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We analyze the time evolution of the Bose-Hubbard model after a sudden quantum quench to a weakly
interacting regime. Specifically, motivated by a recent experiment at Kyoto University, we numerically simulate
redistribution of the kinetic and on-site interaction energies at an early time, which was observed in nonequilib-
rium dynamics of ultracold Bose gases in a cubic optical lattice starting with a singly occupied Mott-insulator
state. In order to compute the short-time dynamics corresponding to the experimental situation, we apply the
truncated-Wigner approximation to the Bose-Hubbard model on a cubic lattice. We show that our semiclassical
approach quantitatively reproduces the fast redistribution dynamics. We further analyze spatial spreading of
density-density correlations at equal time in the Bose-Hubbard model on a square lattice with a large filling
factor. When the system is initially prepared in a coherent state, we find that a propagation velocity of the
correlation wave packet in the correlation function strongly depends on the final interaction strength, and it is
bounded by twice the maximum group velocity of the elementary excitations. In contrast, when the system is
initially in a Mott-insulator state, the propagation velocity of the wave packet is approximately independent of
the final interaction strength.
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I. INTRODUCTION

High controllability and cleanness of ultracold-gas systems
allow us to utilize them as analog quantum simulators for
quantum many-body systems [1–3]. Indeed, the performance
of quantum simulators built with ultracold gases in optical
lattices has been validated by the quantitative agreement
between experiment and exact numerical simulation [4–8].
An interesting target of such quantum simulators is quantum
dynamics far from equilibrium [9,10], which is in general
impossible to simulate with currently available numerical
methods on classical computers due to the exponential growth
of the Hilbert-space dimension with system size and the
minus-sign problem in quantum Monte Carlo simulations.
Direct comparison with numerical simulations by the time-
dependent density-matrix renormalization group (t-DMRG) at
one dimension has demonstrated that the quantum simulator
can provide accurate data even in a long-time region, where
t-DMRG fails [6].

Among diverse quantum many-body dynamics, particular
attention has been devoted to quantum quench dynamics,
which arises after a sudden and substantial change of param-
eters in the Hamiltonian [6,7,9–18]. In recent years, some
experimental groups have explored far-from-equilibrium dy-
namics of high-dimensional Bose-Hubbard systems quenched
from typical quantum states [19–22]. Specifically, some of the
current authors and their collaborators observed the redistri-
bution dynamics of kinetic and on-site interaction energies
of Bose gases in a cubic optical lattice after a rapid quench
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of the lattice depth from a Mott insulator state [21,22]. An
immediate usage of such quantum simulation results is to
examine or develop numerical methods for computing quan-
tum many-body dynamics by taking them as an accurate
reference. Nevertheless, any quantitative approach that can
recover the experimental results at three dimensions has not
been established thus far.

In this paper, aiming to simulate the energy-redistribution
dynamics quantitatively, we adopt a semiclassical approxima-
tion formulated by a phase-space representation of quantum
systems, namely, the truncated-Wigner approximation (TWA)
[23–26]. According to the framework of TWA for the Bose-
Hubbard model [26], one can represent a time-dependent
quantum average of physical observables as a semiclassi-
cal form in terms of deterministic trajectories of a discrete
Gross-Pitaevskii equation, where the initial classical fields
are weighed with the Wigner’s quasiprobability distribution
corresponding to an initial quantum state. This approximation
allows one to obtain quantitative descriptions of short-time
dynamics of the quantum averages even for macroscopic
quantum systems, to which exact-diagonalization methods are
inaccessible.

In the past two decades, TWA or related semiclassical
frameworks were widely used to explore nonequilibrium
phenomena of isolated Bose gases trapped by optical lat-
tices [13,17,26–38], quantum spin systems [26,39–42], open
quantum systems [43–48], spin-boson models [49–51], and
interacting fermions [52–54]. In earlier literature on inter-
acting bosons in optical lattices [13,17,27,28,35,37], it was
argued that in a weakly interacting regime the semiclassical
approach can be used to describe the time evolution induced
by a sudden quench from a Mott-insulator state. However,
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the application of such semiclassical approaches to the three-
dimensional (3D) case at unit filling, which is the situation
realized in the experiment [21,22], has not been demonstrated
in practice. We apply a TWA technique, which was previously
used to study 1D Bose-Hubbard dynamics at a large-filling
factor [13,27,28], to the case of the 3D Bose-Hubbard model
initially prepared in a singly occupied Mott-insulator state. By
computing the time evolution of the kinetic and interaction
energies inside a weakly interacting regime, we will show that
the results obtained by our semiclassical approach agree well
with those observed in the experiment [21,22].

As a further application of the developed method, we study
dynamics of nonlocal spreading of density-density spatial
correlations after a sudden quench in the 2D Bose-Hubbard
model. Correlation spreading in 1D ultracold neutral atoms
has been discussed [7,55,56] in the context of the Lieb-
Robinson bound of nonrelativistic quantum many-body sys-
tems [57]. Both experiment and theory showed that in the
strongly interacting region the propagation speed of the corre-
lation spreading is bounded by the maximum group velocity
of particle-hole excitations. In addition, similar correlation
spreading at one dimension was also studied for trapped-ion or
interacting-spin systems [58–63]. More recently, correlation-
spreading dynamics at two dimensions have been analyzed
[22,41,64,65], whereas their quantitative properties are, how-
ever, less understood compared with the 1D case. In this paper,
within the semiclassical regime of the 2D Bose-Hubbard
model, we compute the time evolution of a density-density
correlation function at equal time by starting with either a
coherent state or a Mott-insulator state. We find that when
the system is initially prepared in a coherent state, a mean
propagation velocity of a wave packet in the correlation
function strongly depends on the final interaction. In contrast,
when the system is initially in a Mott-insulator state, a wave
packet in the correlation function propagates with a nearly
constant velocity with respect to the final interaction.

The remaining part of this paper is organized as follows: In
Sec. II, we introduce the Bose-Hubbard Hamiltonian, which
effectively describes ultracold bosonic atoms tightly trapped
by an optical-lattice potential, and explain the TWA method
for this model. In Sec. III, we discuss an application of the
TWA to the quench experiment at three dimensions [22]. In
Sec. IV, we analyze spreading dynamics of spatial density-
density correlations in a weakly interacting regime of the 2D
Bose-Hubbard model after a sudden quench from either a
coherent state or a Mott-insulator state. In Sec. V, conclusions
of this article are summarized.

II. TRUNCATED-WIGNER APPROXIMATION
FOR THE BOSE-HUBBARD HAMILTONIAN

In this paper, we investigate nonequilibrium dynamics of
ultracold bosonic atoms trapped in an optical lattice. Suppos-
ing that the lattice depth is sufficiently deep, the system is
effectively described by the single-band Bose-Hubbard model
[66,67],

Ĥ = −J
∑
〈 jk〉

(â†
j âk + H.c.) + U

2

∑
j

â†
j â

†
j â j â j . (1)

Here â j and â†
j are the annihilation and creation Bose op-

erators at each site with an index j. The bracket symbol
〈 jk〉 denotes nearest-neighbor pairs of the sites. The two en-
ergy scales J and U (> 0) characterize the tunneling between
nearest-neighbor sites and the on-site repulsive interaction.
When the mean density of atoms per site (filling factor) is inte-
ger, the model (1) exhibits a quantum phase transition between
the superfluid and Mott-insulator states [67,68]. The accurate
values of the transition points at unit filling have been obtained
with quasiexact numerical methods as (U/J )c = 3.367 (1D)
[69], (U/J )c = 16.74 (2D) [70], and (U/J )c = 29.34 (3D)
[71], respectively. In the following discussions, we write M
and Ntot as the total numbers of lattice points and atoms.

Let us briefly review the TWA method applied to the
Bose-Hubbard model. In terms of the phase-space method
defined in a 2M-dimensional phase space of a complex-valued
vector �α = (α1, α2, . . . , αM ), the time evolution of lattice
bosons can be described by a quasiprobability distribution,
i.e., the Wigner function W (�α,�α∗, t ), which is equivalent to
the Wigner-Weyl transform of the density operator ρ̂(t ) of the
system [23,25,26,43]. For the Bose-Hubbard model (1), the
equation of motion of W (�α,�α∗, t ) is given by

ih̄
∂

∂t
W (�α,�α∗, t ) = 2HW (�α,�α∗)sinh

(
�c

2

)
W (�α,�α∗, t ), (2)

where HW = (Ĥ )W is the Wigner-Weyl transform of Eq. (1)
[25,26]. The explicit form of HW is presented in Appendix A.
The symbol �c represents the symplectic operator working on
c-number functions defined in the phase space, and its explicit
form reads

�c =
∑

j

[ ←−
∂

∂α j

−→
∂

∂α∗
j

−
←−
∂

∂α∗
j

−→
∂

∂α j

]
. (3)

With use of the Wigner function, the time-dependent quantum
average of an operator �̂, defined by 〈�̂(t )〉 ≡ Tr[ρ̂0�̂(t )],
can be expressed as a phase-space averaged form [25,26]

〈�̂(t )〉 =
∫

d�αd�α∗W (�α,�α∗, t )�W (�α,�α∗), (4)

where d�αd�α∗ = π−M
∏

j dRe[α j]dIm[α j].
According to the previous literature [23,26], the TWA is

derived in a semiclassical expansion of the right-hand side of
Eq. (2) in the symplectic operator �c. If one eliminates higher-
order terms of order O(�3

c ) from the expansion series, then the
time evolution of the Wigner function is effectively generated
by the classical Liouville equation ih̄∂W/∂t ≈ {HW ,W }P.B..
Here the bracket {·, ·}P.B. denotes the Poisson bracket defined
in the phase space. In this approximation, the Wigner function
is conserved along characteristic trajectories, which are solu-
tions of the discrete Gross-Pitaevskii equation ih̄∂αcl, j/∂t =
∂HW /∂α∗

cl, j [26]. This statement is nothing but the Liouville
theorem in the classical statistical mechanics [23]. Using the
theorem, we find that the quantum average of �̂(t ) can be
reduced to a semiclassical form [25,26]

〈�̂(t )〉 ≈
∫

d�α0d�α∗
0W (�α0,�α

∗
0 )�W [�αcl(t ),�α∗

cl(t )], (5)

where �αcl(t ) is a solution of the Gross-Pitaevskii equation for
an initial classical field �α0. The initial classical fields distribute
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over the phase space according to the Wigner function of the
initial quantum state. Here we note that the classical field
scales with a square root of the filling factor n̄ = Ntot/M, so
that the expansion in �c is characterized by the inverse of n̄
[26].

The semiclassical approximation used in Eq. (5) yields
a quantum-fluctuation correction to a mean-field solution of
dynamics within the lowest order [29]. In a weakly fluctuating
regime, where an interaction parameter λ ≡ Un̄/J is far from
the quantum phase transition point λc, i.e., λ 	 λc, the TWA
quantitatively describes time evolution of the system until the
time t approaches a characteristic time scale tc [26–28]. When
λ is close to the critical value λc, the semiclassical treatment
breaks down at short time due to the strong fluctuations.
Since λc ∝ n̄2, larger n̄ and/or smaller U/J means larger tc
[27,28]. Especially at U/J = 0 or n̄ = ∞, the semiclassical
approximation becomes exact.

In typical experiments including the one in Refs. [21,22], n̄
is tuned to unity and λ is O(1). If one computes time evolution
of the 1D Bose-Hubbard model with n̄ = 1 and λ ∼ 1 within
the TWA, it fails in much shorter time than O(h̄/J ) because
of rather small λc(= 3.367). In contrast, for the 3D case with
the same parameters, it is expected that the TWA is able to
simulate the dynamics up to t ∼ h̄/J , because λ of O(1) is
sufficiently far from λc = 29.34. As we will see in Sec. III,
the TWA can reproduce characteristic early-time dynamics
observed in the experiment [22] until t ∼ h̄/J .

III. REDISTRIBUTION DYNAMICS OF THE KINETIC
AND INTERACTION ENERGIES

In this section, we apply the formalism of TWA for simu-
lating the nonequilibrium dynamics of Bose gases in a cubic
optical lattice observed in the experiment [21,22]. We numeri-
cally compute the time evolution of the kinetic and interaction
energies after a sudden quench from a singly occupied Mott-
insulator state into a weakly interacting regime.

A. Experimental setup

In the experiment of Refs. [21,22], a gas of 174Yb atoms
(bosons) is confined in a cubic optical lattice with lattice
spacing dlat = 266 nm. The typical energy scale of this system
is given by the recoil energy ER/h̄ = 2π × 4021.18 Hz. The
experimental protocol for studying quantum quench dynamics
is summarized as follows:

(i) One slowly ramps up the optical lattice depth V0 up to
V0 = 15ER, at which U/J = 99.4, in order to prepare a singly
occupied Mott insulator.

(ii) One abruptly ramps down the lattice depth from V0 =
15ER to V0 = 5ER in the ramp-down time tf = 0.1 ms in order
to prepare a state far from equilibrium. At the final depth,
implying that U/J = 3.41, the ground state is deeply in the
superfluid regime [71].

(iii) After the ramp-down process, one measures the time
evolution of ensemble averages of the kinetic energy K̂ =
−J

∑
〈 jk〉(â

†
j âk + H.c.) and the on-site interaction energy

Ô = U
2

∑
j â†

j â
†
j â j â j . The kinetic and interaction energies

are extracted from the time-of-flight imaging and the high-

resolution atom-number-projection spectroscopy, respectively
[72].

It is worth noting that although there is a parabolic trapping
potential in the real experiment [22], we neglect it in our
TWA calculations for the following reason: At the initial
Mott-insulator state, the particle density of the system is
almost uniform in space so that the initial quantum state is
well approximated as a direct-product wave function, which
is spatially uniform and composed of a local Fock state (see
Sec. III B). The trapping potential gives no noticeable effect
on the quench dynamics within the time window t � h̄/J ,
in which the experiment was performed, because the trap
frequency is much smaller than J/h̄.

B. Application of TWA to the quench experiment

Within the framework of TWA, the time-dependent
quantum-mechanical average of the kinetic and interaction
energies is approximated to a semiclassical form with the
deterministic Gross-Pitaevskii trajectory �αcl(t )

〈K̂ (t )〉 ≈
∫

d�α0d�α∗
0W (�α0,�α

∗
0 )KW [�αcl(t ),�α∗

cl(t )],

〈Ô(t )〉 ≈
∫

d�α0d�α∗
0W (�α0,�α

∗
0 )OW [�αcl(t ),�α∗

cl(t )],

where KW (�α,�α∗) and OW (�α,�α∗) are the Wigner-Weyl trans-
forms of K̂ and Ô, respectively. The explicit forms of
KW (�α,�α∗) and OW (�α,�α∗) can be derived by means of the
Bopp-operator representation of the bosonic operators â j →
α j + 1

2
∂

∂α∗
j

and â†
j → α∗

j − 1
2

∂
∂α j

[26], and their derivation is

demonstrated in Appendix A.
The initial state before the quench in the experiment can

be represented by a product-state wave function |	ini〉 =∏
j |n̄〉 j , where |n̄〉 j is a local Fock state characterized by

n̂ j |n̄〉 j = n̄|n̄〉 j . The corresponding Wigner function W (�α,�α∗)
is given by a direct product of the local Wigner function of the
Fock-state vector |n̄〉 j at each site, thus it reads [25,28,73,74]

W (�α,�α∗) =
∏

j

2e−2|α j |2 (−1)n̄Ln̄(4|α j |2), (6)

where Ln(x) = ∑n
r=0(−1)r n!

(n−r)!(r!)2 xr is the Laguerre poly-
nomial of order n. Here we parametrize the classical field as
α j = |α j |eiϕ j . This Wigner function is not positive definite
along a direction of the amplitude degrees of freedom |α j |,
except for a trivial case n̄ = 0. The phase of the classical field
ϕ j distributes uniformly in [0, 2π ]. The Wigner function has
an explicit U(1) symmetry reflecting the restored symmetry
inside the Mott-insulator state. In fact, a general phase shift
of the phase-space variables, α j → α jeiϕ̃ j , does not change in
the value of the Wigner function.

The negativity of Eq. (6) makes it difficult to obtain
converged results in numerically evaluating the phase-space
integration weighted by the Wigner function. For this reason,
in our numerical simulations, we adopt a Gaussian approxi-
mation for the exact Wigner function of a Fock state [73,74].
Repeating the discussions in the previous literature [73,74],
the Gaussian-Wigner function corresponding to a Fock-state
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vector |n̄〉 has a general form as

Wg(n) = 1√
2πσ 2

e−(1/2σ 2 )(n−n0 )2
, (7)

where n = |α|2. The mean n0 and covariance σ are free
parameters determined from the consistency that the Gaussian
function should exactly recover the first- and second-order
local moments of the density, i.e., 〈n̂ j〉 and 〈n̂2

j〉. From direct
calculations, we find that the optimal choice is n0 = n̄ + 1

2
and σ = 1

2 . It is worth noting that the (rescaled) higher-
order moments n̄−m〈n̂m

j 〉 for m > 2 computed by the Gaus-
sian function agree with the exact ones up to O(n̄−2) [74].
While the normalized Gaussian function can give rise to
an unphysical negative density, however, it does not affect
the phase-space average itself because the probability, which
corresponds to the Gaussian tail, is sufficiently small even at
n̄ = 1. In addition, a similar Gaussian approximation is often
used in literature of TWA studies [28,35,37,39,42,52,73,74]
and manifests its validity in the semiclassical descriptions of
short-time dynamics.

Now we summarize what should be analyzed in the TWA:
We solve time evolutions of a time-dependent Bose-Hubbard
model Ĥ [λ(t )] by using the TWA. At t = 0, the Hamilto-
nian has λ = λi = 99.4 corresponding to V0 = 15ER. In the
ramp-down process, λ(t ) decreases with V0(t ), which declines
linearly. Recall that the duration of the ramp-down process
is tf = 0.1 ms in the experiment. At t = tf , the lattice depth
reaches V0 = 5ER, which implies λ = λf = 3.41. At t > tf ,
the system evolves in time under the time-independent Hamil-
tonian Ĥ [λf ]. The phase-space averaging with the Wigner
function is evaluated by using the Monte Carlo integration,
where each initial configuration of the classical fields, �αcl(0),
is randomly chosen from the Gaussian-Wigner function (7).

Before proceeding to a numerical simulation correspond-
ing to the experimental setup, we discuss a simpler problem,
i.e., an infinitesimal-time limit of the ramp-down process (tf =
0). In this case, the Hamiltonian is always independent of time
at t > 0. Figure 1 depicts a numerical simulation of the kinetic
and interaction energies within TWA for tf = 0, where we
set Ntot = M = 123 and assume an open boundary condition.
We clearly see that the semiclassical approach captures fast
redistribution of the kinetic and interaction energies. The time
scale of the redistribution is on the order of 0.1 ms and
comparable to the experimental result. In addition, the sum
of the energies, i.e., Etot = 〈K̂ (t )〉 + 〈Ô(t )〉 completely main-
tains its initial value because the Hamiltonian of the system
is independent on time. We emphasize that the redistribution
dynamics presented in Fig. 1 cannot be recreated by means of
naive mean-field theories without fluctuations from a classical
configuration, such as the Gross-Pitaevskii theory and the
Gutzwiller variational method.

C. TWA versus experimental results

Here we take into account the finite-time ramp-down pro-
cess in V0(t ). The hopping strength J and the on-site interac-
tion strength U vary with V0(t ) as depicted in Fig. 2. We note
again that V0(t ) linearly decreases in time from V0(0) = 15ER

to V0(tf ) = 5ER where tf = 0.1 ms. In this process, the system
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FIG. 1. Semiclassical time evolution of the kinetic and on-site
interaction energies (green-dotted and blue-solid lines) after the
sudden quench from the singly occupied Mott-insulator state. We
do not deal with finite-time effects of the ramp-down process, i.e.,
tf = 0. The red-dashed line represents the total sum of these energies.
In the numerical simulation, we set Ntot = M = 123 and λf = 3.41.
In the current setup, 0.6 ms ≈ h̄/J , where J corresponds to the final
lattice depth. In this TWA simulation, we sampled nmc = 100 000
random initial conditions of the classical field according to Eq. (7).
Throughout this paper, we omit the standard error of the Monte Carlo
sampling, which scales with 1/

√
nmc, because for each simulation the

error is sufficiently small to be neglected.

passes through the Mott-insulating and the quantum critical
regimes where the quantitative validity of TWA is justified
only in rather short time t 	 O(h̄/J ). Nevertheless, our ap-
proach is expected to be able to explain the redistribution
dynamics after the quench because the system actually leaves
these regimes in the short time.

In Fig. 3, we show 〈K̂ (t )〉 and 〈Ô(t )〉 including the ramp-
down process. The numerical simulation is performed with
an open boundary condition and at M = Ntot = 303, which
is comparable to the size of the actual system. Compared
with the previous calculation in Sec. III B, the ramp-down
process significantly modifies the value of each energy at
t = tf . The total energy Etot decreases from zero. In addition,
the time scale for the saturation toward each quasisteady
value is slightly diminished. Due to such modifications, the
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FIG. 2. Dependence of (a) the hopping strength J and (b) the on-
site interaction strength U on the lattice depth V0. These quantities
are measured in the unit of the recoil energy ER.
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FIG. 3. Semiclassical time evolution of the kinetic and on-site
interaction energies (green-dotted and blue-solid lines) including the
ramp-down process from the singly occupied Mott-insulator state.
The red-dashed line represents the total sum of these energies. In
the numerical simulation, we set Ntot = M = 303 and λf = 3.41.
The horizontal axis starts from t = tf . In the TWA simulation, we
sampled nmc = 10 000 initial conditions according to Eq. (7). The
green-square, blue-triangular, and red-circle points represent the
corresponding experimental data of the ensemble-averaged kinetic,
on-site interaction, and total energies. The vertical bar for each point
indicates an experimental error.

semiclassical result including the ramp-down process agrees
very well with the experimental one, which is presented by
points with error bars in Fig. 3, without any fitting parameter.
The original experimental data are extracted from Ref. [21].
The detailed experimental setup will be provided in Ref. [22].

We conclude this section by making comments on the
limitation of our semiclassical approach to the experimental
system at intermediate final interactions and at unit filling.
Although the experiment is able to access a long-time regime
t � h̄/J , our approach is limited to simulate short-time dy-
namics up to t ∼ h̄/J . To develop an efficient tool which
allows one to study the long-time dynamics, e.g., relaxation
dynamics toward a thermal equilibrium state, remains to be
an open and challenging issue.

IV. SPATIAL-CORRELATION SPREADING AFTER
A SUDDEN QUENCH

In Sec. III, we corroborated the quantitative validity of
the TWA method for quantum quench dynamics of the 3D
Bose-Hubbard model in a weakly interacting regime (λ �
λc) starting with a Mott-insulator state. In this section, we
next apply our approach to investigate time evolutions of
spatial correlation spreading after sudden quenches in the 2D
Bose-Hubbard model. Especially, we consider two different
initial states, i.e., a coherent state, which is the ground state at
λ = 0, and a Mott-insulator state. We discuss their difference
emerging in the resulting dynamics after a sudden quench into
a weakly interacting regime.

In order to characterize spatial-correlation spreading, we
specifically deal with a density-density equal-time correlation

function defined by

Cd (t ) = 1

Mn̄2

∑
j

〈n̂ j (t )n̂ j+d (t )〉c, (8)

where d = (dx, dy) is a 2D relative vector between
two different sites. In the definition of the correlation
function, 〈. . . 〉c denotes a connected correlation func-
tion, i.e., 〈n̂ j (t )n̂ j+d (t )〉c = 〈n̂ j (t )n̂ j+d (t )〉 − 〈n̂ j (t )〉〈n̂ j+d (t )〉.
Within TWA, the connected correlator is approximated to

〈n̂ j (t )n̂ j+d (t )〉c ≈ n( j)
W (t )n( j+d )

W (t ) − n( j)
W (t ) n( j+d )

W (t ), (9)

where the overline on the right-hand side means the phase-
space average by use of the Wigner function of initial quantum
states. The c-number quantity n( j)

W represents the Wigner-Weyl
transform of the local density n̂ j , i.e., n( j)

W = |α j |2 − 1
2 . In

cold-atom experiments, the time evolution of the nonlocal
density-density correlation is measurable by utilizing the
quantum-gas microscope technique [7] or measuring spatial-
noise correlations in a time-of-flight interference pattern of
expanding gases [75,76].

A. Sudden quench from a coherent state

We begin with analyzing density-density correlation
spreading inside a superfluid regime assuming that the system
is initially in a direct-product state composed of the local
coherent states |ᾱ〉 j = eᾱâ†

j −ᾱ∗â j |0〉:
|	ini〉 =

∏
j

|ᾱ〉 j . (10)

Here, ᾱ = √
n̄eiϕ̄ parametrizes each coherent-state vector.

Calculating the Wigner-Weyl transform of this wave function
(10), we can obtain the corresponding Wigner function as
follows [26]:

W (�α,�α∗) =
∏

j

{
2e−2|α j−ᾱ|2 }. (11)

This Wigner function can take on non-negative values for
arbitrary α j , so that there is no difficulty in the Monte Carlo
sampling of the TWA. In the following discussions, we set
ϕ̄ = 0 for simplicity.

In order to keep the accuracy of TWA for a relatively long
time scale, here we choose n̄ = 10 in numerical simulations.
In addition, we impose periodic boundary conditions on the
system. Throughout this section, we suppose that the quench
is abruptly done for an infinitesimal time, for simplicity.

Before proceeding to our main results, we calculate the
energy deviation per site defined by

1

M
�E = 1

M
[〈	ini|Ĥf |	ini〉 − 〈Ĥf〉g], (12)

where Ĥf is the Hamiltonian at λ = λf and 〈Ĥf〉g means
the ground-state energy of Ĥf . We evaluate 〈Ĥf〉g within the
standard Bogoliubov approximation for the Bose-Hubbard
model as follows:

〈Ĥf〉g ≈ M

⎡
⎣E0 + 1

2M

∑
p �=0

(Ep − h̄ωp)

⎤
⎦, (13)
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FIG. 4. Energy deviation per site �E/(MJ ) of the coherent state
from the ground-state energy within the Bogoliubov approximation
as a function of λf , where n̄ = 10.

where p = (px, py) is a momentum in the first
Brillouin zone, E0 = −4Jn̄ + Un̄2/2, and h̄ωp =
Un̄ + 4J

∑
j=x,y sin2[p jdlat/(2h̄)]. In addition, Ep =√

(h̄ωp)2 − (n̄U )2 is the energy of the elementary excitations
(for more details, see Ref. [77]). Figure 4 shows �E/(MJ )
of the coherent state as a function of λf . Because �E/M
is less than the typical energy scale J over a wide range of
λf , the dynamics after the quench from the coherent state is
dominated by the low-energy elementary excitations from the
ground state, i.e., the Bogoliubov quasiparticles.

Figure 5 monitors how density-density correlations propa-
gate over the square lattice. In the numerical simulation, we
set λf = 2 and M = 202 at n̄ = 10. In addition, we character-
ize the correlation spreading by means of the usual Euclidean
distance defined by dE ≡ (d2

x + d2
y )1/2. In the time evolution,

we observe that a characteristic signal of correlation, i.e., a
wave packet enveloping maximum (blue circle) and minimum
(green square) peaks of a fine oscillation, propagates over the
square lattice in time. Such a fine oscillation can be interpreted
as a quasicoherent oscillation reflecting that a few elementary
excitations are created by the quench.

To quantify the correlation spreading, we extract a propa-
gation velocity of the wave packet from the numerical results
in the following manner. Let us denote the peak times of the
maximum and minimum values of the correlation as t+ and
t−, which are represented by the blue circles and the green
squares in Fig. 5. For a given Euclidean distance dE, we can
define a reasonable (instantaneous) propagation velocity vp as
a harmonic average of these peak times such that

vp ≡ dE

2

(
1

t+
+ 1

t−

)
, (14)

where dE/vp is regarded as an averaged peak time. In Fig. 6,
we indicate t+, t−, and dE/vp for different relative distances at
λf = 2 and λf = 4, respectively. It is found that the averaged
peak time almost linearly increases with dE. A linear fitting
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FIG. 5. Density-density correlation spreading after the sudden
quench from the coherent state at λf = 2. The blue circle and
green square indicate the maximum and minimum values of
the correlation function within tJ/h̄ � 3. The relative vector
d = (dx, dy ), Euclidean distance dE, and offset of correlation �d

take values of (dx, dy; dE; �d ) = (0, 1; 1.00; 0), (1, 1; 1.41; 1),
(0, 2; 2.00; 2), (1, 2; 2.24; 3), (2, 2; 2.83; 4), (0, 3; 3.00; 5),
(1, 3; 3.16; 6), (2, 3; 3.617), (0, 4; 4.00; 8) from the bottom to
top, respectively. In the TWA simulation, we sampled nmc = 40 000
initial conditions according to Eq. (11).

of the averaged peak times gives a mean propagation velocity
v̄p of the wave packet. In order to compute v̄p, we take into
account early 12 peaks in a time scale of t ∼ h̄/J , which are
found in Cd (t ) with dE < 5dlat .

Figure 7 shows the mean propagation velocity v̄p as a
function of the final interaction λf . In the same figure, we
also display twice the maximum and sound velocities of the
Bogoliubov excitations, 2vm and 2vs, which are expressed as

vm = max
p

⎧⎨
⎩

√(
∂Ep

∂ px

)2

+
(

∂Ep

∂ py

)2
⎫⎬
⎭,

vs = lim
p→0

⎧⎨
⎩

√(
∂Ep

∂ px

)2

+
(

∂Ep

∂ py

)2
⎫⎬
⎭.

Note that vm coincides with vs in the limit that λf � 1. It
is clearly observed in Fig. 7 that v̄p is bounded by twice
the maximum velocity 2vm over a range of λf ∈ [1, 5]. This
numerical result is consistent with the general one of the
Lieb-Robinson bound [57]. Furthermore, in the range of 1 �
λf � 3, the propagation velocity increases with λf in such a
way that the points come close to 2vs. This feature can be
attributed to the fact that the quench actually creates some
elementary excitations at Ep 	 J , where the Bogoliubov ex-
citations behave as phonons, because the energy deviation is
relatively small (see Fig. 4).
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FIG. 6. Maximum (left column), minimum (center column), and averaged (right column) peak times extracted from the TWA simulations.
The vertical and horizontal axes express the peak time and Euclidean distance. The upper and lower rows correspond to λf = 2 and λf = 4,
respectively.
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FIG. 7. Final interaction dependence of the mean propagation
velocity v̄p (circle). The solid and dashed lines represent twice the
sound (2vs) and maximum (2vm) velocities of the Bogoliubov excita-
tion, respectively. The horizontal axis expresses the final interaction
λf . The vertical bar indicates the normal estimation error of the mean
propagation velocity in the linear fitting (see also Fig. 6).

In contrast, in the range of 3 < λf � 5, the mean propaga-
tion velocity significantly deviates from 2vs. In this regime,
elementary excitations with Ep ∼ J can be generated because
the energy deviation per particle is comparable to J as seen
in Fig. 4. In addition, the computed propagation velocity has
a large estimation error of the linear fitting. The large error is
actually due to an exceptional point in, e.g., Cd (t ) at dE = 3
and λf = 4 (see Fig. 6) that the maximum peak arises after
the growth of the minimum one. Similar points also appear at
λf = 5.

We conclude this subsection with comments on a previous
study on similar quench dynamics of the 2D Bose-Hubbard
model, which uses a time-dependent variational Monte Carlo
approach [64]. In Ref. [64], Carleo and co-workers calculated
the density-density correlation function in a weakly interact-
ing regime starting from a superfluid ground state at n̄ = 1.
Figure 2(b) of Ref. [64] implies an unphysical result that the
propagation velocity is much greater than twice the maximum
one of the elementary excitation in the regime. While it seems
to contradict the Lieb-Robinson bound, the crucial reason for
such a fast propagation has not been mentioned in their paper.
To characterize the wave-front motion of the correlation on
the square lattice, in Ref. [64], the propagation velocity was
evaluated in terms of the Manhattan distance dM ≡ |dx| + |dy|
[64,78]. It is worth emphasizing that if we redefine v̄p by the
Manhattan distance instead of the Euclidean one in our TWA
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FIG. 8. Density-density correlation spreading after the sudden
quench from the Mott-insulator state at λf = 2. The green square
indicates the minimum peak of the correlation signal. The
relative vector d = (dx, dy ), Euclidean distance dE, and offset of
correlation �d take values of (dx, dy; dE; �d ) = (0, 1; 1.00; 0),
(1, 1; 1.41; 1), (0, 2; 2.00; 2), (1, 2; 2.24; 3), (2, 2; 2.83; 4),
(0, 3; 3.00; 5), (1, 3; 3.16; 6), (2, 3; 3.617), (0, 4; 4.00; 8) from
the bottom to top, respectively. In the TWA simulation, we sampled
nmc = 10 000 initial conditions according to Eq. (7).

results, it leads to a similar fast propagation as in Ref. [64].
Hence, we argue that the fast propagation beyond twice the
maximum velocity seen in Ref. [64] is actually due to the
unsuitable choice of the distance to define a propagation
velocity.

B. Quench from a Mott-insulator state across
a quantum phase transition

We now discuss a sudden quench from a Mott-insulator
state and keep track of density-density correlation spreading,
which occurs inside a weakly interacting regime. Note that
the initial state corresponds to the ground state of the system
at λ = ∞.

Figure 8 displays the TWA simulation of the density-
density correlation after the sudden quench from the Mott-
insulator state with n̄ = 10 at λf = 2 and M = 202. For the
simulation, we utilize the approximate Wigner function (7). In
the result, we can observe a different behavior from the case
of the coherent state that a wave packet propagates as a single-
peak signal with no fine oscillation in the correlation function.
In this case, the velocity of the wave packet can be directly
estimated from the activation time of the minimum peak itself.
In Fig. 9, we extract the peak times from the correlation
signals at λf = 2 and λf = 4, respectively. In Fig. 10, we show
the propagation velocity v̄p extracted from Fig. 9 as a function
of λf and compare it with the results for the coherent state.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1  1.5  2  2.5  3  3.5  4  4.5

P
ea

k 
tim

e 
(u

ni
ts

 o
f h̄

/J
)

Euclidean distance (units of dlat)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1  1.5  2  2.5  3  3.5  4  4.5

P
ea

k 
tim

e 
(u

ni
ts

 o
f h̄

/J
)

Euclidean distance (units of dlat)

(a) (b)

FIG. 9. Extracted peak times from the correlation signals at (a)
λf = 2 and (b) λf = 4 quenched from the Mott-insulator state. The
vertical and horizontal axes indicate the peak time and Euclidean
distance, respectively.

Figure 10 reveals that v̄p is approximately independent of λf

in contrast to the coherent-state case.
This qualitative difference can be understood as follows.

The Mott insulator state has much larger energy deviation
than that of the coherent state as shown in Fig. 11. This
means that the Bogoliubov excitations, which are elementary
excitations of the system in the presence of condensates, are
no longer relevant to such high-energy dynamics. The sudden
quench kicks single-particle excitations with various momenta
from the initial density configuration of the Mott insulator
state. The absence of the fine oscillation inside the wave
packet can be regarded as reflecting an incoherent motion
joined by many single-particle excitations. In addition, the
single-particle picture can also explain the nearly constant
velocity of the correlation spreading. Specifically, within the
Hartree-Fock approximation for the Bose particles, the group
velocity of the single-particle excitation is independent of U
because the interaction effect poses only a constant shift to the
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FIG. 10. Final interaction dependence of the mean propagation
velocity v̄p (red circle). The blue square represents the result of the
case of the coherent state shown in Fig. 6. The vertical bar indicates
the normal estimation error of the linear fitting of the peak times.

023622-8



SEMICLASSICAL QUENCH DYNAMICS OF BOSE GASES … PHYSICAL REVIEW A 99, 023622 (2019)

Coherent state

Mott insulator

FIG. 11. Energy deviation �E/(MJ ) of the Mott-insulator state
from the ground-state energy per site of the Hamiltonian at λ = λf

(red-dashed line). The blue-solid line (same as the one in Fig. 4)
represents the energy deviation when the system is initially prepared
in the coherent state.

noninteracting band [79]. In Appendix B, we will verify this
property by applying the Hartree-Fock approximation to the
two-particle Green’s function of bosons.

V. CONCLUSIONS

In conclusion, we studied the time evolution of the 2D and
3D Bose-Hubbard models after a sudden quench to a weakly
interacting regime by using the semiclassical TWA method.
We applied the TWA to analyze the redistribution dynamics
of the kinetic and on-site interaction energies after a quench
from the singly occupied Mott insulator state in the 3D Bose-
Hubbard model. It was reported that our semiclassical result
agrees very well with the experimental one without any fitting
parameter.

We also studied the density-density correlation spreading
after a sudden quench in the 2D Bose-Hubbard model at a
large filling factor. We numerically showed that when the
system is initially prepared in the coherent state, then the
mean propagation velocity of the correlation wave packet
strongly depends on the final interaction strength reflecting
the properties of the low-energy elementary excitation in the
weakly interacting regime. In contrast, we found that when
the initial quantum state is the Mott insulator state, then the
mean propagation velocity is almost independent of the final
interaction. We also provided a physical interpretation to such
a result in terms of the property of the high-energy single-
particle excitations.

In a future work, we will develop a similar semiclassical
approach making it possible to examine correlation spreading
in strongly correlated regime of the Bose-Hubbard system.
For the purpose, we will generalize the SU(N ) TWA method
originally made for interacting spin systems [39,42].
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APPENDIX A: WIGNER-WEYL TRANSFORM
IN THE COHERENT-STATE PHASE SPACE

In this appendix, we supplement the detailed derivation
of the Wigner-Weyl transform of the kinetic-energy opera-
tor, the on-site interaction operator, and the Bose-Hubbard
Hamiltonian, i.e., KW , OW , and HW = KW + OW , and show
their explicit forms. One of the simplest ways to derive
them is to use the Bopp-operator representation of â j and â†

j
[26], which replaces the quantum-mechanical operators with
the corresponding phase-space operators acting on classical
functions in the coherent-state phase space such that

â j → α j + 1

2

∂

∂α∗
j

, â†
j → α∗

j − 1

2

∂

∂α j
. (A1)

We can also obtain the same classical functions through di-
rectly evaluating the definition of the Wigner-Weyl transform
[26], i.e.,

�W (�α∗,�α) = 1

2M

∫
d�η∗d�η

〈
�α − �η

2

∣∣∣∣�̂
∣∣∣∣�α + �η

2

〉

× exp

⎧⎨
⎩1

2

∑
j

(η∗
j α j − η jα

∗
j )

⎫⎬
⎭

=
∫

d�η∗d�η Tr{�̂D̂(�η)}e
∑

j (η
∗
j α j−α∗

j η j ),

where D̂(�α) = e
∑

j α j â
†
j −α∗

j â j is the displacement operator with
a complex vector �α. In this appendix, the former approach
based on the Bopp operators is adopted to obtain KW , OW ,
and HW .

For given operator products, here we particularly choose
â†

j âk (for j �= k), â†
j â j , and â†

j â
†
j â j â j , the Bopp operators map

them into corresponding classical functions as follows:

â†
j âk → α∗

j αk (for j �= k), (A2)

â†
j â j →

(
α∗

j − 1

2

∂

∂α j

)(
α j + 1

2

∂

∂α∗
j

)
1

= |α j |2 − 1

2
, (A3)
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â†
j â

†
j â j â j →

(
α∗

j − 1

2

∂

∂α j

)(
α∗

j − 1

2

∂

∂α j

)
α2

j

= |α j |4 − 2|α j |2 + 1

2
. (A4)

Using the above results, we obtain the following classical
functions corresponding K̂ , Ô, and Ĥ :

KW = −J
∑
〈 jk〉

[α∗
j αk + c.c.], (A5)

OW = U

2

∑
j

[
|α j |4 − 2|α j |2 + 1

2

]
, (A6)

HW = −J
∑
〈 jk〉

[α∗
j αk + c.c.] + U

2

∑
j

[
|α j |4 − 2|α j |2 + 1

2

]

= KW + OW . (A7)

APPENDIX B: HARTREE-FOCK APPROXIMATION
FOR THE TWO-PARTICLE GREEN’S FUNCTION

According to Ref. [80], we apply the Hartree-Fock ap-
proximation (HFA) to the two-particle Green’s function in
the Bose-Hubbard model. We assume that the system has a
spatially uniform density: 〈n̂ j (0)〉 = 〈n̂ j (t )〉 = n̄. To simplify
the following discussion, we deal with the 1D system. The
main result of this appendix [Eq. (B2)] is independent of the
dimensionality.

We consider the one- and two-particle Green’s function of
the lattice bosons,

Gj, j′ (t, t ′) = 1

i
〈T {â j (t )â†

j′ (t
′)}〉,

G(2)
j1, j2, j′1, j′2

(t1, t2, t ′
1, t ′

2) = 1

i2

〈
T

{
â j1 (t1)â j2 (t2)â†

j′2
(t ′

2)â†
j′1

(t ′
1)

}〉
,

where T {. . . } indicates a chronological-time ordering for
operator products inside the bracket. From the Heisenberg
equation for â j (t ), Gj, j′ (t, t ′) obeys the following equation of
motion:

ih̄
∂

∂t
G j, j′ (t, t ′) + JGj+1, j′ (t, t ′) + JGj−1, j′ (t, t ′)

− iU G(2)
j, j, j′, j (t, t1, t ′, t1 + δ)

∣∣∣
t1=t

= h̄δ(t − t ′)δ j, j′ ,

where δ is a positive and infinitesimal shift.
In the HFA, G(2)

j, j, j′, j (t, t1, t ′, t1 + δ) is factorized into two
parts as follows:

G(2)
j, j, j′, j (t, t1, t ′, t1 + δ) = Gj, j′ (t, t ′)Gj, j (t1, t1 + δ)

+ Gj, j (t, t1 + δ)Gj, j′ (t1, t ′).

This treatment can be regarded as a mean-field approximation,
where any correlations between two indistinguishable bosons
are neglected [80]. At t1 = t , we find that

Gj, j (t, t1 + δ) = Gj, j (t1, t1 + δ) = −i〈n̂ j (t )〉 = −in̄.

Thus, the equation of motion results in a closed equation:{
ih̄

∂

∂t
− 2Un̄

}
Gj, j′ (t, t ′) + JGj+1, j′ (t, t ′) + JGj−1, j′ (t, t ′)

= h̄δ(t − t ′)δ j, j′ . (B1)

This equation means a constant shift of the pole of the one-
particle Green’s function as

εfree(p) → εfree(p) + 2Un̄, (B2)

where εfree(p) = −2Jcos(pdlat/h̄) is the single-particle dis-
persion at U = 0. This result says that the interaction does
not change the group velocity of the single-particle excitation
within the HFA.
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