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We study the single-particle properties of a system formed by ultracold atoms loaded into the manifold of
[ = 1 orbital angular momentum (OAM) states of an optical lattice with a diamond-chain geometry. Through a
series of successive basis rotations, we show that the OAM degree of freedom induces phases in some tunneling
amplitudes of the tight-binding model that are equivalent to a net w flux through the plaquettes. These effects
give rise to a topologically nontrivial band structure and protected edge states which persist everywhere in the
parameter space of the model, indicating the absence of a topological transition. By taking advantage of these
analytical mappings, we also show that this system constitutes a realization of a square-root topological insulator.
In addition, we demonstrate that quantum interferences between the different tunneling processes involved in the
dynamics may lead to Aharanov-Bohm caging in the system. All these analytical results are confirmed by exact

diagonalization numerical calculations.
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I. INTRODUCTION

Since the observation of the quantum Hall effect in two-
dimensional electron gases [1,2] and the discovery of its
relation with topology [3], the study of systems with non-
trivial topological properties has become a central topic in
condensed matter physics. A very interesting example of
such exotic phases of matter are topological insulators [4],
which are materials that exhibit insulating properties on their
bulk but have topologically protected conducting states on
their edges. There are many different types of topological
insulators, which can be systematically classified in terms of
their symmetries and dimensionality [5].

In recent years, many efforts have been devoted to im-
plementing low-dimensional topologically nontrivial models
in clean and highly controllable systems. Topological states
have been observed and characterized in light-based plat-
forms such as photonic crystals [6-10] and photonic quantum
walks [11,12]. Ultracold atoms in optical lattices are also
a well-suited environment to implement topological phases
of matter [13]. In one-dimensional (1D) fermionic systems,
there have been proposals to dynamically probe topolog-
ical edge states [14] and to implement topological quan-
tum walks [15] and symmetry-protected topological phases
[16—18], which have also been observed experimentally [19].
In 1D bosonic systems there have also been striking advances,
such as the prediction of topological states in quasiperi-
odic lattices [20,21], the direct measurement of the Zak’s
phase [22] in a dimerized lattice [23], the observation of
the edge states [24,25] of the Su-Schrieffer-Heeger (SSH)
model [26], or the experimental realization of the topological
Anderson insulator [27].

In this work, we consider a quasi-1D optical lattice with
a diamond-chain shape filled with ultracold atoms that can
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occupy the orbital angular momentum (OAM) [ =1 local
states of each site. Such a system could be experimentally
realized, for instance, by exciting the atoms to the p band of
a conventional optical lattice [28-31] or by optically trans-
ferring OAM [32] to atoms confined to an arrangement of
ring-shaped potentials, which can be created by a variety
of techniques [33-39]. At the single-particle level, we show
that the addition of the OAM degree of freedom makes
the system acquire a topologically nontrivial nature, which
is reflected in the presence of robust edge states in the
energy spectrum. Topological insulators obtained by related
approaches have been studied in [40,41]. In order to arrive at
this result, we introduce and discuss in detail exact analytical
mappings that allow to unravel the features of the system
and to topologically characterize it. Furthermore, these map-
pings allow us to predict the occurrence of Aharanov-Bohm
(AB) caging in the system, which consists in the confine-
ment of specifically prepared wave packets due to quantum
interference [42-46].

The rest of the paper is organized as follows. In Sec. II,
we introduce the physical system and derive the tight-binding
model that we use to describe it. In Sec. III, we compute
the band structure and discuss the differences with the model
of a diamond chain without the OAM degree of freedom.
In Secs. IV, V, and VI, we introduce three successive ana-
Iytical mappings that allow to understand the main features
of the model such as the presence of the edge states or the
Aharanov-Bohm caging effect and to fully characterize its
topological nature. In Sec. VII, we give numerical evidence
of all the results derived in the previous sections by means
of exact diagonalization calculations. Finally, in Sec. VIII, we
summarize our conclusions and note some future perspectives
for this work.
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FIG. 1. Sketch of the diamond-chain optical lattice considered
in this work, indicating the shape of the unit cell as well as the
two OAM [ =1 states that can be occupied on each site and their
associated operators. The directions along which all the couplings
are real are signaled with double-arrow solid blue lines, whereas
the double-arrow dashed red lines are drawn in the directions along
which the tunneling couplings involving a change in the circulation,
i.e., those whose amplitude is J; or J5 in (5), acquire a 7 phase.

II. PHYSICAL SYSTEM

The physical system that we consider is depicted in Fig. 1.
It consists of an ultracold gas of atoms of mass m trapped in
a quasi-1D optical lattice with the shape of a diamond chain.
The chain is formed by an integer number N, of unit cells,
each of which has a central site A and two sites B and C
equally separated from A and with the lines connecting them
to it forming a m /2 relative angle. Each of the sites is the
center of a cylindrically symmetric potential with trapping
frequency w such as, for instance, a ring-shaped trap of radius
R that generates a potential V (r) = %ma)z(r — R)?, where r
is the radial coordinate about the center of the trap. In the
case R = 0, the ring trap reduces to a harmonic potential. As
shown in Fig. 1, we denote the distance between the minima of
the nearest-neighbor potentials as d, so that the unit cells are
separated by a distance a = +/2d. The atoms may occupy the
two states of total orbital angular momentum (OAM) [ = 1 of
each site, | j;, &), where i is an index labeling the unit cell and
Jj =A, B, C. Thus, the total field operator of the system reads
as

N,
(I) = Z Z ¢£i(VAi’ gpAi)&fx + d)gi (rBi’ ngi)E;

i=1; a==%
+ 95 (re;s 96 )
where
U 93) = (i ) = W (ry ) @™ (2)

are the wave functions of the OAM [ = 1 states with positive
or negative circulation (¢ = + or —) with respect to the center
of each site j;, and &\, b , & are the annihilation operators
of these states at the sites A;, B;, and C;, respectively. In
the expression of the wave functions (2), (r},, ¢;,) are polar
coordinates with origin at the site j; and ¢ is an absolute
phase origin, which can be chosen arbitrarily.

We will analyze the noninteracting case, for which the
Hamiltonian is

A= /dfxiﬂ'[—

where V (¥) can be taken in a good approximation as a trun-
cated combination of all the cylindrically symmetric poten-
tials centered at each of the sites forming the diamond chain.

The Hamiltonian (3) essentially describes the tunneling
dynamics of ultracold atoms between the different coupled
traps of the diamond chain restricted to the manifold of / = 1
local OAM states of each site. This type of dynamics was
studied in detail for the case of systems formed by two and
three sided-coupled traps in [47].

Let us recall briefly the arguments presented in [47]. We
start by considering a system formed by two sided-coupled
cylindrically symmetric traps, named L and R. The tunneling
amplitudes between the four states that form the OAM [ = 1
manifold are given by the following overlap integrals:

v
2m

+V(F)]®, A3)

Jid = el / (¢4 (00 = 0)) " For ] (@o = 0)d’r,  (4)

where Hy7 is the total Hamiltonian of the two-trap system
Jj,k=L,R and n, p = £1. By analyzing the mirror symme-
tries of the two-trap problem, one realizes that there are only
three independent tunneling amplitudes, which we will denote
as Ji, J», and J3. More specifically, J; = ]'.f’j_” corresponds to
the self-coupling between the two OAM states of each trap
induced by the breaking of the global cylindrical symmetry
of the problem, J, = J;"; corresponds to the cross-coupling
between states in different sites with the same circulation
n, and J3 = J;"z" corresponds to the cross-coupling between
states in different sites with different circulations. As shown
in Fig. 2, the relative value of the three couplings depends on
the intertrap separation d. For short d, J; is appreciably larger
than J,, but as the distance is increased, they become closer
until they take approximately the same value. Regardless of
the distance, the absolute value of the self-coupling J; remains
approximately one order of magnitude lower than J, and J5.

Since A, is an Hermitian operator, the integral appearing
in (4) is real. Therefore, the origin of phases ¢y induces a
relative phase in the tunneling couplings related to the factor
e/(P=M%0 _Tn a two-trap system, one can always take ¢y = 0 and
thus all the tunneling couplings become real [47]. However,
when one considers a system of three sided-coupled traps that
form a triangle of central angle ®, such as the unit cell of
the diamond chain depicted in Fig. 1, there is a relative angle
between the line defining the origin of phases and at least one
of the lines connecting the centers of the traps. By choosing
the origin of phases along the line that unites two of the traps,
say A; < C;, along the other line one has ¢y = 7 — ©, and
thus extra phases ¢*>© appear in the tunneling amplitudes
between the states of the other pair of traps with opposite
circulation [47]. These phases are a natural consequence of
the azimuthal phase present in the wave function of the OAM
states (2), and can be modulated by tuning the geometry of the
system, i.e. the central angle ®.

Since the strength of the tunneling amplitudes decays
rapidly with d (see Fig. 2), in the diamond chain it is a good
approximation to consider coupling terms only between the
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nearest-neighboring sites [48]. Within this approximation, if
one expresses the distances and energies in harmonic oscilla-
tor (h.o.) units of 0 = /i/(mw) and 7w, respectively, and sets
the origin of phases along the direction of the lines connecting
the sites C;, A;, and B, 1, the Hamiltonian (3) can be expressed
in terms of the annihilation and creation operators as
A= Y e 2Oplp 4 eliet,
a=%

N(
+2 )y 3 al (B + B+ & + 2] + Hee.
i=1 a==+

NC
0 Y0 3 [l (e O+ 4 2,
i=1 a=%

+e 29" )] + He. (5)

Note that for ® < /3, the B; and C; sites become sufficiently
close to each other so that their coupling is no longer negligi-
ble in a nearest-neighbor approximation. In what follows, we
set ® = 7 /2, which translates into a v phase at the tunneling
processes involving a change in the circulation along the
lines connecting the B;, A;, and C;; sites (indicated by the
double-arrow dashed red lines in Fig. 1). We point out that
the Hamiltonian (5) possesses inversion symmetry, so that
the Zak’s phase associated with each of the energy bands
can only take the values 0 and 7 [22]. Nevertheless, due to
the twofold degeneracy of the its energy bands, shown in
the next section, a direct topological characterization would
overlook several new features of our model, which can only be
revealed and explained after lifting the degeneracies using the
exact mappings we detail below. The time-reversal symmetry
operation exchanges the circulation of the states, thus act-
ing on the operators as {&f), IA)’E), Ef)} — {&;(j) , IQ’}F‘” , el
and reverses the sign of the effective flux e2® — ¢F2©,

J

Therefore, the Hamiltonian (5) describing our system is also
time-reversal symmetric.

Note that the self-coupling amplitude J; is only present at
the left corners of the chain. This is due to the fact that these
are the only sites of the chain that are connected to only one
site, whereas the rest of sites are connected to an even number
of sites and, for the central angle ® = /2, the contributions
to the self-coupling amplitude coming from the different sites
interfere destructively [47]. Since the self-coupling at the left
edge of the chain is a small effect, for simplicity we will
initially take J; = 0 in the following sections, and then return
to the case of a nonzero value for J; in Sec. VII.

II1. BAND STRUCTURE

In order to gain a first insight into the implications of
the OAM degree of freedom, we consider the limit of a
large chain, N. — o0, and compute the band structure. To do
this calculation, we employ the usual method of taking into
account the periodicity of the chain to Fourier expand the
annihilation operators as

~j 1 a /.Z dk ikx: Nk (6)
= — e,
Jo «/NC | 2w -z Jo

where x; is the position of the ith cell along the direction of the
diamond chain, k is the quasimomentum, j = {a, b, c}, and
o = =. Since there are six states per unit cell (two for each of
the three sites), we obtain six energy bands. By plugging the
expansion (6) into the Hamiltonian (5), we can reexpress it in
k space as

A = / dk W] H, Wy, (7

with W) = (a4, a"", B, b7, ¢F, &) and

0 0 L +e*y (=14 %)y L1+ %) J5(1 — )
0 0 B(=1+e* )y LA +e*)y I —e*) S+ )
- | 20 +ekay (=1 + ek 0 0 0 0 ®)
KT (=14 ey (1 + ek 0 0 0 0
Ll +e*kay  Jy(1 — e ika) 0 0 0 0
H(1 —e*kay (1 4 e *a) 0 0 0 0

From (8), it can be checked that the model possesses also chi-
ral symmetry since the matrix I' = diag{—1, —1, 1, 1, 1, 1}
fulfills the relation 'HyI" = —H,.. The energy bands are given
by the eigenvalues of the matrix Hy. They appear in three
degenerate pairs, and are given by the expressions

E\(k) = Ex(k) =0, (9a)

Es(k) = E4(k) = —2\/ (J3 4+ J3) + cos(ak)(J3 — J3), (9b)

Es(k) = Eg(k) = 2\/ (J3 +J3) + cos(ak)(J3 — J3).  (9¢)

The band structure (9) always presents an energy gap of
size 2\/§J2. Two of the bands are flat regardless of the values
of J, and J3, and, in the J, = J3 limit, which can be realized

(

by setting a large value of d, all of the six bands become flat.
These facts are illustrated in Fig. 3, where we have plotted the
energy bands (9) using realistic values of J, and J3 computed
for different values of d and considering harmonic traps.

The band structure of the diamond chain in the / =1
manifold presents some differences with the one that would
be obtained in the manifold of ground states (I = 0) of each
of the sites. In this manifold, there is only one state per site
and one tunneling amplitude J, which does not acquire any
phases. The three energy bands that one obtains in this system
are E(k) = 0, £2+/2J cos(ka/2). Although there is a zero-
energy band just like in the OAM [ = 1 manifold, the other
two bands have always the same shape and they close at the
points k = £ /a. However, if a flux through the plaquettes of
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FIG. 2. Dependence of the J;, J», and J; tunneling amplitudes
on the trap separation d for two ring potentials of radius (a) R =0
(harmonic traps), (b) R =2.50, and (c) R = 5.0c0. In each of the
plots, the insets show the values of the tunneling amplitudes for large
values of d, where J, &~ J; and |J;| < |J2], |4].

the diamond chain is introduced, a gap opening occurs [49].
In the next section, we will perform a mapping which will
more clearly demonstrate that the introduction of the OAM
degree of freedom can be regarded as a net flux through the
plaquettes.

FIG. 3. Energy bands of the diamond chain in the OAM [ =1
manifold computed using the values of J, and J5 that are obtained for
harmonic potentials separated by distances d = 3.5¢ (a) and d = 60
(b), shown in Fig. 2(a).
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FIG. 4. Sketch of the two decoupled diamond chains H™ (a) and
H~ (b) that are obtained after performing the basis rotation (10).

IV. MAPPING INTO TWO DECOUPLED
DIAMOND CHAINS

Many features of the band structure can be understood by
performing exact mappings of the diamond chain in the OAM
[ = 1 manifold into other models. First, let us consider the
following basis rotation:

1

Dia:t = = Cia + Bia ) 10

| ) ﬁ(| +) £1Bi, +)) (10a)
1

|F, £) = —=(Ci, =) £ |Bi, —)). (10b)

V2

The only nonvanishing matrix elements of the Hamilto-
nian (5) in this basis are

(Ai, +IHID:, +) = (Ai, +|H|Dij1. +) = V24, (11a)
(Ai, —IH|F, +) = (A, —|H|Fq1, +) = V25, (11b)
(A, +IHIF, =) = (A, —|HID;, —) =~2J5,  (llc)
(Ai, +|H|Fiyr, =) = (A, —|H|Diyy, —) = —v2/5. (11d)

The fact that only these couplings survive after the basis
rotation (10) can be interpreted as a splitting of the original
diamond chain with two states per site into two identical
and decoupled diamond chains, one in which the |D;, +) and
|F;, —) states are coupled to the |A;, +) states and another
one in which the |F;, +) and |D;, —) states are coupled to
the |A;, —) states. These two chains, labeled H and H™,
respectively, are depicted in Fig. 4 and are described by the
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Hamiltonians

N,

A = Zai[ﬁb(‘ﬁ +dih + V25i(fL = FHH] + He,
i=1

(12a)
N,

A== " Wan(f + Y + V25 - dthl + He.,
i=1

(12b)

where cAl‘i and fj’[ are the annihilation operators associated
to the states |D;, &) and |F;, £). Each of these two identical
Hamiltonians has the same band structure (9) as the original
one, but with three bands instead of six because there is only
one state per site. This makes it possible to understand the
degeneracy of the spectrum in the original model, which is a
consequence of the symmetry between the two OAM states
with different circulations. As shown in Fig. 4, the fact that
in each chain one of the couplings has a minus sign can be
regarded as net 7 flux through the plaquettes of the diamond
chain. As we discussed in the previous section, this effective
net flux through the plaquettes explains the gap opening in the
band structure.

V. MAPPING INTO A MODIFIED SSH CHAIN

We can gain further insight into the features of the band
structure by performing a second basis rotation, given for the
H™ chain by

1
Gi, +) = === IDi, +) + /3 1F, —)), (13a)
NEEE N
1
Gi, —) = (J31Di, +) — 2 |Fi, =)).  (13b)

NEEE N

For the H~ chain, an equivalent mapping can be defined
by substituting F' by D everywhere in Eqs. (13). Since the two
chains are identical, from now on we will base the discussion
on the H™ chain and indicate the results that are obtained for
the H~ chain.

The basis rotation (13) reduces even further the number of
nonvanishing matrix elements, which now are

(A, HIHYGL ) = V22 +72=Q1,  (l4a)
N 24/2J5J-
(A —|HT |Gy, —) = % =, (14b)
NVERVE
. V2(J2 — J2
(Ai, —IHT |Gy, +) = Y2 =) _ Q. (l4c)

NOEE N

As shown in Fig. 5(a), the couplings (14) between the
states (13) can be represented in a graphical way as a modified
Su-Schrieffer-Heeger (SSH) model, consisting of the usual
SSH chain [26] with alternating strong (£2;) and weak (£23)
couplings and extra dangling sites connected to the chain
by €2,. Thus, the Hamiltonian of this modified SSH chain

(a) M —
Qymv
Gy. Q3— —

Gy Gy Gy
5 8§ 9
) ..é%:_:l%‘,,@‘ -0

o A & & 1 Gy, Ay,
(b)
Gr Gy Gs Gy, 2Jo—
O

& & A+"CQ A a. At
1 1 Gg 2 N.—1 N.—1 N. Ne

FIG. 5. (a) Sketch of the modified SSH chain that is obtained
after performing the rotation (13) in the H* diamond chain that was
obtained after the first basis rotation (10). (b) Modified SSH chain in
the Q3 = 0 (J, = J3) limit, where the bulk sites become decoupled
in trimers and an isolated dimer appears at the right edge.

reads as
N,
A, = Zaj(sz]g; + D+ g + He,,  (15)
i=1

where &', are the annihilation operators associated to the states
|G;, £). This modified SSH model allows us to clarify the
origin of the flat bands as well as that of the in-gap edge states.
Next, we discuss separately these two types of states

A. Flat-band states

First, let us consider the general case J, # J3 and therefore
Q3 # 0, as shown in Fig. 5(a). In this case, two of the three
energy bands of H* are dispersive, but there is always a
zero-energy flat band. This band also appears in a diamond
chain in which the atoms occupy the ground-state (I = 0)
manifold, so its presence is insensitive to the existence of a net
flux through the plaquettes [49]. In order to better understand
the flat-band states of the OAM [ = 1 manifold, let us first
examine the simpler case of the ground-state manifold. In that
manifold, there is only one tunneling amplitude J which does
not acquire any phase. Hence, by imposing in each cell i of
the chain the condition that the site A; is not populated due
to destructive interference, one finds a zero-energy eigenstate
localized in ith unit cell, given by \/LE(|B,<) — |C;)). In a similar
fashion, in the OAM / = 1 manifold we can find zero-energy
states by imposing the destructive interference condition on
the A sites. In the modified SSH chain picture, this is achieved
by populating appropriately in every two unit cells the states
|G;, +), |Gi, —), and |Gi4+1, —) in such a way that there is de-
structive interference and neither the |A;, +) nor the |A;_1, +)
states are populated. The states that fulfill this condition in
every pair of consecutive unit cells are

0); = L(% |Gi, =) — 1Gi, +) + & |G ) ), (16)
i = \/E Qz i is Qz i+1> s
where C is a normalization constant. It can be readily checked
that this is a zero-energy eigenstate of the Hamiltonian (15).
Additionally, at the left edge of the chain the state |Gy, —)
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is decoupled from the rest of states and therefore it is a
zero-energy state too. Similarly, in the H~ chain one can find
a state |0); such that ICIS_SH |0); = 0. By reverting the basis
rotations (13) and (10), one can find expressions for the states
|O);r and |0); in the original basis and check that they are
orthogonal:

O = 5 Us(Cust. ) + [Biss, ) = Ci4) = [Be+)
+12(Bi, =) + |Bit1, =) — |Ciy =) — |Cig1, =),

(17a)

10); = \/51521 [5(Cis1, =) + |Bix1, =) — |G, =) — |Bi, —))
+L(Bi, +) + |Bit1, +) — |Gy +) — |[Cig1, D)1

(17b)

From the expressions (17), we observe that the most
compact form of the localized states quadruples in size with
respect to the ground-state (I = 0) manifold (occupying eight
states instead of the two in the latter case), now spanning two
unit cells.

As we discussed when we computed the band structure,
in the J, = J;3 limit (which physically corresponds to having
a large intertrap separation d), the two energy bands that are
generally dispersive become flat with energies E = £2+/2J,.
The corresponding eigenstates can also be analytically derived
in the modified SSH chain picture. In this particular limit, we
have Q3 = 0 and ;| = Q, = 2J,. Thus, as shown in Fig. 5(b),
each trio of states in two consecutive unit cells |G;, +),
|A;, +), and |G, —) becomes decoupled from the rest of
the chain and forms a three-site system that can be readily
diagonalized. When doing so, apart from the zero-energy state
that we have already discussed, one finds the two eigenstates
and eigenenergies

Ex)f = LG, +) £ V2|4, +) + [Gisr, —));
x Ay (23 = 0) |[E£)} = £2V20 |E£)] . (18)

Similarly, in the H~ chain there are two states |[E4);
in every pair of consecutive unit cells such that
I:IS_SH(Q3 =0)|EL); = +2217, |E+);. By reverting again
the basis rotations (10) and (13), all these states read as in the
original basis

[E1)} = 1[G, +) + 1B, +) + [Cipt, +) + 1Bi1, +))

+ (G, =) = |Bi, =) = |Ciy1, =) + |Biy1, —)]
1
+ — |A;, , 19
NG |Ai, +) (19a)

1
|[EL); = Z[ICI', =) +1Bi, =) + |Cit1, =) + [Biy1, =)

+ (lCia +) - |Bia +) - |Ci+11 +> + |Bi+19 +>]

L lAi, =)
\/5 i .
Like the zero-energy states, all these states are localized
in two consecutive unit cells of the original diamond chain,
but now with the difference that they do not form destructive

(19b)

interferences on the A sites and have thus nonzero energy
values.

B. Aharanov-Bohm caging

Aharanov-Bohm caging is a phenomenon of localization
of wave packets in a periodic structure that occurs due to
quantum interference. Although it was originally studied in
the context of tight-binding electrons in two-dimensional lat-
tices threaded by a magnetic flux [42], its occurrence has been
predicted in other physical platforms. In particular, it has been
suggested and experimentally shown that Aharanov-Bohm
cages can be realized in photonic lattices with a diamond-
chain shape in the presence of artificial gauge fields [44—46].

In the J, = J3 limit, the system studied here also presents
Aharanov-Bohm caging. In this limit, the four eigenstates (19)
are localized in the unit cells i and i 4+ 1, forming flat bands
in the spectrum of the full diamond chain. In terms of these
states, the central states at site i, |A;, &), can be expressed as

|A;, +) = L(|E+>,+ —|E=)D) (20a)
i ﬁ i [
L (20b)

|Ai, —) ﬁ(lEH, lE=); ).

From relations (19) and (20), we see that any initial state
that is a linear combination of |A;, +) and |A;, —) will evolve
in time by oscillating coherently to the states |B;, &), |C;, %),
|Bi+1, £), and |Ciy1, ), and therefore never populating any
site beyond the unit cells i and i + 1. This Aharanov-Bohm
caging effect is illustrated in Fig. 6, which shows, in a system
of N, = 5 unit cells, the numerically computed time evolution
of the population of the states |A;, +) (black solid lines) and
|A;, —) (blue dotted lines) and of the total sum of the popula-
tions of the states |Bs, &), |C3, £), |A3, £), |Bs, L), |Cs, )
(red dashed-dotted lines) after taking a linear combination
of the |A3, +) and |A3, —) states. In Fig. 6(a) the relation
between the couplings is J3 = 1.1J5, so after a few oscillation
periods the population escapes the cage formed by the unit
cells i and i+ 1. However, in the case J; = J, plotted in
Fig. 6(b) the populations of the |A3, +) and |As, —) states
oscillate coherently without losses and the total sum of the
population inside the cage remains 1 throughout the time
evolution.

C. In-gap edge states in the 2; = 0 limit
If one considers a chain of finite size, in the 23 = 0 limit
discussed above there are two states at the right edge of the
chain, |Gy,, +) and |Ay,, +), that are decoupled from the rest
of the chain, as can be seen in Fig. 5(b). Thus, at the right edge
of the chain there are the two additional eigenstates

[Edget)" = —(|Gw,. +) £ |An,. +)):

1
V2
Ay (3 = 0) [Edged)™ = £2J; |[Edge+)™.  (21)

Similarly, in the H~ chain there are edge states that ful-
fill Hggy, (€23 = 0) |[Edge+)™ = £2J, |[Edge+) ™. By reverting
the basis rotations (10) and (13), we find the following
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(a) ——— As,+

Population

—~
=

Population

Jat

FIG. 6. Numerically computed time evolution, for a system of
N, = 5 unit cells, of the population of the states |A;, +) (black solid
lines) and |A;, —) (blue dotted lines) and of the total sum of the
populations of the states |Bs, &), |C5, ), |A3, £), |Bs, ), |Cy, L)
(red dashed-dotted lines). The tunneling parameters are (a) J; =
1.1J, and (b) J3 = J,. In both cases, the initial state is |¥) =

V0.7 |A;, +) + V0.3 |A;, —).

expressions for all these states in the original basis:

1
Edge+)t = ——(|Cw., +) + |By.. +) + |Cn.. —
|Edge=) zﬁ(|Nr )+ By +) +[Cn.. )

— |B. ) £2 v +). (220)

1
|Edge+)” = ——(|Cn,. =) + [Bn.. =) + |Cw.. +)

232

— |By.. +) £2|Ax. ). (22b)

Since the energies of the flat-band states are :|:2\/§J2, these
edge states appear as in-gap states in the energy spectrum,
which is suggestive of a possible topological origin. In order
to see if the model is indeed topologically nontrivial, we
should compute the Zak’s phases of the different bands [22].
However, this is not possible in the original model (5) due to
the degeneracy of the bands (9). In the mapped models (12)
and (15), the bands are no longer degenerate, but there is no
inversion symmetry and thus the Zak’s phase is not quantized.
It is therefore necessary to perform a third mapping into
an inversion-symmetric model in order to recover quantized
Zak’s phases for the bands, therefore allowing for a topologi-
cal characterization of the model.

Q) —

Q-
| Gy Gy, Q3— -
_— Y ¥
, :1@:;( G?ﬁ%‘_fa; i,
y -
—————————————————————————————————— 1 ty -

Inversion axis 1 Inversion axis 2

FIG. 7. Schematic representation of the mapping from the mod-
ified SSH H™ chain into a diamond chain with alternate hoppings.
The two possible choices for the inversion-symmetry axis within a
given unit cell, under periodic boundary conditions, are also shown.
Note that neither of them are localized at the central axis of the unit
cell.

VI. THIRD MAPPING INTO A MODIFIED DIAMOND
CHAIN AND TOPOLOGICAL CHARACTERIZATION

In order to map the modified SSH chain into a model
that allows to compute meaningful Zak’s phases, we take two
consecutive unit cells, i and i + 1, of this relabeled chain and
define a basis rotation into six new states, which we shall

denote as |i, j) (j =1, ..., 6), in the following way:
1
li, 1) = ———=(®1Git+1, +) — 11 |Giy1, —)), (23a)
Jit+g
1
li,2) = —=(11Git1, +) + 2 |Gix1, —)), (23b)
Jit+g
li,3) = |Ait1, +), (23¢)
1
li,4) = ——=(2|Gi, +) — 11 |G}, —)), (23d)
Jit+g
1
li,5) = ——=(11|Gi, +) + 2 1G;, =), (23e)
JiE A+
li, 6) = |A;, +), (231)

where the parameters #; and #, fulfill the relations 2ff, =
Q1 and 17 — 15 = Q;Q;. After applying this rotation, a
modified SSH chain of N, unit cells gets mapped into a
modified diamond chain of N,/2 unit cells with six states
per unit cell and alternate #; and #, hopping constants. The
resulting chain has an integer or half-integer number of unit
cells depending on the parity of N.. However, since there is
no qualitative difference between the two cases, from now
on we restrict ourselves to the case when N, is even. The
mapping process and the resulting modified diamond chain
are illustrated in Fig. 7. Note also that, under this mapping,
the number of bands gets doubled (six instead of three)
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but the Brillouin zone is folded in half, such that one has
the same number of allowed energy states before and after
the mapping, as expected. The Hamiltonian describing this
modified diamond chain reads as
Ne/2

I:I,],2 ZAZT Ha; +t2a)+a (tza +t4a)+HC

N.J2
+ Y& (a! + naly,) +aff (naf +nal,,) + He.,

i=1

(24)

where a! are the annihilation operators associated to the states
li, j) (j =1,...,6). The modified diamond chain (24) has
inversion symmetry, and thus the Zak’s phases of its band
are quantized. The topological characterization of this model
was addressed in [50]. As shown in Fig. 7, the inversion-
symmetry axes are not in the center of the unit cells, and it
is thus necessary to use a generalized formula to compute the
Zak’s phases of the bands [51]. Taking this issue into account,
in [50] it was shown that the model of the modified diamond
chain with alternate hoppings hosts topologically protected
edge states. Thus, by reverting the mapping we can conclude
that the edge states of the original diamond chain in the OAM
! = 1 manifold (5) are topologically protected, so we expect
them to be robust against changes in the condition J, = J3,

J

1+ 261ty 0
2111 12+ 13 0
) = 0 0 20t +13)
’1’2 2 +15e%  nn(l+et) 0
(1 +e*) 13+t 0
0 0 26t (1 + &%)

and to disappear completely only on the gap-closing points
J»/Jz = 0. After crossing these points, the edge states also
survive, implying the absence of a topological transition in
the model.

Square-root topological insulator

Alternatively, the topological characterization of the model
obtained after the basis rotation (23) can be performed by
regarding it as a square-root topological insulator, as described
for a photonic system in [46,52]. The k-space Hamiltonian of
the model of the modified diamond chain (24) reads as (we
take the intercell spacing a = 1)

By =) blH,, by,
k
0 0 n 0 O l‘ze_ik
0 0 5 0 tek
t t 0 n ¢t 0
He® =10 0 4+ 0 0 o | @
0 0 L 0 O 3]
Ize‘ik l‘]@ik 0 n 1 0
where by = (i1, b2, b3, bia, b s, bre)” and by; is the

bosonic destruction operator acting at the ith component of the
momentum state k. Then, the model resulting from squaring
the bulk Hamiltonian (25) reads as

1+ tzze’i{‘ tit(1 + e""k) 0
(I +e ®)y 12 +12e 0
0 0 21t (1 + e‘ik)
2 +1 20t 2ht (26)
261ty 12+ 13 0
0 0 20t +13)

By inverse Fourier transforming the k-space squared Hamiltonian (26), one arrives at the following real-space squared

Hamiltonian, which is composed of two independent terms:

A, = A+ Ay, 27)
N./2 Ne/2
A2 =33 "2(F +8)b] bij+ Y 202(bf be j + b b3 1 + Hee), (28)
j=1i=3,6 j=1
N/
Z Z (67 +13)b] b j + Z 17D jbaj +bL ba j11) + 15D} bs j + bl jbr 1) + Hel
j=1i=1,2,4
Ne/2 Ne/2
+ ) 2ut(b] jbaj + bl jbsj+He) + Y tita(b] bs.j + b baj+ b} by i1 + b5 by +He).  (29)
=1

j=1

The first term, described by ﬁIch , s a linear chain with intersite
coupling 2t,t, and a constant onsite potential 2(t12 + tzz), as
shown at the bottom of Fig. 8. This linear chain is topo-
logically trivial, meaning that one does not need to consider
it in order to account for the topological properties of the
squared model as a whole. The other subsystem, described
by A2 , is a two-leg ladder which has intraleg couplings 1}

ZLL
and #; and interleg crossed and vertical couplings #;#, and

(

2111, respectively, as depicted at the top of Fig. 8. The second
interleg term couples sites within the same sublattice, there-
fore, chiral symmetry is lost under this squaring operation.
As shown in Fig. 8, it is possible to choose for this two-leg
ladder inversion axes that cross the center of the unit cell.
Therefore, by applying the squaring operation we recover
quantized values of the Zak’s phases associated to the different
bands, and we can compute them in the usual way. The
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Inversion axis 2

Inversion axis 1

FIG. 8. Sketch of the tight-binding model obtained after squaring
the bulk Hamiltonian of the modified diamond-chain model (25).

squared Hamiltonian (26) has the following squared energy
band structure:

EX(k) = E} (k) =0, (30a)
E;(k) = Ej (k) = 2[t] + 13 — titry/2(1 + cos k)],  (30b)
EZ(k) = E¢(k) = 2[t] + 15 + t1ry/2(1 + cosk)].  (30c)

The dispersive squared energy bands E32 (k) and E f (k) are
due to the contribution of the linear chain. In Fig. 9(a), the
band structure (30) is shown for the choice of parameters t, =
0.2¢t,. Figure 9(b) shows the squared energy spectrum of an
open chain with N, = 40 unit cells in the original OAM [ = 1
model (which correspond to 20 unit cells and thus 120 sites
in the modified diamond-chain model) for the same choice of
parameters, with the appearance of two edge states within the
band gap. Due to the degeneracy of the flat band, in order to
perform the topological characterization of the squared model
we have to consider the cumulative Zak’s phases through the
Wilzcek-Zee formulation [46,53]

o = / K THAK)),

-7

€2y

Ak)Y = —i (ui(k)] :_k |uj(k)) (32)
where the i, j = 1, 2 indices in the Berry connection element
A(k)" are restricted to the flat-band subspace with eigenstates
{lui (k)), lua(k))}. We find a nontrivial Zak’s phase 1, = 7
for all finite sets of (#1, #,), reflecting the topological nature of
the edge states. By taking the square-root operation, the topo-

0 w0 20 40 60 80 100 120
k Spectral index %

—~
&
~—
—~
=3
~

[\

2 /42
E*[t}
(=) =
O - o N e W

FIG. 9. (a) Band structure of the squared model (26). (b) Squared
energy spectrum of an open diamond with N, = 40 unit cells in the
original OAM [ = 1 model. In both plots, the parameters are t, =
0.2t.
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FIG. 10. Energy spectra of the single-particle diamond-chain
Hamiltonian (5) obtained with the values of J, and J; corresponding
to harmonic traps separated by distances d = 3.50, 4.50, and 6.0c
(in h.o. units). The number of unit cells considered is N, = 20.

logical properties of this squared model are directly reflected
in the original one.

VII. EXACT DIAGONALIZATION RESULTS

In order to numerically confirm the predictions that we
have done in the previous sections through the band structure
calculations and a series of exact analytical mappings, we
have performed numerical diagonalization of the original
single-particle Hamiltonian of the diamond chain (5) to find its
energy spectrum and the corresponding eigenstates. We have
considered a chain with N, = 20 unit cells (N = 3N, = 60
sites), which has a Hilbert space of dimension dim H = 2N =
120, where the factor of 2 comes from the internal OAM
degree of freedom. All relevant features of the model are
captured by a system of this size.

In Fig. 10 we show the energy spectra that one obtains by
considering the values of J, and J3 corresponding to realistic
calculations done with harmonic traps separated by different
distances d. We observe that independently of the value of d,
all energies appear in degenerate pairs as a consequence of the
symmetry between the OAM [ = 1 states with different cir-
culations. As predicted by the band structure calculation (9),
for all the relative values of J, and J5 there is a set of states
with zero energy. In all cases, we observe that these states
have no population in the central sites. This fact is illustrated
in Fig. 11, where we have plotted the logarithm of the total
population of the states at the A sites p(A), observing a
dramatic drop for the states belonging to the flat region of the
spectrum.

As can be seen in the inset of Fig. 2(a), as one increases
the distance between the traps d, the values of J, and J3
converge, leading to a progressive flattening of the dispersive
bands, as predicted by the expressions of the energy bands (9).
In Fig. 10 we observe that, even though the J, = J3 limit is
never reached, there always appear four in-gap states, which
have a correspondence with the two edge states present for
each of the H and H~ modified SSH chains (15). For the
case d = 6.0, which is very close to the J, = J3 limit, these
in-gap states have almost the energies £2.J, that we predicted
when analyzing the SSH chain, and as the relative difference
between J, and J5 is increased (i.e., as d is decreased), the

023612-9



G. PELEGRI et al.

PHYSICAL REVIEW A 99, 023612 (2019)

log(p(4))

_35 . . 5 o .
0 20 40 60 80 100 120

Spectral index &

FIG. 11. Sum of the populations of all the states localized on the
A sites for the different eigenstates of the single-particle diamond-
chain Hamiltonian (5), for J, = J5 and N. = 20 unit cells.

absolute value of the energies of these states increases. Finally,
one should note that the in-gap edge states of Fig. 10 can
be exactly mapped into the topological states of the squared
model [46] [see in-gap states in Fig. 9(b)].

In order to verify that the topological edge states remain
right-edge localized for J, # J;3, we have computed their
density profiles for different relative values of J, and J3. The
results are shown in Fig. 12. The sites have been assigned
a number j according to the correspondences C; = 3i — 2,
B; =3i—1,A; = 3i,i.e., thesite j = 1 is the C site of the cell
i = 1 and the site j = 60 is the A site of the cell i = 20. We

0.3 ‘
States |j, —)
0.25 | f
g 0.2 Jp=J3 —— ﬁ
2 Jy =075 % i
g 015 | : s
% Jy =0.50J5 ---%---
£ o1l Jp = 0.25J5
0.3 :
States |, + |
0.25 | ey j
;o hen ,,
= Jo=0.75J3 >~
g 015 | : ’ |
2 Jp = 0.50J5 - -- ﬁ
£ o1l Jp = 0.25J5 1

Site j

FIG. 12. Density profiles of one of the in-gap states (spectral
index i = 39) of a diamond chain with a total number of unit cells
N, =20 computed for different relative values of J, and J;5. The
upper plot corresponds to the density distribution of the states with
negative circulation and the lower plot to the states of positive
circulation.

observe that in all cases the population of both the states with
negative and positive circulation is exponentially localized at
the right edge of the chain. As expected, as the ratio J,/J3
deviates from 1, the edge states grow longer tails into the
bulk. However, as can be seen in Fig. 12, even in the case
J» = 0.25J; the distribution shows a sharp decay into the bulk.
In realistic implementations, the case that deviates most from
J» = J3 would correspond to very close harmonic traps, as can
be seen in Fig. 2(a). But, even in that case, one would have
an approximate relation between the couplings J, = 0.5J3, so
one would observe narrowly localized edge states.

Effect of J; at the edges

So far, we have neglected the effect of the self-coupling J;
at the left edge of the chain since typically |J;| < |/»], |/3] and
the self-coupling term is only present at two sites. However,
this term can be readily incorporated in the exact diagonaliza-
tion scheme and its effect characterized.

Before presenting the numerical result, let us retrieve
the effect of the self-coupling term on the analytical map-
pings (10) and (13). Due to this term, the left edges of the
H* and H~ chains are coupled because of the matrix ele-
ments (D, +|H|F, —) = (D, —|H|F,, +) = J;. In the mod-
ified SSH chain obtained with the basis rotation (13), this extra
term translates into a coupling at the left end of the chain,

: 53 -5
Q4=(G1,—|H|G1,+)=W, (33)
and an onsite potential also in the two sites at the left end of
the chain,

V = (Gi, +H|G\, +) = = (Gi. —|H|G1, -)
2 3

These two extra terms are illustrated in Fig. 13(a). In the
J» = J; limit, the state |G}, —) is an eigenstate of energy —V/,
and, if |J;| < |J2], |J3], due to the onsite potential the energies
of the isolated three-state system |Gy, +), |A;, +), |G2, —)
are approximately +2+/2J, T V/4 and V/2. In Fig. 13(b) we
show the spectrum corresponding to the tunneling amplitudes
J, =J; = —10J;, with J;,V < 0. Due to the contributions
from the H™ and H~ chains, we observe that two states have
energy —V, another two have energy V/2, and two states
from each of the flat bands are shifted by a quantity =~V /4.
In summary, since the self-coupling is only present in two of
the sites of the chain and its amplitude is typically much lower
than the one of the cross couplings, its effect is only to shift a
few states by a small quantity and can thus be safely neglected
in a diamond chain with a large number of unit cells.

VIII. CONCLUSIONS

In this work, we have explored the consequences of the
addition of the OAM degree of freedom in the physics of
ultracold atoms in optical lattices with a tunable geometry.
Specifically, we have analyzed the case of a single atom in a
diamond-chain optical lattice, which is a simple geometry in
which, due to the misalignment between the lines connecting
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FIG. 13. (a) Schematic representation of the left end of the
modified SSH chain in the presence of a nonzero value of J; for
J # J; (left) and J; for J, = J; (right). In the latter case, the onsite
potential V shifts the energies of four states with respect to the case
Ji = 0. (b) Energy spectrum of a diamond lattice with 20 unit cells
and tunneling parameters J, = J; = —10J;. A total of eight states,
which are indicated on the plot by blue circles, have small shifts with
respect to the case J; = 0.

the different sites, 7 phases appear naturally in some tunnel-
ing amplitudes between the states of the OAM / = 1 manifold.
The appearance of these phases has deep consequences in the
physics of the diamond chain. When one considers the case

where the atom can occupy only the ground state of each
trap, the band structure is gapless. By means of band structure
calculations and a series of exact mappings, we have shown
that when adding the OAM degree of freedom, a gap opens in
the spectrum and topologically protected edge states appear.
We have also performed exact diagonalization calculations
that support and confirm all the analytically derived results.
Possible extensions of this work include considering the
effect of interactions in a scenario with few or many in-
teracting atoms or exploring the consequences and possible
topological implications of the geometrically induced tunnel-
ing amplitudes for ultracold atoms carrying OAM in lattices
of different geometries, and also investigating more general
out-of-equilibrium dynamics in these topological systems.
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