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Parametric resonance of a Bose-Einstein condensate in a ring trap with periodically
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We study the instability of a ring Bose-Einstein condensate under a periodic modulation of interatomic
interactions. The condensate exhibits temporal and spatial patterns induced by the parametric resonance,
which can be characterized by Bogoliubov quasiparticle excitations in the Floquet basis. As the ring geometry
significantly limits the number of excitable Bogoliubov modes, we are able to capture the nonlinear dynamics
of the condensate using a three-mode model. We further demonstrate the robustness of the temporal and spatial
patterns against disorder, which is attributed to the mode-locking mechanism under the ring geometry. Our results
can be observed in cold atomic systems and are also relevant to physical systems described by the nonlinear
Schrödinger equation.
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I. INTRODUCTION

A uniform system under periodic parametric modulation in
time can become unstable and develop a spatial pattern [1].
During such a process, known as the parametric resonance
[2], the spontaneous breaking of the spatial translational sym-
metry is typically accompanied by the breaking of discrete
temporal translational symmetry, in the sense that the system
acquires a periodic time evolution at different frequencies
compared to the driving frequency [1,2]. Whereas the con-
dition for the occurrence of the parametric resonance is deter-
mined by intrinsic properties of a system, the phenomena have
been experimentally observed in systems ranging from liquids
[1,3] and solid-state configurations [4–6] to Bose-Einstein
condensates in oscillating traps [7]. Parametric resonance
and the ensuing dynamics have also been under extensive
theoretical study in a variety of distinct configurations [8–27].
Further, it has been shown that parametric resonance can be
suppressed by introducing space- and time-modulated poten-
tials [28,29]. In most of these previous studies, the geometry
of the system and the boundary condition typically play a
minor role. However, since the system geometry as well as
the boundary condition have direct impacts on the form and
the availability of the elementary quasiparticle excitations,
engineering the system geometry is a promising route toward
a better understanding and control of the dynamic instability
following a parametric resonance.

In this work, we study the dynamic instability of a quasi-
one-dimensional Bose-Einstein condensate in a ring trap,
where we identify a robust mode-locking mechanism under
the ring geometry. Under a small temporal periodic mod-
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ulation of the interatomic s-wave interactions, the uniform
condensate can become unstable against temporal and spatial
patterns due to the parametric resonance. We clarify the onset
of the resonance and the ensuing dynamics by examining the
Bogoliubov quasiparticle excitations in the Floquet basis, and
find that the dynamics is dominated by a very limited number
of Bogoliubov modes under the ring geometry. The system
geometry thus not only significantly impacts the resonance
condition, but also suppresses higher-order excitations across
multiple Floquet bands. This enables us to reproduce the
nonlinear dynamics using a simplified three-mode model [25].

Based on the three-mode model, we find that the overall
time evolution is quasiperiodic with rich phase-space con-
tours. At short times, the condensate undergoes the so-called
1/2 subharmonic resonance, where the condensate oscillates
with twice the period of the driving frequency. While similar
subharmonic resonances exist in optical fibers with modula-
tions in the mass term [25], in our case, such a behavior can be
explained by considering the scattering of condensate atoms
into Bogoliubov modes of two adjacent Floquet bands, where
the wave vectors of these Bogoliubov modes further deter-
mine the spatial pattern. The amplitude of the fast oscillatory
dynamics is subject to a slow periodic modulation, due to the
nonlinearity of the system. Most interestingly, as a result of
the mode-locking mechanism enforced by the ring geometry,
both the short-time and the spatial oscillatory patterns are ro-
bust against disorder. We also discuss the gradual breakdown
of the mode-locking mechanism as the temporal modulation
increases. Our results shed new light on parametric resonance
in ultracold atoms, and suggest how system geometry can be
utilized for the control of parametric resonance.

The work is organized as follows. In Sec. II, we define
the problem and demonstrate the occurrence of parametric
resonance using full numerical calculations. We then provide
a physical picture by analyzing the quasiparticle spectra using
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FIG. 1. Illustration of the ring-trap geometry. See text for
detailed discussions.

Floquet theory in Sec. III. In Sec. IV, we adopt a simplified
three-mode approximation based on our understanding and
map out the dynamic phase diagram of the system. We explain
the geometric mode selection by demonstrating the robustness
of the mode-selection mechanism against disorder in Sec. V.
Finally, we summarize in Sec. VI.

II. MODEL AND GROSS-PITAEVSKII EQUATION

As illustrated in Fig. 1, we consider a Bose-Einstein con-
densate in a ring-shaped toroidal trap of radius R and cross
section S. Such a configuration can be implemented, for
example, by applying a blue-detuned laser as a “plug beam”
on top of a magnetic trap [30]. The overall trapping potential
can be written as V (r) = 1

2 M
∑

i=x,y,z ω2
i r2

i + V0 exp ( − 2r2

w2
0

),
where ωi is the angular trapping frequency along the corre-
sponding axis, r2 = ∑

i=x,y r2
i , w0 is the waist of the plug

beam, and V0 is its strength. We assume that the condensate
is tightly confined in the poloidal direction, and is uniform
in the toroidal direction. Then, setting ωx = ωy = ωρ and
Taylor expanding the potential around the potential minima
r = R and rz = 0, we have V (r, rz ) ≈ V (R, 0) + M

2 [ω2
r (r −

R)2 + ω2
z r2

z ], where ωr = 2ωρR/w0 and R2 = w2
0

2 ln ( 4V0

Mω2
ρw2

0
).

The parametric resonance is introduced by periodically mod-
ulating the s-wave interaction strength of the atoms, which
can be achieved, for example, by implementing an oscillating
magnetic field near a magnetic Feshbach resonance [31]. In
the limit

√
h̄/Mωr,

√
h̄/Mωz � R, the dimensionless Hamil-

tonian of the system can be written as

Ĥ =
∫ 2π

0
dθ η

[
− λψ̂†(θ )

∂2

∂θ2
ψ̂ (θ )

+ π f (t )

N
ψ̂†(θ )ψ̂†(θ )ψ̂ (θ )ψ̂ (θ )

]
, (1)

where η = sgn(as), ψ̂ and ψ̂† are the field operators
for the condensate, θ is the azimuthal angle, and λ =
π h̄/(2MNR

√
ωrωzas). The quasi-one-dimensional interac-

tion strength g̃ = 2Nh̄
√

ωrωzas/R, with the three-dimensional
scattering length as and the total atom number N . The time-
modulated interaction f (t ) = 1 + α cos(ωt ), where we as-
sume α � 1. In writing down the Hamiltonian (1) and for the
rest of our work, we take R as the unit of length, and the units
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FIG. 2. (a) Response of the condensate density |ψ (0, t )|2 in
the resonance regime under a driving frequency ω = 17.59. (b)
Response of the condensate density in the nonresonant regime un-
der a driving frequency ω = 17.69. (c) The spatial-temporal pat-
terns in the resonance regime with ω = 17.59. The spatial pattern
here has a period of 0.04π , which corresponds to a wave vector
k = 50. (d) Fourier spectrum of the condensate density I (ν ) =∫ |ψ (0, t )|2e−iνt dt under a driving frequency ω = 2εk . In all panels,
α = 0.1, λ = 2π/2000.

of energy and time are respectively taken as ε0 = |g̃|/2π and
t0 = 2π h̄/|g̃|. To connect with experiments, we take typical
parameters of 87Rb atoms, with N = 2600, as/a0 = 98.09,
ωr = 2π × 540 Hz, and ωz = 2π × 338 Hz. We also take
R = 10 μm, which can be tuned and determined by V0 and w0.
We then have λ = 2π/2000, and the corresponding healing
length is given by ξ = ( 4MN

√
ωrωzas

πRh̄ )−1/2 = 0.396 μm.
The dynamics of the condensate is determined by the

dimensionless Gross-Pitaevskii (GP) equation,

i
∂

∂t
ψ = η

[
−λ

∂2

∂θ2
+ 2π f (t )|ψ |2

]
ψ, (2)

where ψ = 1√
N
〈ψ̂〉, with the normalization condition∫ 2π

0 |ψ |2dθ = 1. In the absence of interaction modulation,
the ground state of the condensate is uniform and stable so
long as λ < −2 or λ > 0. When −2 < λ < 0, the ground
state supports a soliton solution [32]. Throughout this work,
we will focus on the simpler case of λ > 0.

We numerically study the dynamic response of the con-
densate density to the external modulation by evolving the
GP equation, starting from a uniform condensate. When the
frequency of the time modulation is within a narrow resonance
region, the originally uniform condensate becomes unstable
toward the formation of spatial and temporal patterns [see
Figs. 2(a) and 2(c)]. This is in sharp contrast to the system
response at most modulation frequencies, where condensate
would be only slightly perturbed [see Fig. 2(b)]. We note
that, due to the ring geometry, the dimensionless wave vec-
tor associated with the spatial pattern is an integer. In the
resonance region, the dynamic response of the condensate is
quasiperiodic, which features fast oscillations enveloped by
a periodic amplitude modulation at a much longer timescale.
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The Fourier spectrum of the condensate density features sharp
peaks at ±ω/2 [see Fig. 2(d)], which corresponds to a 1/2
subharmonic oscillation.

III. FLOQUET ANALYSIS OF THE QUASIPARTICLE
SPECTRUM

To understand the dynamic response of the system follow-
ing the parametric resonance, we study the quasiparticle ex-
citation of the condensate. Following the Bogoliubov theory,
we expand the condensate wave function as ψ = ψ0 + δψ ,
where ψ0 = 1√

2π
exp [ − iμt − i α

ω
sin (ωt )] is the solution of

the GP equation (2) in the homogeneous case. As we focus
on the case of small perturbation with α � 1, we only keep
terms up to linear order in δψ , which satisfies

i
∂

∂t
δψ =

[
−λ

∂2

∂θ2
+ 4π f (t )|ψ0|2

]
δψ + 2π f (t )ψ2

0 δψ∗.

(3)

We write δψ in the Floquet basis as δψ (θ, t ) =
ψ0[u(θ, t )e−iεt − v∗(θ, t )eiεt ], where u(θ, t ) =∑

m um(θ )eimωt and v(θ, t ) = ∑
m vm(θ )eimωt . Here m ∈ Z is

the index for the Floquet bands. The quasiparticle spectrum ε

and the Bogoliubov coefficients {um(θ ), vm(θ )} can be solved
by diagonalizing the coefficient matrix in the Floquet basis
[33,34].

Instead of numerically diagonalizing the coefficient matrix,
we perform the Bogoliubov transformation associated with
the time-independent case to the coefficient matrix in momen-
tum space. The diagonal elements in the mth Floquet band
then become ±εp + mω, where εp =

√
(λp2 + 1)2 − 1 and p

is the dimensionless momentum. The off-diagonal elements,
which couple different Floquet bands, are proportional to α

and hence small when the modulation is weak. From the full
GP-equation calculations, we find that under the parametric
resonance the dimensionless wave vector k associated with
the emergent spatial pattern satisfies ω ≈ 2εk . This motivates
us to focus on the momentum space close to k. In this regime,
the energy gap within a given Floquet band is much larger
than the energy gap between two neighboring bands. It is
then sufficient to consider pairwise the interband coupling
between the mth and the (m − 1)th Floquet bands. Under such
an approximation, we derive the dressed quasiparticle spectra
from (see Appendix A )[ −εp + mω 1

2 (rp + sp)2α

− 1
2 (rp + sp)2α εp + (m − 1)ω

][
vm

um−1

]
= ε

[
vm

um−1

]
,

(4)

where the Bogoliubov modes in the mth and the (m − 1)th
Floquet bands are coupled. Here, [rp, sp]T is the eigenvector
in the α = 0 case with the eigenvalue εp.

The quasiparticle spectra is then given by

ε =
(

m − 1

2

)
ω ± i

2

√
(rp + sp)4α2 − (ω − 2εp)2, (5)

where it is apparent that the quasiparticle energy acquires
an imaginary part when |ω − 2εp| < (rp + sp)2α. This cor-
responds to the dynamic instability of the system. The para-
metric resonance occurs when a discrete k under the ring

p

m=0

m=-1

m=-2

×

×

FIG. 3. Schematics on the scattering processes in a parametric
resonance. Solid curves represent Bologliubov spectra in different
Floquet bands with indices m = 0 (blue) and m = −1, −2 (red).
While circles on the spectra represent available states under the ring
geometry, the filled and open circles correspond, respectively, to the
occupied and empty states in the scattering process. The black arrows
indicate the dominant scattering process in a parametric resonance.
The blue dashed arrows indicate higher-order scattering processes,
which only occur when α becomes appreciable. The red arrows
indicate higher-order scattering processes which are forbidden by the
ring geometry.

geometry happens to be lying in the narrow region |ω −
2εp| < (rp + sp)2α for any given modulation frequency ω.
This requirement not only significantly limits the available
resonance region, but also suppresses higher-order scattering
processes with nω ≈ 2εp (n = 2, 3, . . . ). We note that this
is quite different from previous studies of the parametric
resonance.

The condition for parametric resonance can be understood
in terms of interband phonon scattering between different
quasiparticle branches. As illustrated in Fig. 3, a pair of
condensed atoms in the m = 0 Floquet band are scattered out
of the condensate and into quasiparticle states with opposite
momenta in Floquet bands m = 0 and m = −1. As a result
of the quasiparticle-pair excitation, a standing wave should
emerge in the condensate, whose wave vector is determined by
the discrete wave vector k satisfying |ω − 2εk| < (rk + sk )2α.
Under such a mode-locking mechanism, the system develops
temporal oscillations with frequencies sharply centered at
−ω/2. These analyses are in excellent agreement with the
numerical results in Fig. 2.

IV. THREE-MODE MODEL AND LONG-TIME DYNAMICS

The mode-locking mechanism of the ring geometry sug-
gests that we should be able to capture the dominant dynamics
of the system using a simplified three-mode model, which
only takes into account the condensate mode p = 0 and the
two quasiparticle modes p = ±k.

We start from the second-quantized Hamiltonian

H =
∑

p

λp2a†
pap + f (t )

2N

∑
p,p′,q

a†
p+qa†

p′−qap′ap, (6)
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FIG. 4. Comparison of dynamics under the three-mode approx-
imation (top row) and under the full GP evolution (bottom row).
(a) and (b) Phase-plane contours of the dynamics under the three-
mode approximation, with α = 0.1 and driving frequencies (a) ω =
17.59 and (b) ω = 17.69. In both cases, the resonant wave vector
is k = 50. (c) and (d) Phase evolution from the full GP equation
(2), with initial occupations ρk = 1 × 10−4 (blue), ρk = 0.027 (red),
ρk = 0.028 (orange), and ρk = 0.040 (purple) under driving frequen-
cies (c) ω = 17.59 and (d) ω = 17.69.

where ap (a†
p) is the annihilation (creation) operator for atoms

with momentum p. Under the three-mode approximation
discussed above, we only retain operators with p = 0,±k.
Applying the Heisenberg equations of motion for the oper-
ators {â0, âk, â−k}, and taking the mean-field approximation
â j = √

n jeiθ j (t ) ( j = 0,±k), we have (see Appendix B )

ρ̇k = 2 f (1 − 2ρk )ρk sin ϕ, (7)

ϕ̇ = 2λk2 + 2 f (1 − 3ρk ) + 2 f (1 − 4ρk ) cos ϕ. (8)

Here, ρ j = n j/N , ϕ = (2θ0 − θk − θ−k ), and N = n0 + 2nk is
the total atom number. Note that we have assumed nk = n−k ,
due to the symmetry of the scattering process.

The nonlinear equations (7) and (8) resemble those char-
acterizing the non-rigid-pendulum motion of the dynamics of
spinor condensates [35–37]. Similar to the practice therein, we
characterize the system dynamics by calculating the phase-
plane contour. From Eq. (8), it is apparent that ϕ under-
goes rapid oscillatory motion with a frequency 2λk2 + 2(1 −
3〈ρk〉t ), which is essentially the fast oscillation we see in
Fig. 2(c). We therefore define ϕ̃ = ϕ − ωt , and characterize
the long-term dynamics of the system with contour plots on
the ρk-ϕ̃ plane. As shown in in Figs. 4(a) and 4(b), the dy-
namics can be roughly classified as a self-trapping phase with
closed contours and “localized” ϕ̃, and a running phase with ϕ̃

taking values from −π to π . Whereas the long-time dynamics
is characterized by the system going around a given contour
in Fig. 4(a), the occurrence of the parametric resonance is
indicated by the existence of the self-trapping phase in the
contour plot. We note that dynamics and phase-plane con-
tours obtained from the three-mode approximation can be
reproduced by evolving the GP equation (2), as illustrated in
Figs. 4(c) and 4(d).
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FIG. 5. (a) and (b) Comparison of ρk between results from the
GP equation (2) (blue) and under the three-mode approximation
(red), with the parameters (a) α = 0.1 and (b) α = 0.5. (c) Popu-
lation of modes other than p = 0, ±50 as a function of α, calculated
using the GP equation. Here ρ = 1 − ρ0 − 2ρk . (d) Fourier spectrum
of the condensate density I (ν ) with α = 0.1 (blue) and α = 0.5 (red).
Here, ω = 17.59.

Our analysis so far is based on the perturbation theory,
assuming small temporal modulations. As the modulation
amplitude α increases, the mode-locking mechanism would
eventually break down. To understand the process, we study
the response of the system with larger α by solving the GP
equation (9). As shown in Figs. 5(a) and 5(b), the three-
mode approximation faithfully reproduces results from the
GP equation at a small α, but significantly deviates from the
solution from GP equation for a larger α, particularly at long
times. This is due to the occupation of modes other than 0,±k,
induced by higher-order scattering processes under the large
modulation amplitude. In Fig. 5(c), we show the population
of these other modes as a function of α. As α increases, the
occupation of modes other than 0,±k increases only slightly.
Their impact on the overall dynamics as illustrated in Fig. 5(d)
therefore illustrates the highly nonlinear nature of the system.

The impact of these other excitation mode is reflected in
the Fourier spectrum of the condensate density. In Fig. 5(d),
we show the spectrum at α = 1. Besides the parametric res-
onance peak near ν/ω = −0.5, we identify several smaller
peaks at higher frequencies, which correspond to higher-order
interband scattering processes. As illustrated in Fig. 3, these
higher-order processes give rise to small occupations at vari-
ous momenta of different Floquet bands. The interference be-
tween these modes then contribute to the peaks in the Fourier
spectrum. For example, the leading-order contribution to the
peak near ν/ω = −2 comes from the interference between the
condensate at k = 0 and excitations in the m = −2 band at
k = 0.

V. ROBUSTNESS OF THE MODE-LOCKING MECHANISM

A unique feature of our system is the robustness of both
the temporal and spatial patterns against disorder. This is due
to the mode-locking mechanism under the ring geometry. To
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FIG. 6. Fourier spectra of the condensate density I (ν ): (a) Vd = 0
with q = 0 (blue solid) and q = 0.2 (red dashed); (b) q = 0 with
Vd = 0 (blue solid) and Vd = 0.05 (red dashed). The results are
similar for I (ν ) near ν = ω/2. Insets show zoomed-up figures near
ν = −ω/2.

demonstrate this, we introduce a disordered GP equation,

i∂tψ =[−λ∂2
θ +V (θ )+2π f (t ){1+α cos(ωt ) cos(qθ )}|ψ |2]ψ,

(9)

where V (θ ) = Vd g(θ ) is a random potential in space with
its strength Vd , and g(θ ) is the normal distribution. Another
source of disorder comes from the term cos(qθ ) in the in-
teraction, which gives a finite momentum transfer q to the
scattering processes in Fig. 2. We numerically evolve the full
GP equation (9), and plot the Fourier spectrum of the resulting
dynamics. As illustrated in Figs. 6(a) and 6(b), the dominant
peak at −ω/2 is robust against both types of disorder. On
the other hand, as the spatial pattern is dictated by wave
vectors of the Bogoliubov modes responsible for the fast
oscillatory dynamics, it is also robust against both types of
disorder. In contrast, the long-time slow dynamics, being a
result of nonlinearity, is not robust against disorder. Under
strong enough disorder, the overall phase-plane features in
Fig. 4 would disappear, which occurs only gradually with
increasing strength of disorder.

VI. CONCLUSIONS

We have studied the parametric resonance of a Bose-
Einstein condensate in a ring geometry. As a result of peri-
odic modulation of the interatomic interaction strength, the
condensate spontaneously breaks spatial and discrete-time
translational symmetry and develops spatial and temporal
patterns. A unique feature of the ring geometry is the mode-
selection mechanism, which significantly suppresses higher-
order processes in the dynamics and makes the system re-
sponse robust to disorders. Such a behavior is similar to the

recently proposed Floquet time crystals [38,39], where the
spontaneous breaking of discrete time-translational symmetry
is also robust against disorder [40,41]. Our results can be
observed in cold atomic systems and are relevant to physical
systems described by the nonlinear Schrödinger equation.
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APPENDIX A: BOGOLIUBOV SPECTRA IN THE
FLOQUET BASIS

Following the discussion in the main text, we analyze the
quasiparticle spectra in the Floquet basis. The corresponding
Bogoliubov–de Gennes equations in momentum space can be
expressed as LF

p β = εF
p β, where

LF
p =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
...

. . .

Lp,m+1 L1

· · · L1 Lp,m L1 · · ·
L1 Lp,m−1

. . .
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A1)

with

Lp,m =
(

λp2 + 1 + mω 1

−1 −(λp2 + 1) + mω

)
,

L1 =
(

α/2 α/2

−α/2 −α/2

)
.

Lp,0 can be diagonalized by the similarity transformation
V −1

p Lp,0Vp = diag[εp,−εp], where

Vp =
(

rp sp

sp rp

)
, V −1

p =
(

rp −sp

−sp rp

)
, (A2)

and rp = −1√
2(λp2+1)εp−2ε2

p

, sp = λp2+1−εp√
2(λp2+1)εp−2ε2

p

, εp =√
λ2 p4 + 2λp2.
Applying this similarity transformation to each 2 × 2 block

of the Eq. (A1), we get

LF
p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
εp + mω 0 1

2 (rp + sp)2α 1
2 (rp + sp)2α

0 −εp + mω − 1
2 (rp + sp)2α − 1

2 (rp + sp)2α
1
2 (rp + sp)2α 1

2 (rp + sp)2α εp + (m − 1)ω 0

− 1
2 (rp + sp)2α − 1

2 (rp + sp)2α 0 −εp + (m − 1)ω

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)
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As discussed in the main text, while α � 1, it is sufficient
to consider the interband coupling between the mth and the
(m − 1)th Floquet bands, as all other bands are far-detuned
near a parametric resonance. This amounts to keeping the
central 2 × 2 block in Eq. (S3), which leads to Eq.(4) in the
main text.

APPENDIX B: THREE-MODE APPROXIMATION

In this section, we discuss the derivation of Eqs.(7) and
(8) in the main text. We start from the second-quantized
Hamiltonian in the momentum space:

H =
∑

p

λp2a†
pap + f (t )

2N

∑
p,p′,q

a†
p+qa†

p′−qap′ap, (B1)

where f (t ) = 1 + α cos(ωt ). a†
p and ap are the creation and

annihilation operators of bosons. Keeping only the condensate
mode p = 0 and the the two quasiparticle modes p = ±k, we
simplify the Hamiltonian to

H =
∑

p=−k,0,k

λp2a†
pap + f

2N

(
N2

0 + N2
k + N2

−k + 4N−kN0

+ 4NkN0+4NkN−k+2a†
ka†

−ka0a0 + 2a†
0a†

0aka−k
)

(B2)

From the Heisenberg equation, we have

iȧk =
[
λk2 + f

2N
(2Nk + 1 + 4(N0 + N−k )

]
ak + f

N
a0a0a†

−k,

(B3)

iȧ0 =
[

f

2N
(2N0 + 1 + 4(Nk + N−k )

]
a0 + 2 f

N
aka−ka†

0,

(B4)

iȧ−k =
[
λk2+ f

2N
(2N−k+1+4(N0+Nk )

]
a−k + f

N
a0a0a†

k .

(B5)

Taking the mean-fields of the annihilation operators and
parametrizing them as 〈aα〉 = √

nα (t )eiθα (t )(α = 0,±k), we
arrive at the following equations:

ρ̇0 = −4 f ρ0ρk sin (2θ0 − θk − θ−k ), (B6)

ρ̇k = 2 f ρ0ρk sin (2θ0 − θk − θ−k ), (B7)

−θ̇0 = f (2 − ρ0) + 2 f ρk cos (2θ0 − θk − θ−k ), (B8)

−θ̇±k = λk2 + f (2 − ρk ) + f ρ0 cos (2θ0 − θk − θ−k ), (B9)

where ρ0 = n0/N , ρk = nk/N (N = n0 + nk + n−k). In deriv-
ing the equations above, we have assumed that the excited
modes are not occupied initially, such that nk = n−k through-
out the dynamics.

Rewriting 2θ0 − θk − θ−k as ϕ, we simplify the above
equations as

ρ̇k = 2 f (1 − 2ρk )ρk sin ϕ, (B10)

ϕ̇ = 2λk2 + 2 f (1 − 3ρk ) + 2 f (1 − 4ρk ) cos ϕ, (B11)

which are Eqs. (7) and (8) in the main text.
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