eiφa†
1a†

2

2
, (19)

in analogy to the single-mode quadrature where φ is the phase
angle of the coherent field used in the homodyne measure-
ment. A state is said to be sum squeezed along phase angle
φ if

V (a1, a2) = 〈(�Vφ )2〉 − 〈a†
1a1〉 + 〈a†

2a2〉 + 1

4
< 0 (20)

with 〈(�Vφ )2〉 = 〈V 2
φ 〉 − 〈Vφ〉2.

Difference squeezing criterion. A state is said to be differ-
ence squeezed if

W (a1, a2) = 〈(�Wφ )2〉 − |〈a†
1a1〉 − 〈a†

2a2〉|
4

< 0. (21)

The collective operator Wφ = 1
2 (eiφa1a†

2 + e−iφa†
1a2) and vari-

ance 〈(�Wφ )2〉 = 〈W 2
φ 〉 − 〈Wφ〉2.

We have chosen to study the sum and difference squeezing
here, as these two-mode nonclassical features use the average
photon numbers we have studied in the beginning of this sec-
tion. Figure 7 depicts the variation of the sum and difference
squeezing parameters V (a1, a2) and W (a1, a2), respectively.
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The negative values of the parameters V (a1, a2)/W (a1, a2),
for any φ, confirm the existence of the sum and difference
squeezing. It can be seen that the sum and difference squeez-
ing is enhanced in PTS regime (g/γ > 1) as compared to
PTSB regime (g/γ < 1).

IV. CONCLUSION

We considered a two-cavity gain-loss system and discussed
the conditions necessary for exhibiting parity-time (PT ) in-
variance. This demanded equal gain and loss in the two cavi-
ties. Further, complete PT invariance requires the eigenvalues
of the effective Hamiltonian to be real. This condition in
turn means that the dominance of the gain and loss over
the coupling strength g breaks the PT invariance. With this
setting, we studied the average photon number with different
initial states, viz., vacuum, NOON, coherent, and thermal
states. In all four cases, the average photon number shows a
similar behavior for gain and loss modes in the PT -symmetric
(PTS) regime. In contrast to this, in the PT -symmetry-broken
(PTSB) regime, the gain mode is found to dominate over
the lossy mode, while both show an exponential growth. We
further studied some nonclassical features using the average
photon numbers for different initial states. Specifically, we
have reported the presence of quantum Zeno effect (QZE)

and quantum anti-Zeno effect (QAZE) in two cavities and
nonclassical features such as intermodal antibunching and
sum and difference squeezing. These witnesses of nonclas-
sicality as well as the Zeno parameter exhibit suppression
in the nonclassical features when one goes from the PTS to
the PTSB regime. In other words, the dominance of the loss
and gain over the coupling strength results in depletion of the
nonclassical features of the fields. Further, it’s observed that
the relative phase of the input coherent fields provides us a
control parameter to switch between QZE and QAZE.

The present study is expected to impact deeper understand-
ing of PT symmetry and the role it can play in probing
nonclassicality in the physical systems relevant in the field of
quantum optics and information processing.
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APPENDIX

Average photon number with initial state as a NOON state. For a general NOON state |n,0〉+|0,n〉√
2

, the average photon numbers
can be shown to be

〈a†
1(t )a1(t )〉 = 1

2�3
{−2γ (γ + g2t )� + n�3 cosh2(�t ) + 2γ 2� cosh(2�t ) + (g2 + γ 2)n� sinh2(�t )

+(n�2 + 2γ 2 − g2)γ sinh(2�t )},
〈a†

2(t )a2(t )〉 = 1

2�3
{−2g2γ�t + n�3 cosh2(�t ) + n�(g2 + γ 2) sinh2(�t ) + γ (g2 − n�2) × sinh(2�t )}. (A1)

Average photon number with initial state as a coherent state. With a coherent state of the form |α1, α2〉 such that α1 = r1eiθ1

and α2 = r2eiθ2 , we have the following expression for the average photon numbers:

〈a†
1(t )a1(t )〉 = 1

2�3

[
γ (−g2 + 2γ 2) sinh(2�t ) − 2�γ (γ + g2t ) + 2�r2

1�
2 cosh2(�t ) + 2�γ 2 cosh(2�t ) + 2� sinh2(�t )

× (
γ 2r2

1 + g2r2
2 + 2gγ r1r2 sin(�θ )

) + 2�r1(γ r1 + gr2 sin(�θ )) sinh(2�t )
]
,

〈a†
2(t )a2(t )〉 = r2

2 cosh2(�t ) − r2(γ r2 + gr1 sin(�θ )) sinh(2�t )

�
+ 2�

(
g2r2

1 + γ 2r2
2 + 2gγ r1r2 sin(�θ )

)
sinh2(�t )

2�3

+ g2γ (−2�t + sinh(2�t ))

2�3
. (A2)

Average photon number with initial state as a thermal state. The two-mode isotropic thermal state can be represented by the
normalized density matrix

ρ0(β ) = (1 − eβ )2 exp[−β(a†
1a1 + a†

2a2)],

= (1 − eβ )2
∞∑

n1,n2=0

exp[−β(n1 + n2)]|n1, n2〉〈n1, n2|. (A3)
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Here β = h̄ω/kBT and we have used the natural units h̄ = kB = 1. The average photon number in this case is given by

〈a†
1(t )a1(t )〉 = g2 sinh2(�t )

�2
(1 − eβ )2

∑
n1,n2

e−β(n1+n2 )n2 +
{

cosh(�t ) + γ

�
sinh(�t )

}2
(1 − eβ )2

∑
n1,n2

e−β(n1+n2 )n1

− γ (g2 − 2γ 2) sinh(2�t )

2�3
− γ {2(γ + g2t )� − 2γ� cosh(2�t )}

2�3

〈a†
2(t )a2(t )〉 = g2 sinh2(�t )

�2
(1 − eβ )2

∑
n1,n2

e−β(n1+n2 )n2 +
{

cosh(�t ) + γ

�
sinh(�t )

}2
+ g2γ

2�3
( − 2�t + sinh(2�t )). (A4)
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041801 (2012).

[56] K. Thapliyal, S. Banerjee, A. Pathak, S. Omkar, and
V. Ravishankar, Ann. Phys. (Amsterdam, Neth.) 362, 261
(2015).

[57] I. Chakrabarty, S. Banerjee, and N. Siddharth, Quantum Info.
Comput. 11, 541 (2010).

[58] K. Thapliyal, N. L. Samantray, J. Banerji, and A. Pathak,
Phys. Lett. A 381, 3178 (2017).

[59] P. Malpani, N. Alam, K. Thapliyal, A. Pathak, V.
Narayanan, and S. Banerjee, Annalen der Physik, 1800318
(2019).

[60] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998).

[61] C. M. Bender, Reps. Prog. Phys. 70, 947 (2007).
[62] H. Eleuch and I. Rotter, Phys. Rev. A 95, 022117 (2017).
[63] H. Eleuch and I. Rotter, Eur. Phys. J. D 68, 74 (2014).
[64] I. Rotter, Rep. Prog. Phys. 54, 635 (1991).
[65] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and

Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008).
[66] S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett. 101,

080402 (2008).
[67] C. T. West, T. Kottos, and T. Prosen, Phys. Rev. Lett. 104,

054102 (2010).
[68] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-

Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009).

[69] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6,
192 (2010).

[70] Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106,
093902 (2011).

[71] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov,
D. N. Christodoulides, and U. Peschel, Nature (London) 488,
167 (2012).

[72] B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys.
10, 394 (2014).

[73] X. Li and X.-T. Xie, Phys. Rev. A 90, 033804 (2014).
[74] Y.-L. Liu, R. Wu, J. Zhang, Ş. K. Özdemir, L. Yang, F. Nori,
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