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Quantum boomeranglike effect of wave packets in random media
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We discuss an original manifestation of Anderson localization for wave packets launched with a finite average
velocity: after an initial ballistic motion, the center of mass of the wave packet experiences a retroreflection and
slowly returns to its initial position, an effect that we call “quantum boomerang” and describe numerically and
analytically in dimension 1. In dimension 3, we show numerically that the quantum boomerang is a genuine
signature of Anderson localization: it exists if and only if the quantum dynamics is localized.
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I. INTRODUCTION

Anderson localization (AL), the absence of wave diffusion
due to destructive interference in disordered potentials [1],
is ubiquitous in condensed-matter systems, wave physics, or
atom optics. This offers many experimental platforms for its
characterization, as was demonstrated experimentally with
light [2,3] (see, however, [4,5]) or ultrasound waves [6].
Recently, AL of atomic matter waves has also been observed
[7–11], as well as its many-body counterpart [12,13]. A
precious asset of atom optics experiments is to allow for
direct tests of fundamental manifestations of AL, such as the
time evolution of wave packets. In this context, a common
experimental scenario for probing localization consists in
preparing a spatially narrow atomic wave packet in a trap, then
opening the trap and monitoring the time evolution of the gas
[14,15]. After release, the wave packet spreads symmetrically
around its initial position and quickly becomes localized in
space. What happens, now, if a nonzero average velocity is
additionally imprinted to the gas? In a classical picture, one
expects the randomization of velocities due to scattering on
the random potential to stop the initial ballistic motion of the
wave packet center of mass (c.m.) at roughly a mean free path
�, and then a symmetric localization of the packet around this
new central position due to AL. We show in this article that the
evolution is in fact very different: if the quantum dynamics is
Anderson localized, after an initial ballistic motion where the
c.m. indeed increases up to �, the wave packet slowly returns
to its initial position, recovering a symmetric shape at long
time. In contrast, if the quantum dynamics is diffusive, e.g., in
dimension 3 above the mobility edge, the c.m. evolves at long
time toward a final position different from the initial one.

In this article, we thoroughly study this phenomenon that
we call the quantum boomerang (QB) effect. In dimension 1,
we give an exact solution. In dimension 3, we show numer-
ically that the QB effect exists for strong disorder where the
dynamics is Anderson localized, and is partly destroyed for
disorder strengths where the long-time dynamics is diffusive:
the c.m. evolves ballistically at short time, makes a U-turn at
intermediate time, but does not completely return to its initial
position. We further show that it is a faithful signature of AL,

allowing one to precisely pinpoint the position of the mobility
edge.

II. 1D SYSTEMS

Let us start with a one-dimensional (1D) system described
by the Hamiltonian H = −h̄2�/(2m) + V (x), where V (x)
is a Gaussian, uncorrelated random potential: V (x) = 0 and
V (x)V (x′) = γ δ(x − x′), where the overbar denotes averag-
ing over disorder realizations. We wish to study the time
evolution of a normalized Gaussian wave packet, �k0 (x)∝
exp[−x2/(2σ 2) + ik0x], to which a finite momentum h̄k0 > 0
is imprinted. To simplify the discussion, we assume through-
out this article a sharp initial velocity distribution, k0σ �1,
and weak disorder, k0��1, thereby allowing for a simple
description of the wave packet in terms of two velocity
components ±h̄k0/m, with energy E0 = h̄2k2

0/2m.
The average evolution in the random potential is governed

by two microscopic scales, the scattering mean free time τ

and the scattering mean free path �=v0τ , where v0 = h̄k0/m.
In the following, τ and � are calculated to the leading order
in 1/k0��1, using the Born approximation at energy E0

[16]. The assumption of uncorrelated random potential is not
crucial for our discussion: all the results hold as well for
short-range correlated potentials, provided that � and τ are
replaced by the transport mean free path and time, respectively
[17].

By numerically propagating �k0 (x), we obtain the
disorder-averaged density profile |�(x, t )|2, from which we
compute the c.m. 〈x(t )〉 ≡ ∫

x|�(x, t )|2dx. The result is
shown in Fig. 1: 〈x(t )〉 first increases rapidly, reaches a
maximum at t ∼ τ , and then slowly decreases to zero. In
other words, after a transient motion rightward, the wave
packet slowly returns to its initial position x = 0. For these
simulations we discretize the Hamiltonian on a 1D grid
of size 16 000π/k0, divided into 251 352 grid points. The
initial wave-packet width is set to σ = 10/k0, and γ =
0.0058h̄4k3

0/m2 (k0� = h̄4k3
0/2m2γ 
 86.5). The results are

averaged over 45 000 disorder realizations. In the simulations,
the evolution operator is expanded in a series of Chebyshev
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FIG. 1. Main plot: center of mass as a function of time. Its
long-time asymptotics, Eq. (6), is shown as a solid red curve. The
resummation of the short-time series, Eq. (10), (solid green curve)
perfectly overlaps with the numerical result (blue dots). The dashed
curve is the classical result, Eq. (1). Inset: center of mass multiplied
by (t/τ )2 as a function of time. The asymptotic result (6) (red curve)
is compared to the numerical prediction, displayed with its statistical
error bars. The parameters used are given in the main text.

polynomials, as explained in [18,19]. The behavior observed
in Fig. 1 is dramatically different from the classical expec-
tation, which can be simply deduced from the Ehrenfest
theorem: ∂t 〈x〉class = 〈p〉/m= h̄k0(n+−n−)/m where n± is
the population of particles with momentum ±h̄k0 (n++n− =
1). Using the classical Boltzmann equations ∂t n± = (n∓−
n±)/(2τ ) with the initial condition n+ =0, we find

〈x(t )〉class = �(1 − e−t/τ ). (1)

Within the classical picture, the c.m. thus quickly saturates
to the mean free path �, but never experiences retroreflection.
The reason why quantum wave packets behave so differently
can be understood by the following argument. At any time,
the density distribution can be expanded over the eigenbasis
{εn, |φn〉} of H as

|�(x, t )|2 =
∑
n,m

〈φn|�k0〉 〈�k0 |φm〉

×φn(x)φ∗
m(x)e−i(εn−εm )t/h̄. (2)

Since eigenstates are localized, the system is constrained to
a volume set by the localization length ξ =2�. This defines
a typical mean level spacing �=1/ρξ (ρ: density of states
per unit volume), with a corresponding localization time τloc =
2π h̄/�=4τ beyond which the off-diagonal oscillatory terms
n 
=m in Eq. (2) vanish, leaving

|�(x,∞)|2 =
∑

n

| 〈φn|�k0〉 |2|φn(x)|2. (3)

Due to time-reversal invariance, the φn(x) are real so that
〈φn|�k0〉=〈φn|�−k0〉∗: Eq. (3) is independent of the sign of
k0, and thus coincides with the long-time, spatially symmetric
density distribution that would have been obtained with an
initial wave packet having a symmetric velocity distribution.
This shows that the c.m. must return to its initial position at
long times, as a result of AL. Note that this conclusion is also

FIG. 2. Scattering paths contributing to the center of mass. (a) A
typical multiple scattering path going from x=0 to x, contributing to
〈x〉− (the path is unfolded to the top for clarity). The momentum re-
verses at each scattering event. By time reversing and translating this
path by −x, we obtain path (b), which gives an opposite contribution
to 〈x〉−, ensuring that 〈x〉− vanishes. (c) Path contributing to 〈x〉+. Its
time-reversed and translated counterpart (d) starts with momentum
−k0, not populated at t = 0, so that 〈x〉+ 
=0.

valid in arbitrary dimension d if the eigenstates are Anderson
localized, with a typical mean level spacing �=1/ρξ d (see
below).

Let us now be more quantitative and analyze the c.m.
at finite times. For this purpose, we start by applying the
Ehrenfest theorem to the mean-square displacement, ∂t 〈x2〉=
〈[x2, p2]〉 /2ih̄m, and split the particle distribution into two
classes of positive and negative velocities: |�(x, t )|2 =
n+(x, t )+n−(x, t ). This leads to [20]

∂t 〈x2〉 = 2v0 〈x〉+ − 2v0 〈x〉− . (4)

Here 〈x〉± = ∫ ∞
−∞ x n±(x, t ) dx, with obviously 〈x〉 = 〈x〉+ +

〈x〉−. We now consider an arbitrary path contributing to 〈x〉−
[Fig. 2(a)]. The path starts at x = 0 with momentum h̄k0 and
reaches x with momentum −h̄k0 at time t . By time reversing
and translating this path of a distance −x, one can always find
a complementary path starting with momentum h̄k0 at x = 0
and reaching −x at time t [Fig. 2(b)]. Due to time-reversal and
translational invariance, these two paths contribute with the
same weight to n−(x, t ), which is thus an even function of x,
yielding 〈x〉− = 0. This reasoning does not apply to 〈x〉+ since
the time-reversed and translated counterpart of an arbitrary
path contributing to 〈x〉+ starts with momentum −h̄k0, which
is not initially populated [see Figs. 2(c) and 2(d)]. We have
thus

∂t 〈x2〉 = 2v0〈x〉, (5)

a property that we can use to infer the long-time limit of 〈x〉
from 〈x2〉, previously computed in [21]. It yields [22]

〈x(t )〉 = �
64 ln(t/4τ )τ 2

t2
+ O

(
1

t2

)
. (6)

Equation (6) is shown in Fig. 1 and matches well the exact
numerical prediction at long time. The inset of Fig. 1 also
confirms the presence of the logarithmic term in Eq. (6).
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One can go one step further and exploit Eq. (5) to compute
〈x(t )〉 at any time. For this purpose, we use the Berezinskii
diagrammatic technique [23] which, combined with Eq. (5),
gives [22]

〈x(t )〉 =
∫

dω

2π
e−iωt

[
−2�

iω

∞∑
m=0

P1
m(ω)Q1

m(ω)

]
, (7)

where P1
m(ω) = s�(m + 1)[�(m + 1, 2; −s) − (m + 1)�

(m + 2, 2; −s)], with s = 4iωτ , � the gamma function, and
� the confluent hypergeometric function of the second kind.
The Q1

m(ω) are solutions of

[4iτ (m + 1/2)ω − (m + 1)2 − m2]Q1
m(ω)

+ (m + 1)2Q1
m+1(ω) + m2Q1

m−1(ω) + P1
m(ω) = 0. (8)

At short time, one can solve these equations with the
expansion Q1

m(ω) = ∑+∞
n=0 qm,n/(iω)n. To compute the qm,n,

we first notice that qm,i = 0 if i � m, which follows from the
large-frequency expansion of P1

m(ω) (which has no terms 1/ωi

with i < m). We use this result to expand Eqs. (8) order by
order in 1/ω and reduce them to a triangular system. This
method provides us with the coefficients χn of the expan-
sion 〈x(t )〉 = �

∑
n χn(t/τ )n at arbitrary order. We find, for

instance,

〈x(t )〉 = �

[
t

τ
− t2

2τ 2
+ t3

6τ 3
− 3t4

64τ 4

]
+ O(t5). (9)

The method cannot be directly used to estimate 〈x(t )〉 at
any time because the series has a finite convergence radius,
estimated at 4τ from the first 100 terms. Nevertheless, the
observed exponential decay of the χn makes this series a
good candidate for a Padé resummation. The knowledge of
the long-time limit (6) suggests to express the c.m. at any time
under the form

〈x(t )〉 = �
ln(1 + t/4τ )τ 2

t2
lim

n→∞ Rn(t ), (10)

where Rn(t ) is a diagonal Padé approximant of order n,
deduced from the χn coefficients [24]. In practice, Rn(t ) con-
verges quickly, and an excellent approximation of 〈x(t )〉 for
times up to 120τ is obtained with n = 7. This is demonstrated
by the solid green curve in Fig. 1, which perfectly coincides
with the numerical results.

In order to clarify which specific behavior of the spatial dis-
tribution |�(x, t )|2 actually gives rise to the QB phenomenon,
we show in Fig. 3(a) a numerical density plot of the average
density profile |�(x, t )|2 as a function of space and time,
indicating on the top the position of the center of mass.
Figure 3(b) also shows the x>0 (blue curve) and x<0 (red
curve) components of |�(x, t )|2 at three successive times. The
profiles display a ballistic peak responsible for the increase
of 〈x(t )〉 at short times. After this peak has been attenuated,
the profile resymmetrizes itself around x=0, which gives
rise to the QB effect. As discussed above, at long time the
distribution converges toward a symmetric one, Eq. (3), the

FIG. 3. (a) Numerical density plot of the average density profile
as a function of space and time, showing localization at long time.
The dashed black curve is the position of the center of mass 〈x(t )〉
which first increases and eventually comes back to its initial value.
(b) Average density profile at three successive times. The solid upper
blue and lower red curves are the x > 0 and x < 0 components of
the profile, respectively. The long-time limit of the profile, Eq. (11),
is shown as a dashed black curve.

so-called Gogolin density profile [17,25]:

|�(x,∞)|2 =
∫ ∞

0

dηπ2

32�

η(1 + η2)2 sinh(πη)e−(1+η2 )|x|/8�

[1 + cosh(πη)]2
,

(11)

which is shown in Fig. 3(b) for comparison. Note that al-
though we start from a rather narrow wave packet with σ <�

in our simulations, the QB phenomenon is present as well
when σ >�. It is, however, less dramatic because the forward
and backward motion of the c.m. then has an amplitude
smaller than the wave-packet size.

III. 3D SYSTEMS

A natural question is whether the QB effect also exists in
higher dimension. The Berezinskii technique is specific to 1D
systems and cannot be used, but the general spectral argument
discussed above—based on Eqs. (2) and (3)—suggests that
the QB effect should occur if the eigenstates are Anderson
localized. In contrast, if the eigenstates are extended, no
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FIG. 4. Average center of mass versus time in three dimensions.
Data are for the 3D Anderson model, at various values of disorder
W, from 10 to 24 (with step 1). Here position is in units of the
lattice spacing and time in units of the inverse of the hopping matrix
element. For W <Wc ≈ 16.5, 〈x(t )〉 saturates to a finite value. In
contrast, for W >Wc, a full quantum boomerang effect is clearly
visible, with the center of mass returning to its initial position,
with an asymptotic behavior ∝1/t . For W =Wc (thick cyan line),
the critical behavior is such that 〈x(t )〉∝ t−1/3. The dashed lines
indicate the asymptotic dependences at long time for the extended,
critical, and localized regimes. These results show that the quantum
boomerang effect is a clear-cut signature of Anderson localization.

minimum energy difference exists for the nondiagonal parts of
Eq. (2), so that the argument does not apply. This is especially
the case in diffusive systems, where quantum interference
effects are very small. In order to test this scenario, we have
performed numerical experiments using the three-dimensional
(3D) Anderson model, that is, a 3D cubic lattice with Hamil-
tonian

H =
∑

i

εi|i〉〈i| −
∑
〈i, j〉

|i〉〈 j|, (12)

where i, j denote sites of the 3D lattice, εi are independent
random energies uniformly distributed in [−W/2,W/2], and
the second sum involves only neighboring pairs of sites, with
the hopping amplitude taken as the energy unit. The phase
diagram of this model is well known [26]. In particular, states
with energy near E = 0 undergo a transition—known as the
Anderson transition—between extended states at low disorder
W and localized states at strong disorder. The “mobility edge”
separating the two regimes is given by Wc ≈ 16.54 [27].

We first prepare a moving Gaussian wave packet at the
center of the system, ψ (r)∝exp(−r2/2σ 2+ik0 · r), with σ =
10 lattice sites and an initial momentum k0 = (π/2, π/2, π/2)
in units of the inverse of the lattice step. We numerically
propagate this wave packet in the presence of disorder and
monitor the c.m. position 〈ψ (t )|r|ψ (t )〉 [28]. The system size
is chosen sufficiently large for the wave function to be negligi-
bly small at the system edges at the longest times considered,
so that the c.m. position is computed for a virtually infinite
system. 〈ψ (t )|r|ψ (t )〉 is averaged over many (typically a few
thousands) realizations of the disorder. Because the system is
statistically invariant by permutation of the three axes of the
cubic lattice, the averages 〈x(t )〉, 〈y(t )〉, 〈z(t )〉 are equal. In
the following, we use 〈x(t )〉 as a shorthand notation for an
additional averaging along the three directions.

Figure 4 shows the temporal evolution of 〈x(t )〉 for various
disorder strengths W up to t = 1000 (with time in units of the

FIG. 5. Quantum boomerang effect in the vicinity of the
Anderson transition (same units as in Fig. 4). Solid curves show
the quantity 〈x(t )〉t1/3 versus the disorder strength W , for increasing
times, from t =25, flattest curve in red, to t =1000, top black curve
(times are equally spaced in t1/3). All curves intersect at Wc ≈
16.55 ± 0.03, making it possible to accurately pinpoint the critical
point of the Anderson transition.

inverse of the hopping amplitude). In all cases, the short-time
dynamics (not shown in the figure) is ballistic, with 〈x(t )〉
increasing with t , but soon the wave packet performs a U-turn
so that 〈x(t )〉 decreases. For W <Wc, 〈x(t )〉 tends to a finite
nonzero value at long time, indicating a breakdown of the QB
effect. In contrast, for W >Wc, 〈x(t )〉 tends to zero, a mani-
festation of the QB. The long-time behavior is approximately
∝1/t , which is slower than in 1D, Eq (6). The numerical
results are not accurate enough to assess whether there is, e.g.,
an additional logarithmic dependence. We performed similar
calculations in dimension 2, where Anderson localization is
the generic scenario and observed a similar 1/t asymptotic
behavior (data not shown).

At the critical point of the Anderson transition, W =Wc,

the QB effect is present, albeit with a slower decay, very
accurately described by a t−1/3 law. This law is reminiscent
of the anomalous diffusion at the critical point with the size
of a wave packet increasing like t1/3, predicted theoretically
[26,29,30] and experimentally observed on the atomic kicked
rotor [31]. Indeed, by extrapolating Eq. (5) to 3D and using
〈x2〉 ∝ t2/3 one readily obtains 〈x〉 ∝ t−1/3. The same argu-
ment explains why 〈x〉 is constant above the critical point,
as 〈x2〉 ∝ Dt in this regime, with a diffusion coefficient D
getting smaller and smaller as one approaches the Anderson
transition. These different scaling laws can be used to pinpoint
precisely the critical point. To this aim, we show in Fig. 5
the quantity 〈x(t )〉t1/3 vs W for increasingly long times. As
expected, all curves cross near W =Wc. From our numerical
data, we observe the crossing of long-time curves at W =
16.55 ± 0.03, in excellent agreement with the most accurate
published value Wc = 16.543 ± 0.002 [27,32].

IV. SUMMARY

To summarize, we have demonstrated that wave packets
launched with some initial velocity in disordered systems
quantum mechanically return to their initial position, an effect
absent in the classical limit. An exact analytical treatment for
1D weakly disordered systems is in excellent agreement with
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numerical results. In dimension 3, the quantum boomerang
effect exists only when the eigenstates are Anderson localized.
In the diffusive regime, the center of mass displays only a
partial retroreflection and does not end at the initial position.
We thus expect the quantum boomerang to be very general for
disordered systems displaying Anderson localization. Based
on the discussion around Eqs. (2) and (3), it only requires
time-reversal symmetry, statistical invariance by translation,
and parity of the disorder. Whether it persists when these
symmetries are broken or for many-body localized systems
will be the subject of further studies. From an experimental
point of view, this signature of Anderson localization could be
observed in experiments on cold atomic gases, where wave-

packet spatial distributions are customarily imaged. In optics,
the retroreflection could be probed as well in transversally
disordered photorefractive crystals or optical fibers where
the coordinate of the optical axis plays the role of time: by
illuminating such systems with a spatially narrow beam, one
should observe a quantum boomerang of the beam center of
mass in the transmitted, near-field intensity distribution [3,33].
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