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Peculiarities of Cherenkov radiation from a charge moving through a dielectric cone
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Radiation generated by a charge moving in a vacuum channel through a dielectric cone is analyzed. The size
of the conical target is assumed to be much greater than the wavelengths under consideration. We calculate
the wave field outside the target using Stratton-Chu formulas (“aperture integrals”). This work focuses mainly
on investigation of the electromagnetic field in the far-field area (Fraunhofer area). We calculate representative
radiation patterns and show that typically the maximal radiation is generated in the direction of one of the
refracted rays. However, in the specific case where the refracted ray is parallel to the symmetry axis, the maximal
radiation is observed at some small (but nonzero) angle with respect to this axis. The maximum radiation in
this case is much more intensive compared to all other situations. This phenomenon can be referred to as the
“Cherenkov spotlight.”
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I. INTRODUCTION

Radiation of charged particles moving in the presence
of dielectric objects (“targets”) of complicated form is of
interest for various applications [1–5]. As an example, one can
mention a new method of bunch diagnostics which requires
calculation of Cherenkov radiation outside dielectric objects
[2]. Typically, the size of the target is much larger than the
wavelengths under consideration. On the one hand, this fact
considerably complicates computer simulations because they
require very large amount of resources and time. On the
other hand, this fact gives us an obvious small parameter of
the problem and allows developing approximate methods of
analysis.

Previously, we have offered two methods for the solution
of such problems which can be called the “ray-optic method”
and “aperture method” [6–12]. Both these methods are valid
for objects which are much larger than the wavelengths under
consideration.

The first step is the same for both methods: We should
solve the “etalon problem” which does not take into account
“external” boundaries of the target. For example, if a charge
moves in the vacuum channel inside the target, then we con-
sider a channel border but do not take into account the external
boundary of the object. In other words, initially we consider
the problem for an infinite medium with the boundary nearest
to the charge trajectory and obtain the field inside the bulk of
the target. This field can be called the “incident” field.

As a second step, we select a part of the external surface of
the object which is illuminated by Cherenkov radiation (this
part will be called the “aperture”). Then, we use the fact that
the object is large in comparison with the wavelengths under
consideration. More exactly, we assume that

(1) the size of the aperture is much larger than the wave-
length;
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(2) the main part of the aperture is far from the path of the
charge (in the wavelength scale).

Therefore we can neglect the quasi-static (quasi-Coulomb)
field and replace the incident field with its asymptotic (i.e.,
the wave field). Further we calculate the field at the aperture
of the object using Snell’s and Fresnel’s laws.

The last steps of these methods are different. The ray-optic
method uses the ray-optic laws for calculation of the wave
field outside the object [6,7]. However, this technique has es-
sential additional limitations. The distance L from the aperture
to the observation point should not be very large, i.e., the so-
called “wave parameter” D should be small: D ∼ λL/� � 1,
where � is the aperture area, and λ is a wavelength under
consideration. Also, the observation point cannot be close to
the focuses and caustics.

The aperture method is more general [8–12]. It is valid for
observation points with arbitrary wave parameter D, including
the Fraunhofer area (or far-field area) where D � 1, as well as
in neighborhoods of focuses and caustics. At the final step of
this technique we calculate the field outside the target using
known Stratton-Chu formulas (“aperture integrals”). These
formulas allow determining the field in the surrounding space
if tangential components of electric and magnetic fields on the
aperture are known.

Note that using the method described above, we neglect
interior re-reflections which affect the field on the aper-
ture. In principle, it is possible to take into account several
re-reflections, but this is a cumbersome enough procedure.
Meanwhile, as a rule, their role is inessential because each re-
reflected wave is attenuated by corresponding reflection and
transition coefficients. This fact is confirmed, in particular, by
the results of Ref. [11] where we have verified the aperture
method for the cone target using simulations in COMSOL

MULTIPHYSICS. Comparing results of both techniques, we have
concluded that the aperture method can be applied even for
relatively small objects having the size of several wavelengths
only. Another important result of [11] is that the accuracy
of analytical calculations increases with an increase in the
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distance from the aperture. Note as well that the Appendix
to this paper includes results of additional verification of the
aperture method.

Note that in [11] we considered both a conventional conical
target and a “truncated” target which does not have a “nose.”
It seems that the accuracy of the method under consideration
should be higher for the truncated target, since its aperture
does not have any region where the wave approximation for
the incident field is incorrect. However, contrary to expecta-
tions, it has been shown that the accuracy of the method is
approximately the same for both targets. This means that the
“nose” does not significantly affect the radiation (obviously,
due to the smallness of the region where the wave approxima-
tion for the incident field is incorrect).

Here we consider the dielectric cone with the axisymmetric
vacuum channel where a charge moves. In contrast to [11], we
focus mainly on the analysis of radiation in the far-field zone.
This issue is the most important for both a description of the
radiation properties and potential applications.

Note that a dielectric cone itself is widely used in optics
where it is usually referred to as an “axicon” [13]. The most
common application of this optical element is generation of
the Bessel beam from a parallel laser beam illuminating the
axicon [14]. Other modern applications include formation of
vortex beams [15] and creation of hollow-plasma channels
[16]. The paper [17] discussed the possibility of collimating
of Cherenkov radiation (generated in a separate dielectric
radiator) using a “grating axicon.” Contrary to [17], in the
present paper we consider the situation where both generation
of Cherenkov radiation and transformation of its wavefront
is implemented with the help of the same dielectric target of
conical form.

II. APERTURE INTEGRALS: GENERAL FORM AND
APPROXIMATION IN FRAUNHOFER ZONE

Aperture integrals (or Stratton-Chu formulas) for Fourier
transform of electric fields [18] can be written in the following
general form (we use the Gaussian system of units):

�E (�R) = �E (h)(�R) + �E (e)(�R),

�E (h)(�R) = ik

4π

∫
�

{
[�n′ × �H (�R′)]G(|�R − �R′|)

+ 1

k2
([�n′ × �H (�R′)] · ∇′)∇′G(|�R − �R′|)

}
d�′,

�E (e)(�R) = 1

4π

∫
�

{[�n′×�E (�R′)] × ∇′G(|�R−�R′|)}d�′, (1)

where �E (�R′), �H (�R′) is the field on the aperture, k = ω/c is a
wave number of the outer space (vacuum),�n′ is a unit external
normal to the aperture in the point �R′, G(R) = exp(ikR)/R
is a Green’s function of the Helmholtz equation, and ∇′
is a gradient, ∇′ = �ex∂/∂x′ +�ey∂/∂y′ +�ez∂/∂z′. Analogous
formulas are known for the magnetic field as well; however,
we do not write them here because we are interested in a
far-field zone where |�E | ≈ |�H |. Note that in the paper [11]
the expressions (1) have been written as well in the specific
form for the conical target.

It should be noted that, in Stratton-Chu formulas, the sur-
face � should completely cover the region where the sources
are located. Such a surface can be formed by the “aperture,”
i.e., the part of the object’s surface illuminated by Cherenkov
radiation, and the other part which can be constructed arbitrar-
ily. In our approximation, it is assumed that the contribution
of this part is unimportant and integration is performed only
over the aperture. This approximation is analogous to the
Kirchhoff approximation, which is very widely used in optics,
diffraction theory, antenna theory, etc.

Now we are interested in the case when the observation
point is often located far from the target, in other words, in the
region where so-called “wave parameter” D is large:

D ∼ λR/� ∼ λR/d2 � 1, (2)

where λ is a wavelength under consideration, R is a distance
from the target to the observation point, and � ∼ d2 is a
square of an aperture. (We assume that the origin of the
coordinate frame is located in the vicinity of the target.) This
region is sometimes named a Fraunhofer area, or far-field
area. It is interesting to simplify the general formulas (1) in
this area.

Note that condition (2) automatically results in the
inequality

R � d (d/λ) � d, (3)

because d � λ in the problem under consideration. Using
the inequalities (2) and (3) and taking into account that
|�R′ | ∼ d , one can apply the following approximation in the
formulas (1):

G(|�R − �R′|) ≈ exp(ikR − ik�R�R′/R )

R
. (4)

As a result, we obtain the following formulas for Fraunhofer
area:

�E (h) ≈ ikeikR

4πR

∫
�

{[�n′×�H (�R′)] −�eR(�eR·[�n′×�H (�R′)])}

× e−ik�eR�R′
d�′,

�E (e) ≈ ikeikR

4πR

∫
�

{�eR×[�n′×�E (�R′)]}e−ik�eR�R′
d�′, (5)

where �eR = �R/R. The formulas (5) can have essential advan-
tages in comparison with (1) for specific objects because we
can hope to evaluate these integrals analytically.

III. APERTURE INTEGRALS FOR THE CASE OF A CONE
WITH A CHANNEL

We analyze the radiation of a charge moving along the
axis of a cylindrical channel of radius a in the conical object
(Fig. 1). The target is made of dielectric with permittivity ε

and permeability μ (the conductivity is assumed to be negli-
gible). The charge q moves with constant velocity �V = cβ�ez

along the z axis, and this velocity exceeds the “Cherenkov
threshold,” i.e., β > 1/n, where n = √

εμ is the refractive
index of the prism material. Note that the form of the back
border of the target (dotted line in Fig. 1) is not important.
But it is important that the lateral border with the size d (bold
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FIG. 1. (a) Cross section of the cone with channel; the aperture
is marked by the bold red line. (b) The mutual arrangement of the
vectors used in calculating the aperture integrals.

red line in Fig. 1) is illuminated by Cherenkov radiation. This
border is the aperture � used in (1).

Recall that the object is much greater than the wavelength
under consideration λ. This means that d � λ, and, moreover,
αd � λ, that is, the cone angle α is not very small. As a conse-
quence, almost the whole aperture is far from the charge path,
and the incident field can be approximately replaced with
its wave part. This approximation allows using the aperture
method in the form described above.

For definiteness, we will deal with a point charge having
the charge density ρ = qδ(x)δ(y)δ(z − V t ), where δ(z − V t )
is a Dirac delta function. However, the results obtained below
can be easily generalized for the thin bunch with finite length
because we consider Fourier transforms of the field compo-
nents. Note that the Fourier transform of the charge field is
equivalent to the field of the threadlike current with given
frequency ω which is localized on the z axis.

According to the aperture method, first we must find the
“incident” field, i.e., the field in the infinite medium having
constants ε and μ (considering the channel but not taking into
account other borders of the cone). For the considered case,
this field is known [7,19]. We write here Fourier transform
of the magnetic component at the distance r, which is much
larger than the wavelength under consideration (the cylindri-
cal coordinates r, ϕ, z are used):

H (i)
ϕ ≈ iq

c
η

√
s

2πr
exp

{
i

(
sr + ω

V
z − 3π

4

)}
, (6)

η=− 2i

πa

[
κ

1−n2β2

ε(1−β2)
I1(κa)H (1)

0 (sa)+sI0(κa)H (1)
1 (sa)

]−1

,

(7)

where s(ω) = ω
V

√
n2β2 − 1, κ (ω) = ω

V

√
1 − β2, I0,1 are mod-

ified Bessel functions, and H (1)
0,1 are Hankel functions. Note

that Im s(ω) � 0 if we take into account a small dissipation. If
dissipation tends to zero, then this condition results in the rule
sgn[s(ω)] = sgn(ω) (we exclude the exotic case of so-called
“left-handed” medium). The result (2) is valid for |sr| � 1.
Electric field �E (i) can be easily found, because vectors �E (i),
�H (i) and the wave vector of Cherenkov radiation �k(i) = s�er +
�ezω/V form the right-hand orthogonal triad in this area: �E (i) =
−√

μ/ε[�k(i)/k(i) × �H (i)]. The angle between the wave vector
�k(i) and the charge velocity �V is θp = arccos[1/(nβ )].

The wave (6) falls on the cone boundary at the angle θi =
π
2 − α − θp and is refracted at the angle θt = arcsin(n sin θi )
with respect to the boundary normal �eζ . Because of the axial
symmetry of the problem, the refracted field has the same
(“vertical”) polarization as the incident one, that is, outside
the object we have

�H = TvH (i)
ϕ �eϕ, �E = −[�k(t )/k(t ) × �H ], (8)

where �k(t ) is a wave vector of refracted wave (k(t ) =
k = ω/c ), and Tv is a corresponding Fresnel coefficient:

Tv = 2
√

μ/ε cos θi
/

(
√

μ/ε cos θi + cos θt ). (9)

The field on the aperture can be presented in the form

Hϕ (�R) ≈ Tvqη
√

s

c
√

2πξ sin α
exp

{
i
ω

V
(
√

n2β2 − 1 sin α − cos α)ξ

− iπ

4

}
. (10)

Furthermore, we need the tangential electric component Eξ

(see Fig. 1) as well. Since the field is practically transver-
sal plane wave, we can use the following relation for this
component:

Eξ (�R) = Er (�R) sin α − Ez(�R) cos α = Hϕ cos θt . (11)

We are interested in the far-field zone where the gen-
eral formula (1) has the form (5). Besides cylindrical co-
ordinates r, ϕ, z we will use spherical coordinates R, θ =
arccos(z/R), ϕ. Because of the axial symmetry of the problem
one can assume that the observation is in the xz plane, i.e.,
r = x, ϕ = 0, and �er = �ex, �eϕ = �ey. Taking into account the
formulas (see Fig. 1 as well),

�eR ≡ �R/R = �er sin θ +�ez cos θ,

�n′ = �er′ cos α +�ez′ sin α,

�er′ = �er cos ϕ′ +�eϕ sin ϕ′,

�eϕ′ = −�er sin ϕ′ +�eϕ cos ϕ′, �ez′ = �ez,
(12)

�R′ = r′�er′+z′�ez′ = r′ cos ϕ′�er+r′ sin ϕ′�eϕ+z′�ez,

d�′ = r′dϕ′dξ ′,

r′ = ξ ′ sin α,

z′ = −ξ ′ cos α,
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the integrals (5) can be written in the following form:⎧⎪⎨
⎪⎩

E (h)
r

E (h)
ϕ

E (h)
z

⎫⎪⎬
⎪⎭ = ikeikR sin α

2πR

∫ ξ2

ξ1

dξ ′
∫ π

0
dϕ′ξ ′Hϕ′ (�R′)

⎧⎪⎨
⎪⎩

− sin α cos ϕ′− sin θ �(α, θ, ϕ′)
− sin α sin ϕ′

cos α− cos θ �(α, θ, ϕ′)

⎫⎪⎬
⎪⎭eikξ ′�(α,θ,ϕ′ ), (13a)

⎧⎪⎨
⎪⎩

E (e)
r

E (e)
ϕ

E (e)
z

⎫⎪⎬
⎪⎭ = ikeikR sin α

2πR

∫ ξ2

ξ1

dξ ′
∫ π

0
dϕ′ξ ′Eξ ′ (�R′)

⎧⎪⎨
⎪⎩

− cos θ cos ϕ′

− cos θ sin ϕ′

sin θ cos ϕ′

⎫⎪⎬
⎪⎭ eikξ ′�(α,θ,ϕ′ ), (13b)

where �(α, θ, ϕ′) = cos α cos θ − sin α sin θ cos ϕ′, ξ1 = a/ sin α, ξ2 = d + a/ sin α.
Using the table integrals [20]∫ π

0
eia cos ϕdϕ = πJ0(a),

∫ π

0
cos ϕeia cos ϕdϕ = π iJ1(a),

∫ π

0
sin ϕeia cos ϕdϕ = 0, (14)

where J0,1(a) are Bessel functions, one can obtain the following expressions for nonzero components:

{
E (h)

r

E (h)
z

}
= keikR sin α

2R

{− cos θ

sin θ

} ∫ ξ2

ξ1

ξ ′Hϕ′ (�R′)[sin α cos θJ1(χ ′
s )+i cos α sin θJ0(χ ′

s )]eiχ ′
c dξ ′, (15a)

{
E (e)

r

E (e)
z

}
= keikR sin α

2R

{− cos θ

sin θ

} ∫ ξ2

ξ1

ξ ′Eξ ′ (�R′)J1(χ ′
s )eiχ ′

c dξ ′, (15b)

E (h)
ϕ = E (e)

ϕ = 0, (15c)

where χ ′
s = kξ ′ sin α sin θ , χ ′

c = kξ ′ cos α cos θ .
Taking into account that ER = Er sin θ + Ez cos θ , Eθ =

Er cos θ − Ez sin θ one can obtain that E (h)
R = E (e)

R = 0, i.e.,
the radiation field has only θ projection, which is expected
since this field is a transversal wave. Calculating this com-
ponent, we take into account that the field on the aperture is
practically a plane wave (in our approximation). Therefore,

Eξ ′ = Hϕ′ cos θt , Eζ ′ = Hϕ′ sin θt . (16)

Using the first of these relations we obtain the following final
result for the total radiation field:

Eθ = −keikR sin α

2R

∫ ξ2

ξ1

ξ ′Hϕ′ (�R′) eiχ ′
c [(cos θt+ sin α cos θ )

× J1(χ ′
s ) + i cos α sin θJ0(χ ′

s )]dξ ′. (17)

Recall that the magnetic field Hϕ′ (�R′) on the cone surface is
determined by the formula (10).

IV. ANALYSIS OF RESULTS

The integral (17) can be analytically calculated if the
condition kξ ′ sin α sin θ � 1 is fulfilled for the greater part
of the aperture. Since kd � 1 and ξ ′ ∼ d within the essential
part of the integration area, this condition is reduced to the
inequality kd sin α sin θ � 1, that is,

θ � (kd sin α)−1. (18)

Thus, we exclude from consideration only small angles θ .
Under such conditions one can use asymptotes of Bessel func-
tions for (17). Taking into account (10) as well, we see that

the integrand of (17) is proportional to the function exp(ipξ ′),
where p is some constant. As a result, under condition (18)
the radiation field can be written in the following approximate
form:

Eθ ≈ −q ηTv
4
√

n2β2 − 1 exp(ikR)

2πcR
√

β sin θ

×
{

i
sin(θ + α)+ cos(θt )

w+
sin

(
kw+d

2

)
eikw+ξ0

+ sin(θ − α)− cos(θt )

w−
sin

(
kw−d

2

)
eikw−ξ0

}
, (19)

where w± = cos(θ ± α) − sin θt , ξ0 = d/2 + a/ sin α is the
position of the aperture center.

Using (19) one can obtain the direction of maximal radia-
tion. The function w−1

+ sin(kw+d/2) has the main maximums
at w+ = 0, that is, at θ + α = ±π

2 ∓ θt . However, the factor
sin(θ + α) + cos(θt ) is zero if θ + α = −π

2 + θt . Therefore,
the first summand in (19) has the main maximum at θ =
θ+ = π

2 − θt − α only. One can see that this is the direction of
the ray refracted at the generatrix which is the nearest to the
observation point [Fig. 2(a)]. Analogously, the second sum-
mand in (19) has the main maximum at θ = θ− = θt + α − π

2 .
This is the direction of the ray refracted at the generatrix
which is the furthest to the observation point [Fig. 2(b)]. Note
that the area of our consideration is bounded by the angle
range 0 < θ < π − α. It is easy to see that the maximum
θ = θ+ takes place if −π

2 < θt < π
2 − α; it can be located

in all ranges under consideration because 0 < θ+ < π − α.
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FIG. 2. (a) The case when − π

2 < θt < π

2 − α and θmax = θ+;
maximum radiation direction θmax is the direction of the ray refracted
at the cone generatrix nearest to the observation point. (b) The
case when π

2 − α < θt < π

2 and θmax = θ−; the maximum radiation
direction θmax is the direction of the ray refracted at the most distant
generatrix with respect to the observation point.

The maximum θ = θ− takes place if π
2 − α < θt < π

2 ; it can
be located only in the limited range because 0 < θ− < α.
One can see that conditions of existence of maximums θ±
are not superposed (there is only one main maximum for
given problem parameters). This direction is the direction of
the wave refracted either on the nearest generatrix or on the
furthest one.

As a result, we obtain the following direction of maximal
radiation:

θmax =
{
θ+ for θt < π/2 − α

θ− for θt > π/2 − α

}
=

∣∣∣∣π2 − θt − α

∣∣∣∣. (20)

The value of the field in this main maximum is

Eθ max =
{−i for θt < π/2 − α

1 for θt > π/2 − α

}
qηTv

4
√

n2β2 − 1 cos(θt )

2π
√

β| cos(α + θt )|

× kdeikR

cR
. (21)

The angular half-width of the main lobe of the radiation pat-
tern δθ± is determined by one of the conditions |kw±d/2 | =
π , i.e.,

|cos(θ± + δθ± ± α) − sin θt | = 2π

kd
. (22)

Using the linear term of the Taylor series, one can obtain the
following estimation:

δθ± ≈ 2π

kd cos θt
. (23)

One can see that the field amplitude in maximum |Eθ max|
(21) and the angular width (23) are the same for both
“the ray” from the nearest generatrix (+) and “the ray” from
the furthest generatrix (−). This is explained by the fact that
the target dimension is small in comparison with the distance
to the observation point, that is, the distances from the nearest
and furthest borders are practically the same.

Note that accordingly to (20), θmax = θ+ = θ− = 0 for

θt = π

2
− α, or sin θt = cos α. (24)

However, this situation is beyond the condition (18). More-
over, the formula (17) shows that the radiation is absent in
the direction θ = 0. In this case it is interesting to obtain the
approximation for the field at small angles,

θ ∼ (kd sin α)−1 � 1. (25)

Taking into account that sin θt = n sin θi = n cos(α + θp) and
cos θp = 1/(nβ ), the condition (24) can be written as

(1 − β ) cos α =
√

n2β2 − 1 sin α. (26)

Using (24)–(26) one can write the expression (17) in the
following approximate form:

Eθ = − Tvqη
√

s√
2πk(sin θ )3/2

eikR−iπ/4

cR

∫ ψ2

ψ1

√
ψJ1(ψ )dψ, (27)

where ψ1,2 = kξ1,2 sin α sin θ . The integral (27) can be calcu-
lated by decomposition of J1(ψ ) into a standard infinite series
[21], where we obtain

Eθ = −Tvqη 4
√

n2β2−1√
2πβ

F (χ )(kd sin α)3/2 eikR−iπ/4

cR
, (28)

where χ = kd sin α sin θ
2 ,

F (χ ) =
∞∑

m=0

(−1)mχ2m+1

m!(m + 1)!(2m + 5/2)
. (29)

To determine the main radiation maximum, it is suffi-
cient to take into account several terms in series (29) and
find χ = χmax from the equation dF/dχ = 0. With three
terms being taken into account, the solution χ0 can be found
rigorously. Perturbation χ1 due to the fourth term can be
found using the iteration method. After simple calculations we
obtain

χ0 =
√

13 − √
13

5
≈ 1.37, χ1 ≈ −0.09, (30)

χmax ≈ χ0 + χ1 ≈ 1.28. The direction of maximum is deter-
mined as follows:

θmax ≈ 2χmax

kd sin α
≈ 2.56

kd sin α
. (31)

The maximum field is

|Eθ max| ≈ 0.127
Tvqη 4

√
n2β2−1(kd sin α)3/2

cR
√

β
. (32)

This approximation is confirmed by numerical calculation of
the integral (17).
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FIG. 3. Dependences of β∗(α) for different values of the refrac-
tive index n = √

εμ indicated near the curves.

Note that the value (32) is essentially larger than |Eθ max|
following from (21): their relation is of the order of

√
kd � 1.

Thus, in this situation, we have powerful radiation directed
at a small angle with respect to the z axis (almost “forward”
radiation). This effect can be named the “Cherenkov spot-
light.” The phenomenon is of special interest because one can
reach an essential amplification of radiation choosing problem
parameters.

Solving Eq. (26) with respect to α, or n, or β one can obtain
the following expressions, respectively:

α = α∗ = arctan

(
1 − β√
n2β2 − 1

)
,

n = n∗ =
√

1 − β(2 − β )cos2α

β sin α
, (33)

β = β∗ = sin α
√

n2 − cos2α − cos2α

n2sin2α − cos2α
.

Dependencies of β∗(α) on different values of the refractive
index n are shown in Fig. 3. One can see that the function
β∗(α, n) monotonously decreases with both arguments. The
effect of the Cherenkov spotlight is not practically reachable
for ultrarelativistic bunches since α∗ → 0 for β → 1. As a
rule, for α > 450 the value of β∗ is close enough to the
Cherenkov threshold 1/n. However, β∗ can essentially differ
from 1/n for narrow conical targets.

V. NUMERICAL CALCULATIONS

It is convenient to characterize the radiation with the help
of frequency-angular density of the radiation power. The
energy flow density is equal to�S = c

4π
[�E, �H], where {�E, �H} =∫ ∞

−∞ {�E , �H}e−iωt dω are components of a real physical field.

One can show [7] that �S = �eR
∫ ∞

0 σdω, where σ = c|�E |2
is a spectral density of the Pointing vector. Therefore, the
frequency-angular density of the radiation power is

d2W

dωd�
= R2σ = cR2|�E |2. (34)

Some typical dependencies of this value on the angle θ

are shown in Fig. 4 for three values of the cone angle α and
different values of the charge velocity. Computations have
been performed by the formulas (17) and (34). One can see

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦0

0.5

1

1.5

2

×10−14

θ

d2W
dωdΩ

α = 30◦ β = 0.6056 β = 0.65

β = 0.70 β = 0.80

β = 0.999
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×10−14

θ

d2W
dωdΩ

α = 45◦ β = 0.5486 β = 0.57

β = 0.63 β = 0.75

β = 0.999

0◦ 10◦ 20◦ 30◦0

0.5

1

1.5

2

×10−14

θ

d2W
dωdΩ

α = 60◦ β = 0.5189 β = 0.53

β = 0.54 β = 0.55

β = 0.56

0◦ 30◦ 60◦ 90◦ 120◦0

1

2

×10−15

θ

d2W
dωdΩ α = 60◦ β = 0.56 β = 0.60

β = 0.70 β = 0.85

β = 0.999

FIG. 4. Frequency-angular density of the radiation power
(W s/rad2) depending on θ for different values of β (indicated in
the legend) and α (indicated in the corner of each plot). The case
α = 60◦ is shown in two plots because of the large difference in mag-
nitudes. Problem parameters: q = 1 nC, ε = 4, μ = 1, dω/c = 100,
aω/c = 1.

that the angle of maximal radiation increases with the charge
velocity that is explained by increase of the Cherenkov angle
θp = arccos[1/(nβ )], leading to a decrease of the incident and
refraction angles.

One can make sure that approximate results (20), (21), and
(23) are true for all curves presented in Fig. 4 excluding the
bold red curves. The bold red curves correspond to the case
when θt = π

2 − α, that is, the effect of the “Cherenkov spot-
light” takes place. This situation is well described by formulas
(28), (29), (31), and (32). One can see that the main maximum
in this case is much larger than those for the other curves.
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VI. CONCLUSION

We have analyzed the radiation from the charge which
moves along the symmetry axis of a dielectric cone having
a vacuum channel. The method applied uses the solution of
a certain “etalon” problem (without external borders of the
object), ray-optics laws on the aperture, and Stratton-Chu
formulas for the field in the outer area. The field in the far-field
area (Fraunhofer area) has been studied. It has been shown
that, as a rule, maximal radiation is generated in the direction
of the ray refracted at the nearest or furthest generatrix of
the cone. However, when this ray is parallel to the symmetry
axis, the maximal radiation is generated at some small (but
nonzero) angle with respect to this axis. This angle is inversely
proportional to the sine of the apex angle of the cone and
the length of the cone generatrix. The field maximum in this
situation is much larger than that in all other cases. Such an
effect can be named the “Cherenkov spotlight” phenomenon.
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APPENDIX: ON VERIFICATION
OF THE APERTURE METHOD

The aperture method developed in our papers [8–12] was
repeatedly tested using comparison with simulations in the
COMSOL MULTIPHYSICS software package [11,12]. Neverthe-
less, it is useful to consider this issue once again.

Figure 5 shows the spectral-angular density of the radiation
energy as a function of the angle θ for α = 45◦ and for three
values of the charge velocity (the same parameters as in the
second plot in Fig. 2 are used). As one can see, in all cases
there is a good coincidence between the results of our algo-
rithm and the results of COMSOL MULTIPHYSICS simulations
in the area of the main maximum. This coincidence is almost
ideal for the second and the third plots, when the maximum
is in the region of large angles, but somewhat worse (<10%
for the energetic characteristic and <5% for the field value)
for the first plot, when the maximum is close to the structure
axis.

Outside the region of the main maximum this coincidence
may be worse, especially in the region of small angles. This
fact can be explained by two effects: one of them is re-
reflected waves and the another is the diffraction radiation.
In Fig. 5 this discrepancy is noticeable at relatively small
angles. However, in any case, we can say that the aperture
method well describes the radiation field in the most important
area, i.e., in the vicinity of the main maximum, even if this
maximum lies at small angles.

The small contribution of re-reflected waves can be ex-
plained if we consider at least the wave of the first order
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dωdΩ

β = 0.63

Theory

COMSOL
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dωdΩ

β = 0.999
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FIG. 5. Comparison of proposed aperture method with COMSOL

MULTIPHYSICS simulations for the value of frequency-angular density
of the radiation power (W s/rad2). Problem parameters are as in
Fig. 4, cone angle α = 45◦.

(which is reflected once from the opposite wall of the object).
Its amplitude has an additional factor equal to the product
of the reflection and transmission coefficients. Considering
the fact that the spectral-angular energy density contains the
square of the amplitude, it can be shown that the contribution
of this wave does not exceed a few percents compared to
the contribution of the main wave calculated above. Such an
estimation of the error of the method corresponds to the results
of comparison shown in Fig. 5. By the way, we note that,
if necessary, the method under consideration can be refined
by considering re-reflected waves (however, this procedure is
very cumbersome).

Note as well that Cherenkov radiation prevails over diffrac-
tion radiation, since it is formed over the large part of the
trajectory of the charge inside the cone, while diffraction ra-
diation has a much smaller formation zone (near the “nose”).
This is mathematically expressed by the fact that expressions
(21) and (32) include the large parameter kd , either in the
power of 1 or 3/2 (in the “spotlight” mode). Of course, there
is no such large parameter for the field of the diffraction
radiation, since it is formed in some small neighborhood of
the inhomogeneity [22].

In conclusion, we emphasize that the applied method does
not claim to describe the radiation field for arbitrary angles
of observation. However, it correctly describes the main ef-
fect, which is the exit of the main (nonreflected) wave of
Cherenkov radiation from the dielectric object.
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