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In this study, the transmission characteristics of one-dimensional (1D) periodic optical waveguide networks
(POWNs) composed of simple or complex unit cells are systematically studied with the transfer matrix
method. Using this method, the general transmission formula is analytically derived for any 1D POWNs.
Due to the periodicity, three types of transmission resonance peaks can be produced, one of which shows an
interesting missing order effect. The conditions for producing these phenomena are analytically obtained from
the transmission formula. Moreover, it is found that transmission valleys in the passbands can be described by a
simple envelope function. A greater number of waveguides in a simple unit cell or more nodes in a complex unit
cell result in smaller minima of the passband transmission valley. Finally, the formula for the depth of photonic
band gaps (PBGs) is analytically determined. We find that the depth of PBGs exponentially increases with the cell
number and the width of PBGs becomes wider with the increase of the node in unit cells. Our work enhances
people’s understanding of the optical characteristics of periodic waveguide networks, and may be useful for
designing all-optical devices, such as dense wavelength division multiplexers, high-efficiency optical switches,
and wideband and/or narrowband optical filters.
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I. INTRODUCTION

Photonic crystals (PhCs) are photonic band gap (PBG)
structures [1,2] that can effectively confine and control the
propagation of electromagnetic (EM) waves. Over the past
30 years, PhCs have received considerable research attention
[1–16]. Many interesting physical phenomena, including
Bloch oscillations [11] and Anderson localizations [17], have
been observed in PhCs. Numerous optical devices based
on PhCs have been manufactured, such as low-threshold
PhC lasers [18,19], dense wavelength division multiplexers
[20,21], and so on.

Optical waveguide networks [22–25], which can also
confine and control the propagation of EM waves, are another
type of PBG structure. However, the mechanism for generat-
ing PBGs in optical waveguide networks is different from that
in PhCs. PhCs primarily depend on the periodic arrangement
of dielectrics, where two or more kinds of dielectrics are
needed. The difference between the dielectric constants deter-
mines the width of PBGs. On the contrary, optical waveguide
networks mainly rely on the connections among waveguides,
where only one dielectric is required. In this case, the width of
PBGs is not closely related to the dielectric constant. More-
over, the connections of optical waveguide networks are very
flexible; thus rich symmetric and high-dimensional structures
can be easily implemented. Most notably, the amplitudes and
phases of EM waves propagating in an optical network can
be conveniently measured at the nodes. Because of its own
advantages, optical networks have been widely investigated
[22–33] and used as platforms for observing interesting
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physical phenomena, such as Anderson localizations
[22,23,32], Bloch oscillations [26,27], Rabi oscillations
[30], and the slow light effects [33].

However, to date, the conventional method for studying the
transmission characteristics of optical waveguide networks
is the generalized eigenfunction method [28], due to the
diversity of unit cell structures. This method can only allow
researchers to numerically calculate the transmittance and
reflectance of networks. Many optical properties of networks
can only be qualitatively summarized by incomplete induction
based on these numerical results. Moreover, the computation
load increases significantly as the unit cell number of net-
works increases. Therefore, it is necessary to find a more
efficient method to study the optical properties of optical
waveguide networks.

In this paper, based on the network equation we use a more
efficient method to investigate the transmission characteristics
of one-dimensional (1D) periodic optical waveguide networks
(POWNs). This method is called the transfer matrix method,
which is widely used in many areas such as quantum optical
setups [34–36]. Using this method, a general formula for
transmission is analytically obtained. On the basis of the
transmission formula, three types of transmission resonance
peaks are found, and the type III transmission resonance peaks
which are found near the center of PBGs show an interesting
missing order effect. Moreover, the conditions for producing
these optical phenomena are analytically obtained. In the
passbands, an envelope function describing the transmission
valleys is derived. It is found that the depths of these valleys
are closely related to the number of waveguide segments in a
unit cell. In the stop bands, the depth of PBGs will exponen-
tially increase with the cell number, approximately following
the function of e−2Nγ , and the width of PBGs is closely related
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FIG. 1. Schematic diagram of 1D POWNs. (a) Overall structure
of 1D POWNs, where Uz (z = 1, . . . , N ) denotes the zth unit cell,
EI, ER, and EO are the incident, reflected, and transmitted EM waves,
respectively, and a 1D waveguide segment of length d is connected to
the entrance and the exit. (b) Multiconnected unit cell. (c) Triangular
unit cell. (d) Tetrahedral unit cell.

to the unit cell structure. Compared with the generalized
eigenfunction method, the transmission matrix method not
only can derive the general transmission formula, but also
greatly reduce the calculation load for an optical network
with many cells. This work may deepen our understanding
of the optical properties of periodic waveguide networks. It
may be useful to design various all-optical devices, such as
high-efficiency optical switches, wideband or narrowband
optical filters, and so on.

This paper is organized as follows. The model of the 1D
POWNs and the network equation theory are introduced in
Sec. II. In Sec. III, we introduce the transfer matrix method
for simple and complex unit cells and discuss the transmission
properties of 1D POWNs. The conclusions of this study are
drawn in Sec. IV.

II. MODEL AND NETWORK EQUATION

Figure 1(a) shows the overall structure of 1D POWNs,
where Uz (z = 1, . . . , N ) denotes the zth unit cell. Fig-
ures 1(b)–1(d) depict the three types of unit cells considered
in Sec. III, and the 1D POWNs composed of these unit cells
are shown in Figs. 2 and 7. In 1D POWNs, the wave function
ϕi j (x) within any waveguide segment between nodes i and j
(black dots) satisfies the Helmholtz equation:

d2ϕi j (x)

dx2
+

(nω

c

)2
ϕi j (x) = 0, (1)

where n is the refractive index of the waveguide segment (n =
2 in this study), ω is the angular frequency of the EM wave,
and c is the speed of light in vacuum. According to the conti-
nuity of the wave function, the following boundary conditions

FIG. 2. Schematic diagram of 1D MPOWNs, where the lengths
of the waveguide segments in each unit cell are d1, d2, ..., and dq,
and the lengths of the waveguide segment at the entrance and exit
are d .

exist at nodes i and j: ϕi j (x)|x=0 = ϕi and ϕi j (x)|x=li j = ϕ j ,
where li j represents the length of the segment between nodes
i and j. With these conditions, the solution to Eq. (1) has the
form [37]

ϕi j (x) = ϕi
sin[k(li j − x)]

sin kli j
+ ϕ j

sin kx

sin kli j
, (2)

where k = nω/c. At node i, the flux conservation condition
gives

∑
j

dϕi j (x)

dx

∣∣∣∣
x=0

= 0. (3)

Substituting Eq. (2) into Eq. (3), the following network
equation can be obtained:

−ϕi

∑
j

cot kli j +
∑

j

csc kli jϕ j = 0. (4)

III. RESULTS AND DISCUSSIONS

For simplicity, we classify the unit cells of 1D POWNs
into simple and complex unit cells. A simple unit cell contains
one node, whereas a complex unit cell contains two or more
nodes. When the unit cells in Fig. 1 are connected into a
network, adjacent cells in a network share one node. In this
case, Fig. 1(b) is a simple unit cell, and Figs. 1(c) and 1(d)
are complex unit cells. Next, we introduce the transfer matrix
method based on Eq. (4) and use this method to investigate
the transmission characteristics of 1D POWNs composed of
simple or complex unit cells. These results are verified by the
generalized eigenfunction method.

A. Networks composed of simple unit cells

The periodic network composed of simple unit cells is
shown in Fig. 2, and this structure is called 1D multiconnected
periodic optical waveguide networks (MPOWNs). The num-
ber of waveguide segments in each unit cell is q, and their
lengths are d1, d2, ..., and dq. For 1D MPOWNs, Eq. (4) can
be rewritten as

εiϕi + κi−1,iϕi−1 + κi,i+1ϕi+1 = 0, (5)

where εi = −∑
si−1,i

cot (kli−1,i ) − ∑
si,i+1

cot (kli,i+1), κi−1,i

= ∑
si−1,i

csc (kli−1,i ), and κi,i+1 = ∑
si,i+1

csc (kli,i+1); here
si−1,i and si,i+1 represent the number of waveguide segments
on either side of node i. Using Eq. (5), the recursion matrix τi

(i = 0, 1, . . . , N) can be obtained:(
ϕi+1

ϕi

)
=

( −εi
κi,i+1

−κi−1,i

κi,i+1

1 0

)(
ϕi

ϕi−1

)
= τi

(
ϕi

ϕi−1

)
. (6)

The wave functions ϕi j (x) at the entrance and exit can be
written as

ϕ−1,0(x) = eik(x−d ) + rN e−ik(x−d ),

ϕN,N+1(x) = tN eikx, (7)

where rN and tN are, respectively, the reflection and trans-
mission coefficients of networks with N unit cells. Thus
transmittance and reflectance are TN = |tN |2 and RN = |rN |2,

023809-2



TRANSMISSION CHARACTERISTICS OF ONE- … PHYSICAL REVIEW A 99, 023809 (2019)

respectively. From Eq. (7), we have(
ϕ0

ϕ−1

)
=

(
1 1

e−ikd eikd

)(
1
rN

)
= QL

(
1
rN

)
,

(
ϕN+1

ϕN

)
=

(
eikd e−ikd

1 1

)(
tN
0

)
= QR

(
tN
0

)
. (8)

Based on Eqs. (6) and (8), tN and rN are related through the
transfer matrix MN :(

tN
0

)
= MN

(
1
rN

)
= Q−1

R τNτN−1 . . . τ1τ0QL

(
1
rN

)
. (9)

When N > 1,

τN−1 = τN−2 = · · · = τ1 = τ =
(

2
∑

q cot kdq∑
q csc kdq

−1

1 0

)
, (10)

and τN−1τN−2 . . . τ1 = τN−1. Using Chebyshev Identity [38],
we can write

τN−1 = 1

sin K
[τ sin (N − 1)K − I sin (N − 2)K], (11)

where I is an identity matrix and K is the magnitude of the
generalized Bloch wave vector K [29]. Substituting Eq. (11)
into Eq. (9), we obtain

MN = 1

sin K
[M2 sin (N − 1)K − M1 sin (N − 2)K]. (12)

Moreover, tN , rN , and the elements of MN satisfy the follow-
ing relations:

rN = − (MN )21

(MN )22
,

tN = 1

(MN )22
,

rN

tN
= −(MN )21. (13)

Further, the relationship between the trace of τ and K satisfies

Tr τ = 2 cos K. (14)

Using Eqs. (13) and (14), we obtain that (r2/t2)/(r1/t1) =
Tr τ = 2 cos K . Then, from Eqs. (12) and (13), we can show

rN

tN
= r1

t1

sin NK

sin K
. (15)

Finally, by means of Eq. (15) and T + R = 1, the general
transmission formula for 1D MPOWNs is derived as follows:

T1 =
∣∣∣∣ 1

(M1)22

∣∣∣∣
2

,

TN =
[

1 +
(

1

T1
− 1

)(
sin NK

sin K

)2
]−1

. (16)

In the following subsections, Eq. (16) is used to analytically
investigate the transmission properties of 1D MPOWNs.

1. Networks with q = 2

In Fig. 2, a simple unit cell with two waveguide seg-
ments (i.e., q = 2) forms the simplest simple unit cell, and

FIG. 3. Dispersion and transmission spectra of 1D MPOWNs
with d2 : d1 = 2 : 1 and d1 = d . (a) Dispersion spectrum. Transmis-
sion spectra for the network containing (b) one, (c) three, and (d) six
unit cells, where the black solid lines are obtained by the transfer
matrix method [i.e., Eq. (16)], the green (gray) dotted lines are
obtained by the generalized eigenfunction method, and the red (gray)
dashed lines are the envelope curves of the passband transmission
valleys determined by Eq. (21).

optical waveguide networks with d2 : d1 = 2 : 1 and d1 = d
are known to produce large PBGs [29,31]. Therefore, we
first investigate the transmission properties of 1D MPOWNs
composed of the simplest simple unit cell. By means of
Eqs. (6)–(9), the transfer matrix M1 for the network with one
cell is

M1 = Q−1
R

(
9 cos2 2θ+cos 2θ−2

2 cos 2θ+1 − 3 cos 2θ+2
2 cos θ+1

3 cos 2θ+2
2 cos θ+1

−2 cos θ
2 cos θ+1

)
QL, (17)

where θ = kd . For this kind of network, Eq. (10) can be
simplified to

τ =
(

4 cos θ − 2 −1
1 0

)
, (18)

and the dispersion function can be obtained using Eqs. (14)
and (18):

cos K = 2 cos kd − 1. (19)

In Fig. 3, Eqs. (16), (17), and (19) are used to plot the disper-
sion and transmission spectra of 1D MPOWNs. Transmission
spectra calculated by the generalized eigenfunction method
are also shown in Fig. 3. From Figs. 3(b)–3(d), we observe
that the results calculated by the transfer matrix method (black
solid line) are identical with those obtained by the generalized
eigenfunction method [green (gray) dotted line].

Type I transmission resonance peak. From Eq. (16), when
T1 = 1, TN = 1. Transmission peaks with T1 = 1 will appear
in the 1D MPOWN transmission spectrum. We refer to this
peak as the type I transmission resonance peak. In Figs. 3(b)–
3(d), the peaks at πc/d and 2πc/d are the type I transmission
resonance peak and are labeled as “I”. In general, for 1D
MPOWNs with d2 : d1 = 2 : 1 and d1 = d , such peaks are
located at ωI = απc/d , where α is an integer. Since the
condition for generating type I peak is T1 = 1, the unit cell
is a completely transparent unit cell at T1 = 1, and a network

023809-3



ZHENG, YANG, ZHANG, DENG, AND LIU PHYSICAL REVIEW A 99, 023809 (2019)

composed of one or more transparent unit cells is also trans-
parent.

Type II transmission resonance peak. From Eq. (16),
when sin NK = 0 and sin K �= 0 (i.e., NK = mπ, m =
1, 2, . . . , N − 1), TN ≡ 1 (N > 1). It means that the transmis-
sion spectrum of a network with N cells will form another
N − 1 transmission resonance peak due to the periodicity. We
refer to these peaks as the type II transmission resonance peak.
According to Eq. (19), these peaks will appear at frequency

ωII = c

nd
arccos

(
1

2
cos

mπ

N
+ 1

2

)
. (20)

As shown in Fig. 3, the transmission spectrum for one cell
[Fig. 3(b)] cannot generate the type II transmission resonance
peak. However, when N > 1, there exist N − 1 transmission
resonance peaks in every monotonic interval of the dispersive
function. These peaks are labeled as “II”. From Eq. (20),
these type II transmission resonance peaks in Fig. 3(c) are
located at 0.790215πc/d , 0.884973πc/d , 1.115027πc/d ,
1.209785πc/d , 1.790215πc/d , 1.884973πc/d ,
2.115027πc/d , and 2.209785πc/d . Similarly, the frequency
of the type II transmission resonance peak in Fig. 3(d) can
also be obtained by using Eq. (20). All these transmission
resonances are Bragg resonances, which are attributed to the
increase of cell number.

Envelope function of passband transmission valleys. In the
passbands, | cos NK| � 1, K is a real number. From Eq. (16),
the transmittance at any frequency will oscillate with the
cell number N in this region. Thus the transmission valleys
in the passbands may appear at different frequencies for a
network with different cell number. If we set | sin NK| = 1,
the envelope function of the passband transmission valleys can
be obtained:

Tenv =
[

1 +
(

1

T1
− 1

)
1

sin2 K

]−1

. (21)

The envelope function is visibly independent of the cell
number. Hence any transmission valleys in the passbands
should satisfy this envelope function. The red (gray) dashed
lines in Figs. 3(b)–3(d) represent the envelope curve of the
passband transmission valleys described by Eq. (21). The
envelope function describes the minimum transmittance at any
frequency in the passbands.

Depth of PBGs. In the stop bands, | cos K| > 1, K is π +
iγ or iγ , where γ is a real number. From Eq. (16), the depths
of PBGs of 1D MPOWNs with N cells is given by

TN ≈ e−2Nγ

(
1

T1
− 1

)−1

. (22)

The depth of the PBGs clearly increases exponentially with
the cell number N , approximately following the function of
e−2Nγ . This is a typical feature of the difference between the
stop band and the passband. The transmission spectra of 1D
OMRPOWNs containing two, five, and ten cells is shown
in Fig. 4. As the number of unit cells increases, the PBGs
exponentially deepen.

Type III transmission resonance peak. In the above
analysis, we have investigated the transmission properties of
1D MPOWNs with d2 : d1 = 2 : 1. Now, we investigate the

FIG. 4. Transmission spectra of 1D MPOWNs with d2 : d1 =
2 : 1, where red (gray) dashed line, blue (gray) dotted line, and black
solid line are, respectively, the results of the networks with N = 2, 5,
and 10.

transmission properties of 1D MPOWNs with d2 : d1 =
1.99 : 1. In this case, the dispersion function changes from
Eq. (19) to

cos K = cot kd + cot 1.99kd

csc kd + csc 1.99kd
. (23)

The dispersion and transmission spectra of 1D MPOWNs with
d2 : d1 = 1.99 : 1 are plotted in Fig. 5, where Figs. 5(e)–5(h)
are enlarged views of Figs. 5(a)–5(d), respectively. Comparing
Fig. 5 with Fig. 3, several ultranarrow transmission
peaks are produced near the center of the stop band.
These peaks are referred to as the type III transmission
resonance peak. From Figs. 5(a) and 5(e), in the frequency
range 1.49πc/d–1.52πc/d , the dispersion function
cos K forms a sharp peak passing through stop band

FIG. 5. Dispersion and transmission spectra of 1D MPOWNs
with d2 : d1 = 1.99 : 1. (a) Dispersion spectrum. Transmission spec-
tra with (b) one, (c) three, and (d) six unit cells. Panels (e)–(h) are the
enlarged versions of (a)–(d), respectively. The black solid lines are
transmission curves and the red (gray) dashed lines are the envelope
curves of the passband transmission valley.
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→ passband → stop band → passband → stop band,
successively, and in turn, K is a complex number → real
number → complex number → real number → complex
number. In the passband between frequency 1.50πc/d and
1.51πc/d, 5 × 10−4 < T1 < 2.25 × 10−3. When sin NK
tends to zero, sin NK → 0 is a higher order of infinitesimal
to T1. Consequently, when sin NK tends to zero, sin2 NK/T1

goes to zero. For convenience, Eq. (16) is rewritten as follows:

TN =
[

1 +
(

sin2 NK

T1
− sin2 NK

)
1

sin2 K

]−1

. (24)

From this equation, TN tends to be one when sin2 NK/T1 → 0
in the frequency range of 1.50πc/d–1.51πc/d . Thus the
N − 1 type III transmission resonance peaks can form in
the narrow passband area. It indicates that Bragg resonance
can still form because of the periodicity in the narrow
passband. From Fig. 5(g), when the cell number is three
(i.e., N = 3), two total transparent transmission peaks of
type III at frequencies of 1.503007πc/d and 1.506458πc/d
are obtained, and we label them as III. Similarly, when the
number of cells is six (i.e., N = 6), as shown in Figs. 5(d) and
5(h), there are five total transparent transmission peaks. Based
on the above analysis, when the waveguide length ratio is
d2 : d1 = 1.99 : 1, the conditions for the type III transmission
resonance peak are sin Nk → 0 and sin2 NK/T1 → 0.

Missing order effect of type III transmission resonance
peak. Based on Eqs. (17) and (23), and Figs. 5(e) and 5(f),
T1 is a higher-order infinitesimal than sin2 Nk → 0 when the
frequency approaches 1.515πc/d . Thus sin2 NK/T1 → ∞
near 1.515πc/d . From Eq. (24), TN goes to zero in this case.
In other words, although K is a real number in this ultranarrow
area, it is difficult to form Bragg resonance for the network.
We refer to this phenomenon as the missing order effect of
the type III transmission resonance peak. In Figs. 5(b)–5(d)
and 5(f)–5(h), there does not exist any transmission resonance
peak near 1.515πc/d . Briefly, when the waveguide length
ratio is d2 : d1 = 1.99 : 1, the conditions for missing order
effect are sin Nk → 0, and sin2 NK/T1 → ∞.

2. Networks with q > 2

From Fig. 2, for most simple unit cells, q is greater than
two. In this subsection, the transmission properties of 1D
MPOWNs with q > 2 are investigated. When the cell number
is N = 1, the transfer matrix M1 can be deduced as follows:

M1 = Q−1
R

(
A−B2 sin θ+sin θ cos2 θ

B −A+cos θ
B

A+cos θ
B − csc θ

B

)
QL, (25)

where A = ∑
q cot θq, B = ∑

q csc θq, θ = kd , and θq =
kdq. When N > 1, the dispersive function can be derived from
Eqs. (10) and (14):

cos K =
∑

q cot kdq∑
q csc kdq

. (26)

The transmittance TN of 1D MPOWNs with q > 2 can be
calculated by use of Eqs. (16) and (25). Therefore, the en-
velope curve of passband transmission valleys for networks
with q > 2 can also be described by Eq. (21). Furthermore,
the three types of transmission resonance peaks and the

FIG. 6. Dispersion and transmission spectra of 1D MPOWNs. (a)
Dispersion spectrum. Transmission spectra for 1D MPOWNs with
(b) d2 : d1 = 2 : 1, (c) d4 : d3 : d2 : d1 = 2 : 2 : 1 : 1, and (d) d8 :
d7 : . . . : d2 : d1 = 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1. The black solid lines
are the transmission curves and the red (gray) dashed lines are the
envelope curves of the passband transmission valley.

missing order effect can also be produced by these networks
with q > 2 on the same conditions. In the stop bands, the
depth of the PBGs still increases exponentially with the cell
number N .

To directly analyze the influence of the number of waveg-
uide segments in a unit cell on transmission characteristics,
we investigate the transmission properties of three kinds of
networks with q = 2, 4, 8, and set the waveguide length ra-
tios as d2 : d1 = 2 : 1, d4 : d3 : d2 : d1 = 2 : 2 : 1 : 1, and d8 :
d7 : . . . : d2 : d1 = 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1, respectively. Us-
ing Eqs. (16), (25), and (26), the dispersion and transmission
spectra for 1D MPOWNs with three unit cells are presented in
Fig. 6. Comparison of Figs. 6(c) and 6(d) with Fig. 6(b) shows
that 1D MPOWNs with q > 2 can also produce the same
type of transmission resonance peak, and their number and
frequency positions are the same as those of 1D MPOWNs
with q = 2. It is noticeable that valleys in the passbands be-
come deeper as the number of waveguide segments increases.
This phenomenon is due to the fact that the scattering effect of
EM waves is enhanced as the number of waveguide segment
increases.

B. Networks composed of complex unit cells

In this section, the transfer matrix method for any complex
unit cell is introduced in detail, and we use this method to
investigate the transmission characteristics of 1D POWNs
composed of complex unit cells. Schematic diagrams of 1D
POWNs composed of triangular or tetrahedral unit cells are
shown in Fig. 7. In 1D POWNs, a triangular unit cell possesses
two nodes, whereas a tetrahedral unit cell possesses three
nodes.

1. General transmission formula

A complex unit cell contains two or more nodes. We divide
the nodes in a complex unit cell into two categories: internal
and boundary nodes. For example, nodes 1, 3, . . . , 2N − 1
in Fig. 7(a) and nodes 1, 2, 4, 5, . . . , 3N − 2, 3N − 1 in
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FIG. 7. 1D POWNs composed of complex cells. (a) 1D triangu-
lar periodic optical waveguide networks. (b) 1D tetrahedral periodic
optical waveguide networks.

Fig. 7(b) are internal nodes, whereas nodes 0, 2, 4, . . . , 2N in
Fig. 7(a) and nodes 0, 3, 6, . . . , 3N in Fig. 7(b) are boundary
nodes. If the total number of nodes in each unit cell is w, the
number of internal nodes is w − 1. For the ith internal node
of the zth unit cell in Fig. 7, Eq. (4) can be rewritten as

wεϕi + κ

wz−1∑
p=w(z−1)+1

ϕp + κ (ϕw(z−1) + ϕwz ) = 0, (27)

where ε = −∑
q cot kdq, κ = ∑

q csc kdq, p �= i, and z � 1.
For the boundary nodes of the zth unit cell, Eq. (4) can be
rewritten as

2wεϕw(z−1) + κ (ϕwz + ϕw(z−2)) + κ

wz−1∑
p=w(z−2)+1

ϕp = 0,

(28)

where p �= w(z − 1) and z � 2. From Eqs. (27) and (28), we
can deduce

ϕw(z−1)

[
2wε − 2(w − 1)κ2

(w − 2)κ + wε

]

+(ϕwz + ϕw(z−2))

[
κ − (w − 1)κ2

(w − 2)κ + wε

]
= 0. (29)

Then, the following recursive relation can be obtained accord-
ing to Eq. (29):

(
ϕwz

ϕw(z−1)

)
=

(
2 − 2w(ε+κ )

κ
−1

1 0

)(
ϕw(z−1)

ϕw(z−2)

)

= τw(z−1)

(
ϕw(z−1)

ϕw(z−2)

)
, (30)

where the recursive matrix τw(z−1) satisfies

Tr τw(N−1) = 2 cos K. (31)

For nodes zero and wN connecting the entrance and exit,
Eq. (4) can be rewritten as

ϕ0(wε − cot kd ) + ϕ−1 csc kd + κ

w∑
i=1

ϕi = 0,

ϕwN (wε − cot kd ) + κ

i=w(N−1)∑
wN−1

ϕi + ϕwN+1 csc kd = 0. (32)

Using Eqs. (27) and (32), we have

τ0 =
(

(w−1)κ2−w2ε2+(2−w−2wε+w2ε)κ+wε cot kd
κ (κ−ωε)

[(w−2)κ+wε] csc kd
κ (κ−ωε)

1 0

)
,

τwN =
(

cos kd + (κ−wε)(κw−κ+wε) sin kd
(w−2)κ+wε

κ (κ−wε) sin kd
(w−2)κ+wε

1 0

)
. (33)

Combining Eqs. (8), (30), and (33), we find that the trans-
mission coefficient tN , reflection coefficient rN , and transfer
matrix MN of 1D POWNs composed of complex unit cells
satisfy the following relation:

(
tN
0

)
= MN

(
1
rN

)

= Q−1
R τwNτw(N−1) . . . τwτ0QL

(
1
rN

)
. (34)

Obviously, the transfer matrix MN in Eq. (34) can also be
expressed as Eq. (12). Consequently, the transmittance TN still
satisfies Eq. (16), where T1 and K are different for different
unit cell structures.

2. Networks with w = 2, 3

For 1D POWNs composed of triangular and tetrahe-
dral unit cells, the dispersion functions can be deduced by
Eqs. (30) and (31):

cos KTri = −2ε + κ

κ
,

cos KTet = −3ε + 2κ

κ
. (35)

As an example, the number of waveguide segment q
between adjacent nodes is set to two, and the waveguide
length ratio is set to d2 : d1 = 2 : 1 and d1 = d . In Figs. 8
and 9, we plot the dispersion and transmission spectra of
these two networks by using Eqs. (16), (34), and (35). In
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FIG. 8. Dispersion and transmission spectra of 1D triangular pe-
riodic optical waveguide networks. (a) Dispersion spectrum. Trans-
mission spectra of the network with (b) one, (c) three, and (d) six
triangular unit cells, where the black solid lines are the results calcu-
lated by the transfer matrix method [i.e., Eq. (16)], the green (gray)
dotted lines are the results obtained by the generalized eigenfunction
method, and the red (gray) dashed lines are the envelope curves of
the transmission valley in passband.

order to verify the correctness of the transfer matrix method
for complex cells, we also use the generalized eigenfunction
method to calculate the transmittance of these two networks.
From Figs. 8 and 9, we observe that the results obtained
by these two methods are the same. It demonstrates that
the transfer matrix method introduced by us is completely
correct.

Since the transmittance TN of 1D POWNs composed of
complex unit cells still satisfies Eq. (16), the transmission
properties of these two networks are similar to those of
1D POWNs composed of simple unit cells. As can be seen
from Figs. 3, 8, and 9, their transmission characteristics are
similar to each other. Moreover, from Figs. 3, 8, and 9, we
observe that, as the number of nodes in a unit cell increases,
the width of passbands will become narrow and the depth
of the transmission valleys in passbands will deepen. These
phenomena indicate that the scattering effect of a network
composed of complex cells is much stronger than that of a
network composed of simple cells.

In this section, we introduce a transfer matrix method,
which is suitable for any complex unit cells. This method
will help us to investigate the optical properties of waveguide
networks. Based on this method, we find that, for any 1D
periodic network, their transmission characteristics can be
described by a general transmission formula.

IV. CONCLUSION

In this study, we investigate the transmission characteristics
of 1D POWNs composed of simple or complex unit cells
by use of the transfer matrix method, which is based on
the network equation, and the results are verified using the
generalized eigenfunction method. For 1D POWNs composed
of simple unit cells, the general transmission formula is

FIG. 9. Dispersion and transmission spectra of 1D tetrahedral pe-
riodic optical waveguide networks. (a) Dispersion spectrum. Trans-
mission spectra for the network with (b) one, (c) three, and (d) six
tetrahedral unit cells, where the black solid lines are the results cal-
culated by the transfer matrix method [i.e., Eq. (16)], the green (gray)
dotted lines are the results obtained by the generalized eigenfunction
method, and the red (gray) dashed lines are the envelope curves of
the transmission valley in passband.

analytically obtained by use of the transfer method. On the
basis of the transmission formula, three types of transmission
resonance peaks are found, and the conditions for producing
these resonance peaks are analytically deduced. Moreover,
we find the missing order effect of the type III transmission
resonance peak near the center of PBGs. Furthermore, for
these transmission valleys in the passbands, an envelope func-
tion independent of the cell number is analytically derived,
and the depths of these valleys increase with the number of
waveguide segments in a unit cell. Finally, an approximate
function describing the relationship between the depth of
PBGs and the cell number is obtained. This function indicates
that the depth of PBGs increases with the cell number, approx-
imately following e−2Nγ . For complex unit cells, the transfer
matrix is very difficult to derive. We introduce the transfer
matrix method suitable for an arbitrary complex unit cell in
detail. It is found that the general transmission formula is
suitable for any periodic 1D networks. Thus the transmission
characteristic of 1D POWNs composed of complex unit cells
is similar to those introduced above. Moreover, it is found
that the more complex the cell structure is, the wider the
stop bands will be. These results may be useful for designing
all-optical devices, such as high-efficiency optical switches,
ultranarrow optical filters, and dense wavelength division
multiplexers.
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