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Monodromy and chaos for condensed bosons in optical lattices
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We introduce a theory for the stability of a condensate in an optical lattice. We show that the understanding
of the stability-to-ergodicity transition involves the fusion of monodromy and chaos theory. Specifically, the
condensate can decay if a connected chaotic pathway to depletion is formed, which requires swap of separatrices
in phase space.
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I. INTRODUCTION

Ergodicity, as opposed to stability, is the threat that looms
over the condensation of bosons in optical lattices. A major
question of interest is whether an initial condensate is likely to
be depleted. The simplest setup is the dimer, also known as the
Bosonic Josephson junction [1–3], where condensation in the
upper orbital can become unstable if the interaction exceeds a
critical value. A more challenging setup is a ring lattice [4–8],
where the particles are condensed into an excited momentum
orbital. If such a flow state is metastable, it can be regarded
as a mesoscopic version of superfluidity. It has been realized
that the theory for this superfluidity requires analysis that goes
beyond the traditional framework of Landau and Bogoliubov,
because the underlying dynamics is largely chaotic [9,10].

The structure of the classical phase space is reflected in
the quantum spectrum, and provides the key for the quantum-
chaos theory of mesoscopic superfluity. In the present work
we highlight the essential ingredient for the crossover from
stability to ergodicity. We consider the minimal setup: a three-
site ring. We show that the understanding of this transition
involves the fusion of two major research themes: monodromy
and chaos.

A. Monodromy

The dynamics of an integrable (nonchaotic) system, for
a given value of the conserved constants of motion, can be
described by a set of action-angle variables, that parametrize
a torus in phase space. In systems with monodromy, they
cannot be defined globally: due to the nontrivial topology of
phase space, the action-angle variables cannot be identified in
a continuous way in the parameter space that is formed by the
conserved quantities [11,12]. Accordingly, it is impossible
to describe the quantum spectrum by a global set of good
quantum numbers [13,14]. Rather, the good quantum numbers
(quantized “actions”) that are implied by the Einstein-
Brillouin-Keller (EBK) quantization scheme form a lattice
that features a topological defect [15]. Such Hamiltonian
monodromy is found in many physical systems, such as the
spherical [13,16] and the swing-spring [17,18] pendula,
spin-1 condensed bosons [19], the Dicke model [20], and
even the hydrogen atom [21]. A dynamical manifestation

of monodromy in a classical system has been recently
demonstrated [22].

B. Chaos

The condensation of particles in a single orbital is a many-
body coherent state. It can be represented in phase space as
a Gaussian-like distribution that is supported by a stationary
point (SP). If this SP is the minimum of the energy landscape,
it is known as Landau energetic stability, and leads, for a clean
ring, to the Landau criterion for superfluidity. More generally
one has to find the Bogoliubov excitations ωr of condensate.
If some of the frequencies become complex, the SP is consid-
ered to be unstable. What we have demonstrated in previous
work [5,10] was that this type of local stability analysis does
not provide the required criteria for stability. Rather, in order
to determine whether the system will ergodize, it is essential
to study the global structure of phase space, and to take into
account the role of chaos.

C. Connectivity

The major insight can be described schematically as fol-
lows. Let us regard the SP that supports the condensate
as the origin of phase space. And let us regard the region
that supports the completely depleted states as the perimeter
of phase space. The crucial question is whether there is a
dynamical pathway that leads from the origin to the perimeter.
We have observed numerically in [10] that the formation of
such pathway requires a swap of phase-space separatrices. But
a theory for this swap transition has not been provided.

D. Outline

For pedagogical purposes we first consider the stability
question for the dimer. Then we go to the trimer and write its
Hamiltonian as the sum of integrable part H(0), and additional
terms H(±) that induce the chaos. An example for the classical
and quantum spectra is presented in Fig. 1. The spectra exhibit
monodromy that we analyze in detail: the quantum mon-
odromy is a reflection of the classical one. Then we explain
how the spectrum is affected by changing a control parameter
(detuning). In a hysteresis experiment [23] the detuning is de-
termined by the rotation frequency of the device and the inter-
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FIG. 1. Monodromy. The classical and quantum spectra of the
Hamiltonian H(0). This Hamiltonian has a constant of motion M, that
describes the occupation imbalance of the k �= 0 orbitals. In (a) each
point represents an (M, E ) torus in phase space, and the points are
color coded by the value of a classical phase (β) that characterizes
the torus. In (b) each point represents an |M, E〉 eigenstate of N = 42
particles, and the points are color coded by the expectation value of
the variable n, which is the total occupation of the k �= 0 orbitals. Yel-
low color (n < N/8) indicates a nearly coherent condensate, while
blue implies a depleted eigenstate. In both panels E/NU ≈ −1/4
and E⊥/NU ≈ 1/2. The inset provides a zoom that demonstrates the
monodromy, a topological defect in the lattice arrangement of the
spectrum.

action strength between the bosons. We provide a geometrical
explanation for the swap transition, and clarify the role of
chaos in the destabilization of the condensate. In the Summary
section we point out the relevance of our study to the more
general theme of thermalization in Bose-Hubbard chains.

II. MODEL

The Bose-Hubbard Hamiltonian (BHH) is a prototype
model for cold atoms in optical lattices that has inspired
state-of-the-art experiments [24,25], and has been proposed as
a platform for quantum simulations. It describes a system of N
bosons in L sites. The ring geometry in particular has attracted
attention for atomtronic circuits [4]. Taking into account that
N is a constant of motion, the system has f = L−1 degrees
of freedoms. The simplest configuration is the dimer (L = 2),
also known as the Bosonic Josephson junction. Our main
interest is in the minimal nonintegrable configuration, which

is the trimer (L = 3). Below we briefly refer to the dimer
Hamiltonian, and then turn to discuss the trimer Hamiltonian.
Further technical details about the latter are provided in
Appendix A.

A. Dimer

The Hamiltonian of the dimer is

Hdimer = −K

2
(a†

2a1 + a†
1a2) + U

2

2∑
j=1

a†
j a

†
j a ja j, (1)

where K is the hopping frequency, U is the on-site interaction,
The a j and a†

j are the Bosonic annihilation and creation

operators. The total number of particles N = ∑
j a†

j a j is a
constant of motion.

It is convenient to switch to orbital representation. One
defines annihilation and creation operators bk and b†

k , such
that b†

± = 1√
2
(a†

1 ± a†
2) creates bosons in the lower and upper

orbitals. For the purpose of semiclassical treatment we define
action-angle variables via

bk = √
nk eiϕk . (2)

After dropping an N dependent constant the Hamiltonian
takes the form

Hdimer(ϕ̃, ñ) = −E ñ + U

2
(N−ñ) ñ [1 + cos(2ϕ̃)], (3)

where ñ = n+ is the occupation of the (+) orbital, and E = K
is the detuning (energy difference between the orbitals). The
angle ϕ̃ = (ϕ+ − ϕ−) serves as a conjugate coordinate. The
phase space of this Hamiltonian has the topology of Bloch
sphere. The Hamiltonian possesses two SPs that are located at
ñ = 0 and ñ = N , which are the north and south poles of the
Bloch sphere.

B. Trimer

The BHH for L sites in a ring geometry is

H =
L∑

j=1

[
U

2
a†

j a
†
j a ja j − K

2
(ei(�/L)a†

j+1a j + H.c.)

]
, (4)

where j mod(L) labels the sites of the ring, and other notations
are as in the dimer case. The so-called Sagnac phase � is
proportional to the rotation frequency of the device: it can be
regarded as the Aharonov-Bohm flux that is associated with
Coriolis field in the rotating frame [23,26].

It is convenient to switch to momentum representation.
One defines annihilation and creation operators bk and b†

k ,
such that b†

k = 1√
L

∑
j eik ja†

j creates bosons in the kth mo-
mentum orbitals. Here we consider a three-site ring that
has three momentum orbitals labeled by their wave number
k = 0, 1, 2. Later we assume, without loss of generality, that
the particles are initially condensed in the k = 0 orbital. This
is not necessarily the ground-state orbital, because we allow
the possibility that the ring is in a rotating frame. After some
time the condensate can be partially depleted such that the
occupation is (N−n1−n2, n1, n2).

Since we have here an effectively two freedom system,
it is convenient to define relative phases q1 = ϕ1−ϕ0 and
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q2 = ϕ2−ϕ0. Consequently the Hamiltonian can be written in
terms of canonical coordinates as (Appendix A)

H(ϕ, n; φ, M ) = H(0)(ϕ, n; M ) + [H(+) + H(−)]. (5)

Here n = (n1 + n2)/2 and M = (n1 − n2)/2, while the con-
jugate angle variables are ϕ = q1 + q2 and φ = q1 − q2. The
first term H(0) is an integrable piece of the Hamiltonian that
has M as an additional constant of motion:

H(0)(ϕ, n; M ) = En + E⊥M − U

3
M2 + 2U

3
(N − 2n)

×
[

3

4
n +

√
n2 − M2 cos(ϕ)

]
, (6)

where U is the interaction between the bosons, while the
detuning E determines the energy difference between the con-
densate (n = 0) and the depleted states (n = N/2). If we lin-
earized H with respect to the (n1, n2) occupations, we would
get the Bogoliubov approximation, which is Eq. (6) without
the third term (M2), and with (N−2n) ≈ N . The additional
terms H(±) induce resonances that spoil the integrability, and
give rise to chaos,

H(±) = 2U

3

√
(N−2n)(n±M )(n∓M ) cos

(
3φ∓ϕ

2

)
. (7)

Note that classically the total number of particles N can be
removed from the Hamiltonian by a simple scaling of n and
M. But upon quantization 1/N effectively plays the role of
h̄. It follows that the coherent state that is formed by con-
densation of the particles into a single orbital is represented
in phase space by a Gaussian-like distribution of uncertainty
width 1/N . See for example [9,10]. The significance of this
1/N scale for the analysis of instabilities due to nonlinear
resonances has been illuminated in [5].

III. STABILITY, GEOMETRY, AND TOPOLOGY

Considering the dimer Hamiltonian Eq. (1) it is well
known that condensation at one orbital is always stable, while
condensation at the second orbital becomes unstable if U is
large enough. This conclusion can be arrived at by inspection
of Eq. (3) : Without loss of generality let us assume that
U is positive (or else the energy axis should be flipped);
Considering condensation in the upper (−) orbital, we can
regard ñ ≡ n+ as the depletion coordinate; then it follows,
using the standard stability analysis of Appendix B, that the
north pole (ñ = 0) becomes unstable if |E | < NU .

Considering the trimer Hamiltonian, the superficial im-
pression is that H(0) of Eq. (6) is very similar to Eq. (3)
of the dimer: all we have to do is to rescale the occupa-
tion coordinate ñ = 2n. However, the stability analysis of
Appendix B shows that the regime diagram of Eq. (6) is in
fact more interesting: the condensate (n = 0) is unstable for
−7NU/6 < E < NU/6, while the depleted state (n = N/2)
is unstable for −NU/6 < E < 7NU/6. We will focus, in
particular, on the the range |E | < (1/6)NU , where both SPs
become unstable. Note that n = 0 necessary means that M =
0, while n = N/2 is a SP for all M values.

A. Geometry

The stability analysis reflects the algebraic side of the
dynamics, but ignores the geometrical aspect. The phase space
of the dimer is the Bloch sphere. All the (ϕ̃, ñ=0) points are in
fact the same point, which can be regarded as the north pole
of the sphere. The same applies to (ϕ̃, ñ=N ) which can be
regarded as the south pole of the sphere.

But for our three-site ring Eq. (6) the geometry of phase
space is different. The south pole is no longer a single point,
because different ϕ values indicate different points in phase
space. So in fact we no longer have a Bloch sphere, but rather
we have a Bloch disc. Another difference is that the angle
is folded (ϕ = 2ϕ̃). The phase-space structure, for different
values of the detuning, is illustrated in Fig. 2. The origin
and perimeter of the (ϕ, n) disc should be identified with
the north and south poles of the (ϕ̃, ñ) Bloch sphere. The
origin (n = 0), if unstable, Figs. 2(b)–2(e), is the cusp on a
folded separatrix of half-saddle topography. The perimeter of
the disc is a spread SP. If the spread SP becomes unstable,
Figs. 2(c)–2(f), there is a separatrix that comes out from the
perimeter in an angle ϕout, and comes back to it in an angle ϕin.
Both the approach and the departure from the perimeter along
the separatrix require an extremely long time. We emphasize
again that from an algebraic point of view the dynamics is the
same as if the perimeter were a single point on a Bloch sphere.
In the Bloch sphere each phase-space point is duplicated.
Thanks to this duplication the separatrices that are associated
with the SPs take the familiar figure-8 saddle shape, which is
more illuminating for illustration purposes.

B. Topology

So far we have discussed the one-freedom projected dy-
namics of (ϕ, n). But now we have to remember that there
is an additional degree of freedom (φ, M ). We consider the
dynamics that is generated by H(0), where M is a constant
of motion, and the conjugate angle is doing circles with
φ̇ = ∂H(0)/∂M. A trajectory that is generated by H(0) covers
a torus in phase space. A useful way for visualizing the tori is
based on the SU(1, 1) symmetry [19,27] of H(0). The (ϕ, n)
dynamics is the intersection of constant E and constant M
surfaces; see Fig. 3 and Appendix C. In particular the M = 0
surface is a cone, whose tip corresponds to n = 0, while its
outer boundary corresponds to n = N/2. If the intersection
forms a closed loop, as in Fig. 3(a), the trajectory covers
a torus in phase space. But if the trajectory goes through
n = 0, as in Fig. 3(b), we get a pinched torus; see Fig. 3(c).
This is because the φ circle at n = 0 has zero radius. This
“zero radius” is explained as follows: if n = 0 then necessarily
n1 = n2 = 0, hence all the (ϕ, φ) angles degenerate, repre-
senting a single phase-space point. In the projected dynamics
Fig. 2, the cusped trajectory which goes through n = 0 (when
unstable) is merely a projection of the pinched torus.

C. Definition of β

Consider a trajectory that has a period T in (ϕ, n). For
illustration this can be the trajectory that loops along the
intersection in Fig. 3(a). Clearly, this trajectory is in general
not a closed loop in the full phase-space representation. Rather
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FIG. 2. The geometry of the projected phase space. Top panels: the (ϕ, n) disc. Bottom panels: the (ϕ̃, ñ) Bloch sphere. The detuning
for (a)–(g) is E/NU = −4/3, −1/3, −0.05, 0, 0.05, 1/3, 4/3. The color stands for the energy of H(0), with M = 0. Black lines indicate the
separatrices that go through the SPs.

it winds on a two-dimensional torus. We define β as the
change in φ during time T . For a trajectory that passed
through an unstable SP we have T → ∞, and β is ill defined.
In Fig. 1(a), we plot β as a function of M and E .

IV. SWAP TRANSITION

Recall that E is controlled experimentally by the rotation
frequency of the device. Figure 2 shows the projected dynam-
ics for different values of the detuning E . In panels (c)–(e)
both SPs are unstable, and we see how they swap as the
detuning changes sign. At the transition the two separatrices
coalesce, thus forming a connection between the origin n = 0
(which supports the condensate) and the perimeter n = N/2
(where the k = 0 orbital is completely depleted).

On the Bloch sphere, both north and south poles, when
unstable, take the familiar 8-like shape. As we previously
argued, this is due to the fact that the phase space is duplicated,
and that all the ϕ values at the south pole are regarded as a
single point. This physically unfaithful presentation possibly
better reflects what we mean by “swap of separatrices.” We
note that the Poincaré sections in [10], that had been presented
before we gained proper understanding of the swap transition,
were physically unfaithful in the same sense.

Once the H(±) terms are added, a connecting quasistochas-
tic strip is formed, through which the initial state can decay.

FIG. 3. Phase-space topology. The blue cone is an M = 0 sur-
face, that intersects with a surface of constant E . The existence of an
additional coordinate (φ) at each point is implicit. The intersection
is a torus. Panel (a) is the typical case, while (b) corresponds to
a pinched torus (see text). The latter is fully illustrated (with φ)
in panel (c).

This is shown in Fig. 4, where we plot a Poincaré section
of the full Hamiltonian Eq. (5). One should note the subtle
relation between the perspective of Fig. 4 and that of Fig. 2. A
panel of the latter displays sections of M = 0 tori that form
a vertical subset in a Fig. 1–type (M, E ) diagram, while a
panel of Fig. 4 displays sections of the same E trajectories
that form a horizontal subset of such diagram. The pinched
torus is contained in both subsets.

Away from the swap transition, the chaotic region around
n = 0 is bounded by the surviving Kolmogorov-Arnold-
Moser (KAM) tori, forming a chaotic pond which is iso-
lated from the perimeter region. Hence the depletion of the
condensate is arrested. It is only in the vicinity of the swap
transition that a connected chaotic pathway to depletion is

FIG. 4. Poincare sections. The dynamics of the full Hamiltonian
Eq. (5) projected to the (ϕ, n) disc. All the trajectories are launched
with the same energy as that of the condensate, and the section is
chosen to be q2 = 0. The left to right arrangement of the panels is
by detuning E/NU = −0.05, 0, 0.05, in one-to-one correspondence
with Figs. 2(c)–2(e). In the upper panels the interaction strength
is NU ∼ 1, in units of the BHH hopping frequency K , while in
the lower panels it is doubled, keeping E/NU fixed. The color
code (from yellow to blue) corresponds to the trajectory-averaged
occupation n (from N/8 to N/2).
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FIG. 5. The spectrum. The left to right arrangement of the panels
is as in Fig. 4. In the upper row we plot the spectrum of H(0),
while the two other rows provided the spectrum of H in one-to-one
correspondence with Fig. 4. All the spectra refer to ring with N = 42
particles. The points are colored by the expectation value of n, with
the same color code as in Figs. 1(b) and 4.

formed. Thus, a local stability analysis of the SP using the
standard Bogoliubov procedure does not provide the proper
criterion for superflow metastability.

V. QUANTIZATION

The classical structure of phase space is reflected in the
many-body spectrum. If chaos is ignored the eigenstates can
be labeled by the good quantum numbers that are determined
by the commuting operators M and H(0), as in Fig. 1(b). If we
add the H(±) terms we can still order the energies according to
the expectation value 〈M〉. Several examples are provided in
Fig. 5. For presentation purpose, the perimeter energy Ex(M ),
which corresponds to maximum depleted state (n = N/2),
is taken as the reference. Figure 7 of Appendix D provides
spectra for the whole range of the detuning parameter, corre-
sponding to the phase-space plots of Fig. 2.

From a semiclassical perspective, if we ignore the chaos,
each point can be associated with an EBK torus; see
Appendix E. Namely, the “good quantum numbers” are quan-
tized values of the action variables. The lattice arrangement
of the energies in Fig. 1(b) reflects the way that the tori are
embedded in phase space, while the chaos, once added, blurs
it locally; see Fig. 5. This lattice arrangement is supported by a
classical skeleton that is formed by a pinched torus (marked by
a red dot), and an E = Ex(M ) separatrix. At the vicinity of the
separatrix the spectrum is dense, reflecting that the frequency
of the motion goes to zero. Irrespective of that, the quantum
spectrum has a topological defect that is described by a
monodromy (to be further discussed below). This monodromy
reflects the presence of the pinched torus. The sequence of
panels in Fig. 5 shows how the swap transition is reflected in
the quantum spectrum. This transition happens as the red dot,
which corresponds to the pinched torus, crosses the E = Ex

separatrix line. We see how the yellow condensation region is
diminished at the transition.

VI. MONODROMY CALCULATION

The concept of monodromy is pedagogically summarized
in Appendix E. For our model system, in the absence of chaos,
we have in involution the generators H1 = H(0) and H2 = M.
The trajectories that are generated for a given E and M form
a torus. Any point on the torus is accessible by generating a
walk of duration (t1, t2). Consider the projected dynamics in
(ϕ, n). A given trajectory has a period T , but in the full phase
space it is, in general, not periodic, because φ has advanced
some distance β. It follows that in order to get a periodic
walk on the torus, the t1 = T evolution that is generated by H1

should be followed by a t2 = −β evolution that is generated
by H2. The so-called rotation angle β characterizes the torus,
and is imaged in Fig. 1(a). Note that a t2 = 4π evolution that is
generated by H2 = M is a periodic trajectory in phase space,
because it does not affect the (ϕ, n) degree of freedom. We
conclude that the set of periodic walks forms a lattice that can
be spanned by the basis vectors

�τa = (T,−β ), (8)

�τb = (0, 4π ). (9)

A remark is in order regarding the determination of the
4π in Eq. (9). It should be clear that the original phases
(ϕ0, ϕ1, ϕ2) are defined mod (2π ). Next we define the co-
ordinates q1 = ϕ1 − ϕ0 and q2 = ϕ2 − ϕ0, and the alternate
coordinates φ = q1 − q2 and ϕ = q1 + q2. If the alternate
coordinates are regarded as mod (2π ) angles, it follows that
each (ϕ, φ) represents two points in q space, and each (ϕ, n)
in our sections is the projection of a 4π circle. Consider a
trajectory that is generated using H2 = M. In the (ϕ1, ϕ2) torus
it will have a constant ϕ. You would have to run t a 4π interval
in order to get back to the starting point.

Quantum to classical duality

Let us now go back to Fig. 1(a), where we plot β as a
function of M and E . One can immediately spot the location
of the pinched torus (M, E ) = 0, around which β has 4π

variation. Hence, after a parametric loop, we get the mapping
�τa 
→ �τa − �τb while �τb remains the same. Such nontrivial
mapping is the hallmark of monodromy [11,12]. Upon EBK
quantization monodromy in the spectrum is implied; see
Appendix E. This is demonstrated in the inset of Fig. 1(b).
Namely, transporting an elementary unit cell (spanned by
two basis vectors) around the pinched torus in the (M, E )
spectrum, we end up with a different unit cell.

In Fig. 1(a) the detuning was chosen such that the SP at
n = N/2 is stable. Contrary to that, in Fig. 5 the detuning
is such that the SP is at the vicinity of a swap transition.
Consequently the spectrum is divided into two regions by the
separatrix line, and only the region with the pinched torus
exhibits the nontrivial monodromy. At the swap transition
the pinched torus and hence the nontrivial monodromy is
relocated to the other region. In the special case of E = 0, the
pinched torus merges with the separatrix line, leaving both
regions with a trivial monodromy.
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VII. SUMMARY

Several themes combine in the study of superflow metasta-
bility. There is a monodromy that is associated with the
SP that supports the condensate, and a separatrix that is
associated with an SP that folds all the depleted states. The
two SPs determine the skeleton of phase space. By duality
it is also the skeleton for the many-body quantum spectrum
(via EBK quantization). In the Bloch sphere representation
(Fig. 2) the two SPs look alike, but this is in fact wrong and
misleading. The topological distinction between the central
SP and the peripheral SP becomes conspicuous once we look
on the quantum spectrum where the central SP-monodromy
appears as a topological defect that reflects the existence of
a pinched torus, while the depleted peripheral states form a
dense line in (M, E ) space.

By itself the above described skeleton is not enough for
the understanding of BEC metastability or its absence. The
theoretical narrative requires the fusion of chaos into the
story. If the rotation frequency of the device is adjusted
(which controls the detuning between the central SP and the
peripheral separatrix), a stochastic pathway is formed at the
“swap transition,” leading to the depletion of the condensate,
and the decay of the superflow. In the dual quantum picture
chaos blurs the ordered spectrum. Away from the swap tran-
sition the topological aspect remains robust, but at the swap
transition eigenstates get mixed and become ergodic within
the stochastic region.

The analysis that we have introduced is specifically rel-
evant for future hysteresis-type experiments [23] with ring
lattice circuits [28,29]. Furthermore, the trimer is not only
the minimal model for ergodization due to chaos, it is also
the minimal configuration for thermalization [30], and serves
as the building block for progressive thermalization of large
arrays [31,32]. Finally, it should be recognized that the theme
of metastability is of general interest for mathematical physics
studies of high dimensional chaos, irrespective of specific
application.
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APPENDIX A: TRIMER HAMILTONIAN

For a clean L-site ring lattice we define momentum or-
bitals whose wave numbers are k = (2π/L) × integer. Con-
sequently the BHH takes the form

H =
∑

k

εkb†
kbk + U

2L

′∑
b†

k4
b†

k3
bk2 bk1 , (A1)

where the constraint k1+k2+k3+k4 = 0 mod(2π ) is indicated
by the prime, and εk = −K cos(k − �/L) are the single-
particle energies. Later we assume, without loss of generality,
that the particles are initially condensed in the k = 0 orbital.
This is not necessarily the ground-state orbital, because we
keep � as a free parameter. Note that below and in the
main text we optionally use k as a dummy index to label the
momentum orbitals.

For the L = 3 site ring we have

H =
∑

k=0,1,2

εknk + U

6

∑
k

n2
k + U

3

∑
k′ �=k

nk′nk

+ U

3

∑
k′′ �=k′ �=k

[nk′nk′′ ]1/2 nk cos (ϕk′′ + ϕk′ − 2ϕk ). (A2)

We define q1 = ϕ1 − ϕ0 and q2 = ϕ2 − ϕ0 where the
subscripts refer to k1,2 = ±(2π/3). Using the notation
Ek = (εk − ε0) + (1/3)NU we get Eq. (5) with

H(0) = E1n1 + E2n2 − U

3

[
n2

1 + n2
2 + n1n2

]
+ 2U

3
(N−n1−n2)

√
n1n2 cos (q1 + q2) (A3)

and

H(+) = 2U

3

√
(N−n1−n2)n1 n2 cos (q1 − 2q2) (A4)

while H(−) is obtained by swapping the indices (1 ↔ 2). In
fact it is more convenient to use the coordinates

φ[mod(4π )] = q1 − q2 = ϕ1 − ϕ2,

ϕ[mod(2π )] = q1 + q2 = ϕ1 + ϕ2 − 2ϕ0 (A5)

and the conjugate coordinates

M = 1

2
(n1 − n2) ∈

[
−N

2
,

N

2

]
, (A6)

n = 1

2
(n1 + n2) ∈

[
|M|, N

2

]
. (A7)

Then the Hamiltonian takes the form of Eq. (5) with Eqs. (6)
and (7), where the detuning is E = E1 + E2 − (1/2)NU , and
E⊥ = E1 − E2.

APPENDIX B: SPS AND SEPARATRICES

Consider a phase space that is described by ϕ, n. We shall
distinguish between rotor geometry for which the n = 0 points
are distinct, and oscillator geometry for which all the n = 0
points are identified as one point. The algebraic treatment is
the same, but the physical interpretation is different.

1. Regular point

As an appetizer consider the Hamiltonian

H =
√

2n sin(ϕ). (B1)

It looks singular at n = 0, but in fact it is completely
smooth there. Regarded as an oscillator it is canonically
equivalent to H = p that generates translations. Similar ob-
servation applies to the noninteracting dimer Hamiltonian
H = (1/2)(a†

2a1 + h.c.), which in action angle variables takes
the form

H =
√(

N

2
− n

)(
N

2
+ n

)
cos(ϕ). (B2)

Here both the north and south poles of the Bloch sphere
(n = ±N/2) are regular phase-space points, neither SP nor
singular.
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2. Stationary point

Consider the standard quadratic Hamiltonian
H = (1/2)[ap2 + bx2]. In polar canonical coordinates it is

H = [A + B cos(2ϕ)]n (B3)

with A = (a + b) and B = (a − b). If ab > 0, equivalently
|A| > |B|, the origin (n = 0) is an elliptic SP that is circled by
trajectories that have the frequency

ω =
√

ab =
√

A2 − B2. (B4)

Otherwise the origin becomes an unstable hyperbolic SP. In
the latter case there is an 8-like separatrix that goes through
the origin: there are two ingoing directions and two outgoing
directions. The approach to the SP along the separatrix, and
its departure, is an infinitely slow motion. The SPs of the
dimerEq. (3) are described locally by the above Hamiltonian.

3. Folded SP

Consider the dimer Hamiltonian Eq. (3) with 2ϕ̃ replaced
by ϕ. Here the dynamics is the same from an algebraic
perspective, but the global geometry is different. It is a folded
version of the dimer Hamiltonian. In the hyperbolic case the
vicinity of the SP can be described as “half saddle.” From local
dynamics point of view the equations of motion are identical,
but here the separatrix has only one outgoing direction and
only one ingoing direction.

4. Spread SP

Consider Eq. (B3), but assume that we are dealing with
rotor geometry. From a local dynamics point of view the
equations of motion are still identical, but now the arrival
point (say ϕin) and the departure point (say ϕout ) are not the
same point.

5. Stability analysis

Consider the Hamiltonian of Eq. (6) with M = 0. The
origin (n = 0) is a folded SP. It is elliptic or hyperbolic
depending on the detuning. Locally the Hamiltonian looks like
Eq. (B3) with

A = E + NU

2
, B = 2NU

3
, (B5)

SP unstable for − 7NU

6
< E <

NU

6
. (B6)

In the regime where the SP is stable the ω of Eq. (B4)
reflects the frequency of the Bogoliubov excitations [10]. In
the hyperbolic case we have a separatrix that goes through the
origin.

For the same Hamiltonian, the perimeter (n = N/2) is
a spread SP. For the purpose of stability analysis we can
identify the points along the perimeter as a single point of a
Bloch sphere. Setting ñ = N − 2n the Hamiltonian looks like
Eq. (B3) with

A = −E
2

+ NU

4
, B = NU

3
, (B7)

SP unstable for − NU

6
< E <

7NU

6
. (B8)

In the hyperbolic case we have a separatrix that meets the
perimeter at one point and departs in a different point. Com-
bining with Eq. (B6) we see that both SPs are unstable if
|E | < (1/6)NU . In the latter case we have two separatrices.
The separatrices swap as we go through E = 0; see Fig. 1.

6. Case of nonzero M

For the same Hamiltonian Eq. (6) with M �= 0, the points
along the inner boundary n = M are distinct. So we cannot
regard them as a single point. Close to this inner boundary we
have H ∼ √

ñ cos(ϕ), with ñ = n − M. This is a nonsingular
Hamiltonian, essentially the same as Eq. (B1), that generates
regular flow. It follows that the inner boundary is not special
from a dynamical point of view: it can be regarded as spread
regular point, it is not an SP, and there is no separatrix there.

The stability of the perimeter is determined as in Eq. (B8),
but with B multiplied by

√
1 − (2M/N ). Therefore, for

sufficiently large M we always have |A| > |B| and the
perimeter is stable.

APPENDIX C: CONICAL INTERSECTION PERSPECTIVE

A useful way for visualizing the phase-space tori is based
on the SU(1, 1) symmetry [19,27] of H(0). For that we express
the two conserved quantities, namely the energy E and the
constant of motion M, in terms of the group generators. We
start by introducing

Kz = n + 1

2
, K+ = a†

1a†
2, K− = a1a2, (C1)

which is a realization of the SU(1, 1) group, satisfying the
algebra

[Kz, K±] = ±K±, [K+, K−] = −2Kz. (C2)

The Casimir operator of the group, which commutes with all
the generators, is

C = K2
z − K2

x − K2
y , (C3)

where Kx and Ky are given by K± = Kx ± iKy. In the semiclas-
sical treatment we have

Kx ∼ √
n1n2 cos ϕ ∈ [−�,�], (C4)

Ky ∼ √
n1n2 sin ϕ ∈ [−�,�], (C5)

Kz ∼ n ∈
[
|M|, N

2

]
, (C6)

where � =
√

(N/2)2 − M2. The Hamiltonian can be written
in terms of the generators as

H(0) = EKz + E⊥M − U

3
M2

+ 2U

3
(N − 2Kz )

[
3

4
Kz + Kx

]
. (C7)

As for the constant of motion M, we have M2 = C. In Fig. 6
we plot several examples for the M2 and H(0) = E surfaces
in the (Kx, Ky, Kz ) space. For M = 0 Eq. (C3) defines a cone
whose tip corresponds to n = 0, while its outer boundary
corresponds to n = N/2. For for a constant M �= 0 Eq. (C3)
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FIG. 6. Several examples of the reduced phase space in the
(Kx, Ky, Kz ) coordinates (the symmetry axis is Kz). The blue cone
(a),(c)–(f) is the surface of constant M = 0 while the blue hyperbole
(b) is the surface of constant M = 0.15N . The remaining surfaces
correspond to a constant E . The intersection of constant M and E
surfaces (highlighted in black) is a trajectory in the reduced (ϕ, n)
space, and provides a useful way of visualizing the phase-space tori
(see text).

defines a hyperboloid whose base corresponds to n = |M|,
while its outer boundary corresponds to n = N/2.

The intersection between the E and M2 surfaces is a
trajectory in the reduced (ϕ, n) phase space. In the full phase
space, we also have the phase φ, which dynamically changes
as φ̇ = ∂H(0)/∂M. If the intersection between the surfaces
forms a closed loop, as in Figs. 6(a) and 6(b), the dynamics
in the full (ϕ, φ, n, M ) phase space covers a two-torus (which
is, of course, the typical case in an integrable two degrees of
freedom system). When the two surfaces are tangent, as in
Fig. 6(b), the trajectory is a fixed point in the (ϕ, n) space,
and a circle in the full phase space.

Trajectories that pass through n = 0 should be addressed
with more caution. As explained in the main text, the tip of
the cone does not correspond to a φ circle, but to a single
point. This is because n = 0 means n1 = n2 = 0 so that φ is
degenerate. When the n = 0 SP is stable, the energy surface
is tangent to the tip of the cone, as in Fig. 6(c), hence the
trajectory is a single point in phase space. When unstable, the

intersection forms a cusped circle, see Fig. 6(d), representing
a pinched torus, i.e., a torus with one of its φ circles shrinks
to a point.

Trajectories that pass through n = N/2 are special too.
When the n = N/2 SP is stable, as in Fig. 6(c), the intersection
is the entire outer circle of the cone, reflecting the fact that
it is a spread SP. When unstable, see Fig. 6(e), a separatrix
trajectory is formed, which meets the n = N/2 circle at two
points, corresponding to ϕin and ϕout. At the swap transition,
the two SPs are connected, i.e., the cusped circle of n = 0
merged with the separatrix trajectory of n = N/2, as shown in
Fig. 6(f).

APPENDIX D: GALLERY

Here we provide additional plots of the spectra for the
whole range of the detuning parameter. Figure 7 is an ex-
tended version of Fig. 5 and corresponds to Fig. 2.

APPENDIX E: HAMILTONIAN MONONDROMY

Consider generators (H1, H2) in involution, i.e., that com-
mute with each other. The generated trajectories are moving
on an energy surface labeled (E1, E2). A walk consists of t1
evolution using H1, and t2 evolution using H2. The involution
implies that the walks are commutative. Accordingly the
parametrization of a walk is �t = (t1, t2). A periodic walk
is a walk that brings you back to the same point. The set
of periodic walks forms a lattice in �t space. This lattice is
spanned by basis vectors �τk , where k = a, b. We can formally
write any point in�t space as

�t =
∑

k

θk

2π
�τk = θa

2π
�τa + θb

2π
�τb. (E1)

We define a reciprocal basis such that

�ωk · �τk′ = 2πδk,k′ . (E2)

The reciprocal relation is

θk = �ωk ·�t . (E3)

Once action variables are defined we have

�ωk =
(

∂H1

∂Jk
,
∂H2

∂Jk

)
. (E4)

FIG. 7. The spectrum. The top row panels are the spectra of H(0) with the same E/NU values as in Fig. 2. In the bottom row the same spectra
are plotted, but without subtracting the separatrix energy. The interaction strength from left to right is NU ≈ 0.2, 0.6, 1.4, 1.9, 2.7, 1.9, 0.3 in
units of the BHH hopping frequency K . Note that for the top row panels, different NU values will produce the same plot and only scale the
E -Ex axis. Note that the energy here differs by a constant from Fig. 1(b).
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The spacings between two energies is

�E =
∑

k

�ωk · −→
�nk, (E5)

Thus the spectrum forms a reciprocal lattice.
Considering a closed loop in (E1, E2) space, the mon-

odromy matrix is defined as the mapping

�τk (final) =
∑

l

Mkl�τl . (E6)

If the loop encircles a pinched torus we have [12]

M =
(

1 −1
0 1

)
(E7)

so we get the mapping �τa 
→ �τa − �τb, as discussed in the main
text after Eq. (8). For the reciprocal basis we have

�ωk (final) =
∑

l

M̃kl �ωl , (E8)

where M̃ = [M−1]t . This can be seen by writing

2πδk,k′ = [�ωk (final)] · [�τk′ (final)]

=
∑
lm

M̃klMk′m �ωi · �τ j = 2π
∑

l

M̃klMk′l (E9)

hence M̃Mt = 1 and M̃ = [M−1]t . For a loop which encircles
the pinched torus we then have

M̃ =
(

1 0
1 1

)
, (E10)

which reflects the way �ωk are mapped, and therefore how a
unit cell in the quantum spectrum is transformed, as seen in
Fig. 1(b).
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