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Topological edge states and Aharanov-Bohm caging with ultracold
atoms carrying orbital angular momentum
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We show that bosonic atoms loaded into orbital angular momentum l = 1 states of a lattice in a diamond-chain
geometry provide a flexible and simple platform for exploring a range of topological effects. This system exhibits
robust edge states that persist across the gap-closing points, indicating the absence of a topological transition.
We discuss how to perform the topological characterization of the model with a generalization of the Zak’s phase
and we show that this system constitutes a realization of a square-root topological insulator. Furthermore, the
relative phases arising naturally in the tunneling amplitudes lead to the appearance of Aharanov-Bohm caging in
the lattice. We discuss how these properties can be realized and observed in ongoing experiments.
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I. INTRODUCTION

Topological properties play an important role in a wide
range of condensed matter systems [1]. Such properties are
particularly demonstrated by topological insulators [2], where
a bulk-boundary correspondence correlates the nontrivial
topological indices of the bulk energy bands such as the Berry
phase [3], with the existence of topological edge states under
open boundary conditions. The importance of these concepts
has led to a great deal of interest in finding clean environments
in which fundamental features of the system can be observed,
and phenomena arising from interactions and nonequilibrium
dynamical effects can be explored. Highlights of this include
the realization of the Haldane [4] and Hofstadter [5,6] models
with ultracold atoms, as well as the experimental measure-
ment [7] of Zak’s phase [8] and the detection of topological
states [9,10], which complements parallel work in photonic
waveguides [11–17]. There are a wide range of further the-
oretical proposals for observation of topological phenomena
in cold atoms [18–25], most of which are based around the
realization of artificial gauge fields by laser dressing [5,6,26],
or periodically driving the lattice system [27].

Here, we explore topologically nontrivial multilevel mod-
els that arise naturally for ultracold atoms in excited orbital
angular momentum (OAM) states of a one-dimensional (1D)
chain. We study a concrete example of a diamond chain to
demonstrate how this model is rendered topologically nontriv-
ial due to relative phases in tunneling amplitudes for different
OAM states. Remarkably, we find that topological states exist
regardless of the values of the parameters of the model,
with no topological transition across the gap-closing points.
This system constitutes an unusual example of a topological
insulator with nonquantized values of the Zak’s phase due
to the inversion axes not crossing the center of any choice
of unit cell [8], and we make use of recently developed
techniques [28] to perform the topological characterization.

Furthermore, the model belongs to a new class of square-root
topological insulators [29,30], in which the quantized values
of the Zak’s phases are recovered after taking the square of the
bulk Hamiltonian.

Fundamentally, this behavior arises because the local OAM
l = 1 states are equivalent to the px and py orbitals in optical
lattices, which have been shown to naturally display nontrivial
topological properties in one- [31] and two- [32,33] dimen-
sional systems due to the parity of their wave functions. In
the OAM l = 1 basis, the mechanism that yields topological
properties is the appearance of relative phases in the tunneling
amplitudes, which are controllable by tuning the geometry of
the lattice [34]. We show that this can be observed directly in
the corresponding experiments.

Additionally, a proper tuning of the intersite separation and
the central angle can lead to Aharonov-Bohm (AB) caging
[35,36]. A distinctive advantage regarding the realization
of AB caging in this model, in relation to other proposals
[30,37–39], is that one does not need to rely on creating
synthetic gauge fields [40–43] to produce the magnetic flux
required for AB caging. Instead, in our OAM l = 1 model
complex phases with values controlled by the central angle
appear naturally at some of the tunneling parameters [34,44],
giving rise to an effective magnetic flux.

The rest of the paper is organized as follows. In Sec. II,
we present the physical system and we discuss its basic
properties and symmetries. In Sec. III, we present a series
of analytical mappings that allow to gain insight into the
system and to perform its topological characterization. In
Sec. IV, we support the analytical findings discussed in the
previous section with numerical results and we discuss under
which conditions and to which extent the system exhibits AB
caging. In Sec. V, we make some considerations regarding
the experimental implementation of the diamond chain loaded
with bosons in the OAM l = 1 states. Finally, in Sec. VI we
briefly summarize the main conclusions of this work.
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FIG. 1. (a) Schematic representation of the considered diamond
chain. The inset shows, for harmonic oscillator traps, the dependence
of the relative value of J2 and J3 on the intersite separation d ,
expressed in units of σ = √

h̄/(mω). (b) Energy spectrum of the
diamond chain with OAM l = 1 states. The left plot shows the band
structure computed for d = 3.5σ , corresponding to J3/J2 = 1.67
(black solid line) and d = 6σ , corresponding to J3/J2 = 1.13 (red
dotted line). In the right plot, the corresponding exact diagonalization
spectra of a diamond chain of Nc = 20 unit cells are shown.

II. PHYSICAL SYSTEM

We consider a quasi-one-dimensional optical lattice with
a diamond-chain shape. As shown in Fig. 1(a), the unit cells
of this chain, labeled with the index i, are formed of three
sites Ai, Bi, and Ci, each corresponding to a cylindrically
symmetric potential of radial frequency ω, and forming a
triangle with central angle � = π/2 and nearest-neighbor
separation d . We assume that the lattice is composed of an
integer number Nc of unit cells, so that its right termination
has a closed edge. The chain is loaded with noninteract-
ing ultracold atoms of mass m that may occupy the two
degenerate OAM l = 1 states with positive or negative cir-
culation localized at each site, 〈�r| ji,±〉 = ψ (r ji )e

±i(ϕ ji −ϕ0 ),
where j ∈ {A, B,C}, (r ji , ϕ ji ) are the polar coordinates with
origin at the site ji, and ϕ0 is the phase origin. The tunneling
dynamics of this type of states has been studied in detail
in [34]. Between two neighboring sites, there are only three
independent tunneling amplitudes: J1, which corresponds to
the self-coupling at each site between the two OAM states
with different circulations, and J2 and J3, which correspond to
the cross coupling between OAM states in different sites with
equal or different circulations, respectively. The tunneling
amplitudes between states with different OAM circulations
J1 and J3 acquire relative phases that depend on ϕ0, which is
determined by � in the diamond-chain lattice. For � = π/2,
due to destructive interference between neighboring sites with
different phases in the tunneling amplitudes, the self-coupling
vanishes everywhere except for the sites at the left edges
B1 and C1. Moreover, since typically |J1| � |J2|, |J3| [34],
in this paper we neglect the self-coupling term at these two
sites and leave a study of its consequences for Ref. [45].

Choosing ϕ0 to point along the direction of the line that
connects the sites Ci, Ai, and Bi+1 and assuming coupling only
between nearest-neighboring sites due to the rapid decay of
the tunneling amplitudes as the intersite separation increases
[45], the noninteracting Hamiltonian of the system takes the
form (h̄ ≡ 1)

Ĥ = J2

Nc∑
i=1

∑
α=±

[
âi†

α

(
b̂i

α + b̂i+1
α + ĉi

α + ĉi+1
α

)]

+ J3

Nc∑
i=1

∑
α=±

[
âi†

α

(
e−2αi�b̂i

−α+b̂i+1
−α +ĉi

−α+e−2αi�ĉi+1
−α

)]

+ H.c. (1)

In our convention for ϕ0, we see that a π phase is acquired in
tunneling Bi ↔ Ai ↔ Ci+1 for a central angle � = π/2. As
shown in the inset of Fig. 1(a), the relative value of J2 and J3

depends on the intersite separation d , starting at J3/J2 ≈ 2.2
for d =3σ and tending rapidly and asymptotically to J3/J2 =1
as d increases. The diamond lattice with two states per site
described by (1) possesses inversion symmetry, leading to a
quantization to 0 or π (mod 2π ) of the Zak’s phases [8].
Additionally, since the model is bipartite it has chiral sym-
metry defined as 	Ĥ	 = −Ĥ , which entails that the energy
spectrum is symmetric around 0.

By applying a series of exact mappings, we shall
demonstrate that these symmetries are accompanied by the
presence of topologically protected states localized at the
right edge of the chain. Under periodic boundary condi-
tions, the bulk Hamiltonian corresponding to the Fourier
transform of (1) yields six energy bands after diago-
nalization. Their dispersion relations appear in three de-

generate pairs E (k) = 0,±2
√

(J2
2 + J2

3 ) + cos(ka)(J2
2 − J2

3 ),

where a = √
2d is the lattice constant. The band struc-

ture presents a gap of size 2
√

2J2 (for J3 > J2) or 2
√

2J3

(for J3 < J2) and, in the J2 = J3 limit, all bands become
flat. As shown in the energy spectrum of Fig. 1(b), for an
experimentally feasible intersite separation of d = 6σ , one is
already very close to this all-flat limit. In the case of open
boundary conditions, exact diagonalization performed for a
chain with Nc = 20 unit cells, shown in Fig. 1(b), reveals the
presence of four in-gap states localized at the right edge of the
chain. Importantly, these in-gap states persist provided both
J2 and J3 are nonzero, implying that there is no topological
transition across the gap-closing points.

III. ANALYTICAL MAPPINGS

The twofold degeneracy of the spectrum and the pres-
ence of gaps in the band structure can be understood by
performing a rotation into a basis of symmetric and anti-
symmetric states |Di,±〉 = 1√

2
(|Ci,+〉 ± |Bi,+〉), |Fi,±〉 =

1√
2
(|Ci,−〉 ± |Bi,−〉). This rotation decouples the diamond

chain with six states per unit cell (1) into two independent and
identical diamond chains H+ and H−, which have three states
per unit cell [see Fig. 2(a)]. These two chains are described by
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FIG. 2. Schematic representation of the tight-binding models
obtained through the different mappings. (a) H+ diamond chain
obtained after applying the basis rotation {|Bi, ±〉 , |Ci, ±〉} →
{|Fi, ±〉 , |Di, ±〉} to the original OAM l = 1 diamond chain.
(b) Modified SSH model obtained after applying the basis rotation
{|Di, +〉 , |Fi, −〉} → {|Gi, ±〉} to the H+ chain. Nc is the total num-
ber of unit cells.

the Hamiltonians

Ĥ+ =
Nc∑

i=1

âi†
+[

√
2J2(d̂ i

+ + d̂ i+1
+ ) +

√
2J3( f̂ i

− − f̂ i+1
− )] + H.c.,

(2a)

Ĥ− =
Nc∑

i=1

âi†
−[

√
2J2( f̂ i

+ + f̂ i+1
+ ) +

√
2J3(d̂ i

− − d̂ i+1
− )] + H.c.

(2b)

The minus sign in one of the couplings can be associated
with a net π flux through the plaquettes of these diamond
chains [45], which explains the gap in the band structure
[46]. Furthermore, the existence of in-gap edge states and
the flattening of the bands in the J2 = J3 limit can be un-
derstood by means of a second basis rotation for each of
the two subchains H+ and H−. For the H+ chain, this basis
rotation is given by |Gi,+〉 = 1√

J2
2 +J2

3

(J2 |Di,+〉 + J3 |Fi,−〉)

and |Gi,−〉 = 1√
J2

2 +J2
3

(J3 |Di,+〉 − J2 |Fi,−〉). An equivalent

rotation can be defined for the H− chain by replacing F ↔ D.
After applying this transformation, the H+ diamond chain is
mapped into a modified Su-Schrieffer-Heeger (SSH) model
[47] with an extra dangling state per unit cell, as shown in
Fig. 2(b), which is described by the Hamiltonian

Ĥ+
SSH =

Nc∑
i=1

âi†
+(
1ĝi

+ + 
2ĝi+1
− + 
3ĝi+1

+ ) + H.c., (3)

where 
1 = √
2
√

J2
2 + J2

3 and 
3 =
√

2(J2
2 −J2

3 )√
J2

2 +J2
3

are the strong

and weak horizontal couplings and 
2 = 2
√

2J2J3√
J2

2 +J2
3

is the cou-

pling strength of the dangling state of each unit cell i to the
central state |Ai,+〉. From Eq. (3), a compact expression for

the zero-energy flat band states Ĥ+
SSH |0〉+i = 0 can be derived:

|0〉+i = 1√
C

(

3


2
|Gi,−〉 − |Gi,+〉 + 
1


2
|Gi+1,−〉

)
. (4)

In the original basis {| ji,±〉}, the most localized forms of
the zero-energy states (4) span the four sites surrounding
the central site Ai, with no contribution from the states at
this site. Additionally, |G1,−〉 is a completely decoupled
zero-energy state localized at the left edge of the chain [see
Fig. 2(b)]. In the J2 = J3 limit, we have 
3 = 0 and the
bulk of the chain can be decomposed into isolated trimers
{|Gi,+〉 , |Ai,+〉 , |Gi+1,−〉} with equal internal couplings

1 = 
2 = 2J2. The eigenstates of these trimers with a com-
ponent of the state |Ai,+〉 are the top and bottom flat-band
states |E±〉+i :

|E±〉+i = 1

2
(|Gi,+〉 ±

√
2 |Ai,+〉 + |Gi+1,−〉);

Ĥ+
SSH|
3=0 |E±〉+i = ±2

√
2J2 |E±〉+i . (5)

However, at the right edge of the chain there is a dimer
formed by the states |GNc ,+〉 and |ANc ,+〉, whose eigenstates
|Edge,±〉+ have the following expressions and energies:

|Edge±〉+ = 1√
2

(|GNc ,+〉 ± |ANc ,+〉);

Ĥ+
SSH|
3=0 |Edge±〉+ = ±2J2 |Edge±〉+ . (6)

As shown in Fig. 1(b), in-gap states appear also for gen-
eral values of the couplings J2 �= J3. In this scenario, these
states are strongly localized at the right edge of the chain,
exhibiting an exponentially decaying tail to the bulk, which
widens as one deviates from the J2 = J3 limit [45]. In order
to tell whether this robustness is due to topological effects,
one should compute the Zak’s phase for each band, which
are the relevant quantities to topologically characterize one-
dimensional models [8]. However, the computation of the
Zak’s phases is not straightforward in our system. In the orig-
inal OAM l = 1 model (1) the degeneracy of the bands means
that their Zak’s phases are ill defined. On the other hand,
each of the decoupled chains of the two successive mappings
given by the Hamiltonians in (2) and (3), respectively, does
not have inversion symmetry, so that the Zak’s phase can yield
nonquantized values. In order to circumvent these limitations,
a third mapping can be introduced, through a basis rotation
of (3) (see [45] for details), wherein inversion symmetry
and, therefore, a quantized Zak’s phase for each band is
recovered. Under this third mapping, the system becomes a
diamond chain with alternating tunneling amplitudes, whose
nontrivial topological nature of the gaps where the edge states
lie is explicitly shown in [48], making use of the technique
described in [28] to circumvent the fact that the inversion axes
do not cross the center of any choice of the unit cell. As stated
above, a striking feature of the topology of this model, directly
carried over to the original OAM l = 1 model, is that there
is no topological transition across the gap-closing point, as
can be seen by fixing either J2 or J3 and varying the other
across zero. We find that this model constitutes a realization
of a square-root topological insulator using ultracold atoms
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FIG. 3. Density profiles of numerically obtained eigenstates for
a diamond chain of Nc = 10 units cells and intersite separation d =
6σ , corresponding to J3/J2 = 1.13. (a) Two degenerate edge states.
(b) Two states of the flat band. (c) The two degenerate ground states.

[45] like the one recently reported in a photonic system [30].
In this type of topological insulator, the usual expression
of the Zak’s phase γn = −i

∫ k+2π

k dk 〈un(k)| d
dk |un(k)〉 yields

nonquantized values, but by squaring the bulk Hamiltonian,
centered inversion axes within the unit cell and quantized
Zak’s phases are recovered.

IV. NUMERICAL RESULTS

To illustrate these results, in Fig. 3 we show the numerical
density plots of the different types of states that can be
found in a diamond chain of Nc = 10 unit cells and a sepa-
ration between nearest-neighbor sites d = 6σ , corresponding
to J3/J2 = 1.13. In Fig. 3(a), two degenerate edge states are
shown, evidencing their strong localization at the right end of
the chain. In Fig. 3(b), two examples of zero-energy states,
which have no population at the central (A) sites of the chain,
are displayed. These contain components of many maximally
localized states (4) and, in the case of the state at the right
panel, also of the zero-energy decoupled mode localized at
the left edge |G1,−〉 [see Fig. 2(b)]. Finally, Fig. 3(c) shows
the two degenerate ground states of the system. In Figs. 3(a)
and 3(c), the states at the left and right panels have different
orientations of the nodal lines due to the fact that they belong
to the two different subchains H+ and H−.

Aharanov-Bohm caging

Finally, we show that in the J2 = J3 limit the system can
exhibit AB caging. In this limit, from the relations (5) and the
equivalent ones for the H− chain, we can express the states
|Ai,±〉 in terms of flat-band states that occupy solely the four
sites surrounding Ai, i.e., Bi, Bi+1, Ci, and Ci+1. Therefore,
an initial state prepared in an arbitrary superposition of the
|Ai,+〉 and |Ai,−〉 states will oscillate coherently to its four
neighboring sites with a frequency ω = 2

√
2J2 (given by the

absolute value of the energies of the top and bottom flat-band
states) and, therefore, never leave the cage formed by the unit
cells i and i + 1. In Fig. 4(a), we show some snapshots of
the time evolution of a wave packet prepared initially in the
state |A3,+〉 of a diamond chain with Nc = 5 unit cells. In a
real experiment, the condition J2 = J3 would never be exactly

FIG. 4. AB caging in a diamond chain of Nc = 5 unit cells.
(a) Snapshots at different times of the density profiles corresponding
to the time evolution of a wave packet initially prepared in the state
|A3, +〉 in the perfect caging limit J2/J3 = 1. (b) Time evolution of
the population of the same initial state as in (a) (black solid lines)
and the total population of the cage (red dotted lines) for J3/J2 = 1
(left panel) and 1.1 (right panel).

fulfilled, but for sufficiently close values the AB caging would
persist for a significant amount of time. In Fig. 4(b), we plot,
for the same initial state as in Fig. 4(a), the time evolution
of the population of the state |A3,+〉 and the total sum of
the states forming the cage for J3/J2 = 1, 1.1 (left and right
panels, respectively). While perfect caging only occurs for
J3/J2 = 1, for J3/J2 = 1.1 we observe that approximately
40% of the population remains on the cage after a time
J2t = 10.

V. EXPERIMENTAL IMPLEMENTATION

An optical diamond chain could be implemented by using
two pairs of counterpropagating lasers at ±45◦ with respect
to the x axis in a quasi-1D cigar-shape geometry [49]. To
load atoms in the OAM l = 1 manifold of local sites of the
lattice, which are combinations of the p-band orbitals of the
form px ± ipy [50,51], three different approaches could be
used: to adiabatically modify the trapping potentials such
that atoms are transferred from the ground to the p band
of an adjacent well via resonant tunneling [52], to combine
lattice shaking with shortcuts to adiabaticity to promote the
atoms to the p band [53], and, finally, to directly transfer
OAM from a light beam to the trapped atoms [54]. Once the
atoms are loaded into the p band, loss of population can be
induced by collisions that transfer one atom to the lowest
band, and one to a higher band. This is strongly suppressed
for dilute samples and weak interactions, and in deep lattices
where bandwidths are small anharmonicity ensures that the
process is not resonant. To detect the atomic distribution and
thereby AB caging and edge states with single-site resolution
in the diamond chain, the quantum gas microscope technique
[55,56] could be used. This technique has recently been ap-
plied to observe topological states of ultracold bosonic atoms
in optical lattices [57,58]. On the other hand, edge states have
been observed with an atomic Bose gas in the quantum Hall
regime [59] making use of the synthetic dimensions provided
by the internal degrees of freedom.
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VI. CONCLUSIONS

In summary, OAM provides phases in the tunneling am-
plitudes, which can be tuned by modifying the geometry.
For realistic experimental parameters, this can be used to
directly observe topological edge states and AB caging in a
diamond chain. This could form the basis for future studies
of interacting particles, and also a broad range of scenarios of
out-of-equilibrium dynamics in topological lattices.
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