
PHYSICAL REVIEW A 99, 023610 (2019)

Tail-free self-accelerating solitons and vortices

Jieli Qin,1,2 Zhaoxin Liang,3 Boris A. Malomed,4 and Guangjiong Dong1

1State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

2School of Physics and Electronics Engineering, Guangzhou University, 230 Guangzhou University City Outer Ring Road,
Guangzhou, Guangdong 510006, China

3Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
4Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction,

Tel Aviv University, Ramat Aviv 69978, Israel

(Received 10 March 2018; published 7 February 2019)

Self-accelerating waves in conservative systems, which usually feature slowly decaying tails, such as Airy
waves, have drawn great interest in studies of quantum and classical wave dynamics. They typically appear
in linear media, while nonlinearities tend to deform and eventually destroy them. We demonstrate, by means
of analytical and numerical methods, the existence of robust one- and two-dimensional (1D and 2D) self-
accelerating tailless solitons and solitary vortices in a model of two-component Bose-Einstein condensates,
dressed by a microwave (MW) field, whose magnetic component mediates long-range interaction between the
matter-wave constituents, with the feedback of the matter waves on the MW field taken into account. In particular,
self-accelerating 2D solitons may move along a curved trajectory in the coordinate plane. The system may also
include the spin-orbit coupling between the components, leading to similar results for the self-acceleration. The
effect persists if the contact cubic nonlinearity is included. A similar mechanism may generate 1D and 2D
self-accelerating solitons in optical media with thermal nonlinearity.
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I. INTRODUCTION

Self-accelerating Airy waves were predicted in the context
of quantum mechanics [1]. Then this concept was transferred
to optics [2], plasmonics [3], acoustics [4], gas discharge
[5], and hydrodynamics [6], using the similarity of the linear
Schrödinger equation to the paraxial wave-propagation equa-
tion in classical physics. These wave modes offer applications
to plasma guiding [7], signal transmission [8,9], laser-beam
filamentation [10], optical micromanipulation [11–16], gener-
ation of “light bullets” [17–20], and so on [21–23].

Quantum self-accelerating waves have been experimen-
tally demonstrated in electron optics [24]. Self-accelerating
Dirac waves have also been predicted in relativistic quantum
mechanics [25]. Coherent Bose-Einstein condensates (BECs)
may be appropriate for the realization of the self-acceleration
in matter waves. The latter effect has not yet been demon-
strated experimentally, although it has been elaborated theo-
retically, assuming the use of laser beams to imprint appro-
priate phase modulation onto the BEC [26] or the use of a
trapping potential moving with acceleration [27].

Ideal Airy waves with slowly decaying oscillatory tails
carry an infinite norm, therefore truncated Airy waves with a
finite norm were used in the theory and experiments [2,28];
however, the truncation causes gradual decay of the self-
accelerating wave packets. Furthermore, the study of the evo-
lution of the Airy waves, which are eigenmodes of the linear
propagation, in various nonlinear media [28–42] shows that
the nonlinearity causes deformation and often destruction of
the self-accelerating waves. Another type of self-accelerating

solitary-wave pairs was predicted [43] and demonstrated ex-
perimentally [44] in nonlinear photonic crystals with opposite
signs of the dispersion (effective mass) for the paired modes.

The above-mentioned settings were implemented neglect-
ing dissipation in the medium. On the other hand, robust
optical tail-free self-accelerating pulses have been predicted
and experimentally demonstrated under the action of various
nonconservative effects, such as the sliding-frequency filter-
ing [45], ionization of the dielectric medium [46], diffusion in
photorefractive crystals [47], and intrapulse stimulated Raman
scattering [48]. In the latter case, the number of photons
(integral norm of the pulse) is conserved, but the Raman effect
breaks the conservation of the momentum and Hamiltonian.

The present work shows that the long-range nonlinear
interaction between constituents of a binary BEC, mediated
by a microwave (MW) field (this interaction was elaborated
in Refs. [49,50]), supports spatially symmetric tail-free self-
accelerating hybrid solitons, both one- and two-dimensional
(1D and 2D) ones, built of matter-wave and MW components
(in that sense, they resemble exciton-polariton solitons, which
are also matter-field hybrids [51], although the present model
is a strictly conservative one, while exciton-polaritons states
exist in dissipative semiconductor cavities and therefore they
should be supported by pump fields). It is relevant to stress
that both the self-trapping and self-acceleration are induced
by the same interaction, while in previously studied nonlinear
systems the acceleration was driven by terms such as the
induced-Raman-scattering one, while the self-trapping was
provided by the Kerr nonlinearity. Further, we demonstrate
that the self-acceleration mechanism works equally well in
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FIG. 1. (a) Counterpropagating Raman beams L1 and L2 gen-
erate the spin-orbit-coupled two-component BEC, as shown in
Ref. [52]. (b) The microwave field couples states 0 and 1 by an
effective long-range interaction [see Eqs. (1) and (4)].

the presence of the spin-orbit coupling (SOC) between the
two components of the BEC wave function, as well as in
the presence of the usual nonlinear contact interactions. In
addition to the results for the matter-wave solitons, it is
demonstrated that similar self-accelerating optical solitons
can be produced in conservative optical media with strongly
nonlocal nonlinearity.

The rest of the paper is organized as follows. The 1D model
is formulated in Sec. II, which includes the linear SOC effect
in the two-component BEC. Both analytical and numerical
systematic results for the self-acceleration for 1D solitons
are reported in Sec. III. The 2D extension of the model is
presented in Sec. IV, where emphasis is put on the stable
self-acceleration of vortices. This section also includes a brief
consideration of a nonlocal optical system which may be
represented by a similar model, thus predicting similar results
for 1D and 2D self-accelerating spatial optical solitons. The
paper is summarized in Sec. V.

II. THE ONE-DIMENSIONAL SYSTEM

Because some essential results reported below are obtained
for the binary BEC including the SOC effect, it is relevant to
outline its implementation in the relevant setting. It may be
realized using the scheme shown in Fig. 1 [52]: counterprop-
agating Raman laser beams L1 and L2 drive the atomic gas,
adiabatically eliminating level 2 and creating the SOC system
with pseudospin 1/2, whose components represent atoms in
states 0 and 1. The emulation of various aspects of gauge
physics in ultracold gases by means of SOC has drawn a great
deal of interest [53–75]. In particular, SOC solitons have been
predicted in 1D [76,77], 2D [78–80], and 3D [81] geometries
(see also a review in [82]). However, SOC breaks the Galilean
invariance, which makes the creation of moving solitons a
nontrivial issue [77–79]. It was found that 2D solitons in the
system with SOC of the Rashba type feature mobility only in
one direction, up to a critical value of the velocity, beyond
which delocalization occurs [78]. Self-accelerating solitons
have not been found in previous works dealing with SOC
models.

We consider here the pseudospinor BEC with two com-
ponents coupled by the interaction mediated by the magnetic
component of the MW field, as schematically shown in Fig. 1
[49]. It has been found that the interaction gives rise to
quiescent hybrid MW–matter-wave solitons in one dimension
[49], as well as to giant solitary vortices in two dimensions,

which are stable at least up to topological charge S = 5 [50].
The solitons persist in the presence of additional contact
interactions of either sign, corresponding to self- and cross-
attraction or repulsion of the pseudospinor’s components.

In the 1D setting, components of the pseudospinor wave
function � ≡ (

�↓
�↑

)
, which correspond to states 0 and 1 in

Fig. 1, coupled by the MW magnetic-field potential H , obey
coupled Gross-Pitaevskii equations (GPEs), which may or
may not include the SOC terms with strength K , represented
by the first spatial derivatives, which are combined with the
Rabi-coupling frequency �:

i∂t

(
�↓
�↑

)

=
[
−1

2
∂2
x + U (x) +

(
iK∂x � − H

� − H ∗ −iK∂x

)

−
(

β1|�↓|2 + β2|�↑|2 0
0 β1|�↑|2 + β2|�↓|2

)](
�↓
�↑

)
.

(1)

Real coefficients β1 and β2 represent here, severally, the self-
and cross-component contact interactions, β1,2>0 (<0) corre-
sponding, respectively, to the attractive (repulsive) sign of the
interactions. The wave function is subject to the normalization∫ +∞

−∞
�†� dx = 1. (2)

The feedback of the matter-wave components on the MW
potential (a specific manifestation of the general local field
effect [83]) is accounted for by the Poisson equation [49]

∂2
xH = −γ�∗

↓�↑, (3)

whose solution can be written with the help of the 1D Green’s
function

H (x, t ) = −γ

2

∫ +∞

−∞
|x − x ′|�∗

↓(x ′, t )�↑(x ′, t )dx ′. (4)

Note that the asymptotic form of the potential, produced by
Eq. (4) at |x| → ∞, is a linear function of the coordinate,
which is a commonly known property of solutions to the 1D
Poisson equation with a localized source of the field:

H (x) ≈ −χ |x|, χ ≡ γ

2

∫ +∞

−∞
ψ∗

↓(x)ψ↑(x)dx. (5)

In the presence of SOC [Eq. (1)], the position, energy, and
time are scaled, respectively, by the inverse SOC wave number
k−1, recoil energy ER ≡ h̄2k2/2m, and h̄/ER so that K ≡ 1
is fixed in Eq. (1), unless we consider the system without
SOC, by setting K = 0. Further, U (x) in Eq. (1) is a trapping
potential (actually, we aim to consider free-space solitons,
with U = 0) and

γ ≡ Nmε0μ
2
0ω

2
MWM2/h̄2Ak3 (6)

is the effective strength of the MW-mediated long-range
interaction, with ε0 and μ0 the vacuum permittivity and
permeability, respectively, N the number of atoms, m the
atomic mass, ωMW the MW frequency, M the atomic magnetic
moment, and A the confinement area in the transverse plane.
Considering, for instance, BECs of 87Rb atoms, transversely
confined in an area ∼1 μm2, coupled to the MW with a wave-
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length of ∼1 mm, and the action of SOC with wavenumber
k ∼ 1 μm−1, Eq. (6) yields γ ∼ 10−9N . Thus, for BECs of
107 atoms (actually, condensates made of up to 108 atoms
are available, according to current experimental results [84]),
one obtains γ ∼ 10−2. Following this estimate, we set γ =
0.02 in numerical simulations below. Furthermore, by using
even tighter transverse confinement to reduce the transverse-
localization area A, the necessary number of atoms can be
made essentially smaller than 107, which is used here as the
estimate.

III. SELF-ACCELERATING
ONE-DIMENSIONAL SOLITONS

First, it is necessary to produce stationary solitons with real
chemical potential μ, in the form

�(x, t ) =
(

ψ↓(x)

ψ↑(x)

)
e−iμt , (7)

with the pseudo-spin-up and -down components of the com-
plex spinor wave function ψ↑,↓(x) obeying the stationary
free-space version of Eq. (1), with U (x) = 0:

μ

(
ψ↓
ψ↑

)
=

[
−1

2
∂2
x +

(
iK∂x � − H

� − H ∗ −iK∂x

)
−

(
β1|ψ↓|2 + β2|ψ↑|2 0

0 β1|ψ↑|2 + β2|ψ↓|2
)](

ψ↓
ψ↑

)
. (8)

Actually, it is more convenient to produce the stationary
wave function not through Eq. (8), but rather by solving
Eqs. (1) and (4) by dint of the imaginary-time-integration
method. The simulations were carried out in the domain |x| �
80, or in a smaller one, if it was sufficient for a particular
situation, with zero boundary conditions at the edges of the
domain. As a result, three distinct species of the 1D solitons
have been identified, viz., those of the regular, stripe, and
plane-wave types (solitons of the latter type are carried by the
plane-wave phase, discussed below). In the most fundamental
case, when the contact interactions are absent, i.e., β1,2 =
0 in Eq. (1), and solitons may only be supported by the
MW-mediated interaction, typical examples of the three
species are displayed, respectively, in Figs. 2(a1) (� = 1.5),
2(b1) (� = 0.7), and 2(c1) (� = 0.7) for γ = 0.02, along
with the respective profiles in the momentum space, in
Figs. 2(a2), 2(b2), and 2(c2). In particular, the stripe and
plane-wave-type solitons coexist at the same values of param-
eters, being almost mutually degenerate under the normaliza-
tion condition (2), with chemical potentials μ = −0.7300 and
−0.7298, respectively. A distinctive peculiarity of the soliton
of the plane-wave type is asymmetry between its components.

The soliton of the regular type, presented in Figs. 2(a1)
and 2(a2) for �2 > 1, resembles those in the usual 1D SOC
model (which does not include the MW-mediated coupling
between the components) [85], with zero carrier wave number
px = 0, while at �2 < 1 the formal linearization of Eq. (1) for
tails of solitons [which implies setting H = 0, according to
Eq. (4)] demonstrates that they may develop oscillations with

wave numbers px = ±
√√

μ2 − �2 + 1 − |μ| (the solitons
exist at μ < −1). Solitons carried by px with the single
sign are categorized as modes of the plane-wave type, while
the superposition of the two wave numbers with opposite
signs gives rise to stripe solitons [75]. However, the MW
potential H , dressing the condensate, completely changes the
asymptotic shape (tails) of localized modes at large |x|, where,
taking Eq. (5) into consideration, Eq. (8) reduces to

μψ =
(

− 1
2∂2

x + iK∂x � + χ |x|
� + χ∗|x| − 1

2∂2
x − iK∂x

)
ψ, (9)

with χ defined as per Eq. (5).

The presence of the effective linear potential ∼|x| in the
asymptotic equation (9) suggests to approximate solutions by
Airy functions [1]. Accordingly, the variational approxima-
tion (VA) for solutions to Eq. (8) may be based on the ansatz

ψ (VA) =
[

cos α

(
cos θ

sin θ

)
e−ip0x − sin α

(
sin θ

cos θ

)
e+ip0x

]
φ(x),

(10)
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FIG. 2. Typical density profiles in the (a1), (b1), and (c1) coor-
dinate space and (a2), (b2), and (c2) momentum space (produced
by the Fourier transform of the coordinate profile) of (a) a regular
(single-peak) soliton, (b) a stripe soliton, and (c) a soliton of the
plane-wave type, so called because it is carried by the plane-wave
phase, for the pseudo-spin-up (solid lines) and pseudo-spin-down
(short-dashed lines) components. These solutions to Eq. (1), with
K ≡ 1 and β1,2 = 0, were obtained, by means of the imaginary-time
integration, at � = 1.5, � = 0.7, and � = 0.7, with the respec-
tive chemical potentials μ = −1.4779, −0.7300, and −0.7298. The
wave functions predicted by the VA (long-dashed lines), ψ

(VA)
↑ (x ),

based on the ansatz defined by Eqs. (10) and (11), with VA-predicted
chemical potentials −1.4781, −0.7262, and −0.7260, respectively,
are plotted too for comparison with the numerical results in the
coordinate space. In (c1), the approximate wave function ψ

(app)
↓

for the pseudo-spin-down component, produced by the separately
developed analytical approximation (13), is plotted by the yellow
dash-dotted line, which overlaps with its numerical counterpart.
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where the shape function is chosen as

φ(x) = ψ0Ai(|x|/σ + ξ0), (11)

where ξ0 ≈ −1.019 is the first local maximum of the Airy
function Ai(ξ ) and hence x = 0 is the center of the adopted
profile. The variational parameters are α, θ , p0, and σ , while
ψ0 is a normalization constant. In contrast, in the usual 1D
SOC model, which does not include the MW field, φ(x) is
approximated by a sech or Gaussian ansatz [75]. At α = 0 or
π/2, the ansatz (10) reduces to an envelope multiplying the
plane wave, while at α = π/4, depending on �, the ansatz
may represent either a stripe soliton, if the wavelength 2π/p0

is small in comparison with the envelope’s width, or a regular
single-peak soliton otherwise. The values of the variational
parameters are numerically determined by minimizing the
system’s energy

E =
∫ +∞

−∞
dx ψ†

[
−1

2

d2

dx2
+

(
iK∂x �

� −iK∂x

)]
ψ

+ γ

4

∫∫
dx dx ′|x − x ′|

× [ψ∗
↓(x)ψ↑(x)ψ∗

↓(x ′)ψ↑(x ′) + c.c.]. (12)

In Eq. (12), the contact interactions are again disregarded,
setting β1,2 = 0 in Eq. (1), aiming to address the fundamental
setting, with the two components of the pseudospinor wave
function interacting solely via the MW magnetic field. The
VA-predicted soliton profiles are displayed in Fig. 2 along
with their numerically found counterparts, demonstrating that
the VA is reasonably accurate, providing in particular an
accurate approximation for the regular solitons.

The MW-mediated long-range interaction, which is the
underlying ingredient of the present system, determines not
only the shape of the solitons, but also their dynamics, as
shown by systematic simulations of Eq. (1). It was found
that the addition of small random perturbations to the regular
and stripe solitons does not produce any conspicuous effect
(which implies that they are completely stable modes in the
quiescent state), while perturbed solitons of the plane-wave
type start self-accelerated motion, keeping their integrity, as
shown in Fig. 3 for the system without the contact interactions
(β1,2 = 0).

Stable self-accelerating solitons persist in the presence of
the contact nonlinearity with the repulsive sign, as shown
in Fig. 4, as well as under the action of relatively weak
local attraction (see Fig. 5). Strong attraction may change
the situation, as it tends to transform the solitons considered
here, characterized by the ansatz based on Eqs. (10) and
(11), into usual sech-shaped solitons, for which the interaction
with the MW field becomes negligible. Naturally, the strong
self-repulsion makes the moving soliton much broader, as can
be seen in Fig. 4. As concerns the gradual decrease of the
acceleration, observed in Fig. 4, starting from t � 4500, and
in Fig. 5, starting from t � 7000, detailed consideration of
the numerical data demonstrates that this effect is explained
by a brake force, which is applied to the soliton by radiation
emitted by it at the initial stage of the evolution and eventually
reflected from the edge of the integration domain.
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FIG. 3. Shown on top is the evolution of the same plane-wave-
type soliton as in Fig. 2 (i.e., in the absence of the contact in-
teractions, β1,2 = 0), initiated by the addition of a small random
perturbation to it. In this figure and similar ones displayed below,
the evolution is displayed by means of the map of the total density of
both matter-wave components in the (x, t ) plane. Shown on the bot-
tom is the soliton’s average position 〈x(t )〉 ≡ ∫ +∞

−∞ �†(x )�(x )x dx

and velocity d〈x(t )〉/dt as functions of time. The time dependence
of the velocity helps to evaluate the soliton’s acceleration (weak jitter
in d〈x〉/dt is caused by the randomness of the initial perturbation).

These results suggest the existence of a family of stable
self-accelerating solitons of the plane-wave type, including
the quiescent and moving solitons displayed in Figs. 2(c1)
and 2(c2) and Fig. 3, respectively, the acceleration being an
internal parameter of the family. In the system dominated by
the SOC terms, the family can be constructed in an analytical
form. To this end, we look for the corresponding solution to
Eq. (1) as �↑↓(x, t ) = exp(ip0x − iμt )φ↑↓(x, t ), with slowly
varying amplitudes φ↑↓(x, t ), carrier momentum p0, and
chemical potential μ. Using Eq. (1), the small component φ↓
[see Fig. 2(c1)] is eliminated in favor of the larger one

φ↓(x) ≈ C(H ∗ − �)φ↑(x), (13)

with C ≡ (p0 − μ + p2
0/2)−1 [recall that we set K ≡ 1 in

Eq. (1), if the SOC terms are present]. This approximation
for φ↓(x) is plotted in Fig. 2(c1) by means of the yellow
dash-dotted curve, showing very good agreement with its
numerically found counterpart. Further, substituting Eq. (13)
in the remaining equation for φ↑ in system (1) leads, in the
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FIG. 4. Same as in Fig. 3, but in the presence of the self-repulsive
contact interactions in Eq. (1) with β1 = −5.0 and β2 = 0.
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FIG. 5. Same as in Fig. 3, but in the presence of the self-attractive
contact interactions in Eq. (1) with β1 = 0.3 and β2 = 0.

first approximation,1 to a single GPE, in which the term
CH ∗φ↑ from Eq. (13) couples the wave function φ↑ to the
potential H :

i∂tφ↑ = [− 1
2∂2

x − i(p0 − 1)∂x + 2C�H − β1|φ↑|2]φ↑.

(14)

Further, the substitution of the relation (13) in Eq. (3) leads to
the Poisson equation, which gives rise to real MW potential
H [unlike the complex field, produced by Eqs. (3) and (4) in
the general case]:

∂2
xH = Cγ�|φ↑|2. (15)

Then the existence of self-accelerating solitons is ex-
plained by the fact that Eqs. (14) and (15) are invariant with
respect to an exact transformation from the laboratory refer-
ence frame to one moving at an arbitrary constant acceleration
a (while the usual GPE, as well as nonlinearly coupled GPE
systems, is not invariant with respect to this transformation
[86,87]):

φ↑ = φ′
↑(x ′, t ) exp

[
i

(
axt + 1 − p0

2
Ct2 − a2t3

6

)]
,

x ′ = x − (a/2)t2, H ′ = H + (2C�)−1ax. (16)

Thus, any quiescent soliton produced by Eqs. (14) and (15)
generates a family of solitons moving with arbitrary accelera-
tion a, which is indeed the intrinsic parameter of the family, as
conjectured above. In particular, the term (2C�)−1ax, added
to the MW potential by the transformation, naturally breaks
the symmetry of the linear in x asymptotic field (5) with
respect to x > 0 and x < 0.

Note that, when p0 = 1 [i.e., the SOC term vanishes in
Eq. (14)], the transformation (16) remain valid and Eqs. (14)
and (15) are tantamount to the model introduced in Ref. [49]
without SOC (however, moving solitons were not considered
in that work). Thus, the existence of the family of robust
self-accelerating solitons does not depend on the presence of
the SOC terms in Eq. (1) and it is not broken either by the
inclusion of the contact-interaction term with the coefficient
−β1. The invariance with respect to the self-accelerating
transformation cannot be produced in an exact form for the
full system of equations (1) and (3), but its ability to maintain
the self-acceleration is clearly demonstrated by numerical
results (in particular, by Figs. 3–5).

The GPE system may also be reduced to a single equation
in the case opposite to that considered above, namely, if the
Rabi coupling dominates over SOC in Eq. (1), i.e., � is a large
parameter. In this case, the substitution of

�↑(x, t ) = exp[ix + (1/2 − μ0)it]�↑(x, t ),
(17)

�↓(x, t ) = exp[−ix + (1/2 − μ0)it]�↓(x, t ),

with μ0 = ±� and slowly varying amplitudes �↑↓(x, t ),
yields a relation between them,

�↓ ≈ μ−1
0 (� − H ∗)e2ix�↑. (18)

In contrast to the above case, when the component φ↓ is small
in comparison with φ↑, as per Eq. (13), Eq. (18) implies that
the absolute values of the two components are nearly equal.
Eventually, the substitution of the expressions (17) and (18)
in Eqs. (23) and (3) leads to the equations, which differ from
Eq. (14) with p0 = 1 (without the SOC term) and Eq. (15)
only by the notation for coefficients,

i∂t�↑ = [−(
1
2

)
∂2
x ∓ 2H (x) − (β1 + β2)|�↑|2]�1,

∂2
xH = ∓γ |�↑(x ′)|2,

i.e., the single GPE limit is a universal one, being equally
relevant in the cases of strongly unequal and nearly equal
components of the pseudospinor wave function.

IV. TWO-DIMENSIONAL SYSTEMS

A. The pseudospinor condensate coupled by the microwave field

In the 2D setting, Eqs. (1) and (3) are replaced by equations
which combine the 2D version of SOC [78–80] and the
interaction of the pseudospinor wave function with the MW
field in two dimensions [50]:

i∂t

(
�↓
�↑

)
=

[
−1

2

(
∂2
x + ∂2

y

) +
(

iK∂x K∂y + � − H

−K∂y + � − H ∗ −iK∂x

)](
�↓
�↑

)

−
(

β1|�↓|2 + β2|�↑|2 0
0 β1|�↑|2 + β1|�↓|2

)(
�↓
�↑

)
, (19)(

∂2
x + ∂2

y

)
H = −γ�∗

↓�↑. (20)

1A shift of the chemical potential p2
0/2 − p0 − C�2 − μ and a term ∼|H |2 are neglected here, as they are small in comparison with the term

kept in Eq. (14).
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To provide straightforward insight into the dynamics of the
2D system, we again resort to the limit case of the strong
Rabi coupling between the two components in Eq. (20),
which dominates over SOC. Then two components of the
pseudospinor may be reduced to one [cf. Eq. (18)] and the
system of Eqs. (19) and (20) amounts to the single-component
GPE coupled to the 2D Poisson equation, i.e., as a matter of
fact, the 2D extension of Eqs. (14) and (15),

i∂t�↑ = − 1
2

(
∂2
x + ∂2

y

)
�↑ ∓ 2 Re(H )�↑

− (β1 + β2)|�↑|2�↑, (21)(
∂2
x + ∂2

y

)
H = ∓γ |�↑|2. (22)

A straightforward but crucially important fact is that,
similar to what was found above for the 1D system [see
Eq. (16)], Eqs. (21) and (22) are invariant with respect to the
transformation to the reference frame which moves in the 2D
space with arbitrary initial velocities Vx and Vy and arbitrary
constant accelerations ax and ay :

x ′ = x − Vxt − 1
2axt

2, y ′ = y − Vyt − 1
2ayt

2,

H = H ′ ± (axx + ayy)/2,

�↑ = �′
↑(x ′, y ′, t ) exp{i[axt+Vx )x+(ayt+Vy )y−φ(t )]},

φ(t ) = (axt + Vx )3 − V 3
x

6ax

+ (ayt + Vxt )3 − V 3
y

6ay

. (23)

Accordingly, the coordinates (xc, yc ) of the center of the
stable 2D soliton (which may carry embedded vorticity [50])
move as xc = Vxt + 1

2axt
2 and yc = Vyt + 1

2ayt
2, which may

be a curvilinear trajectory in the 2D plane: At small t , it
is close to a straight line with slope x/y = Vx/Vy , while at
t → ∞ it becomes asymptotically close to a line with x/y =
ax/ay . In particular, in the case of ax = Vy = 0 the trajectory
is a parabola: yc = (ay/2V 2

x )x2
c .

Note that the solution of the 2D Poisson equation (22) has
the standard logarithmic asymptotic form far from the region
where the source of the field is located:

H ≈ ∓ γ

2π

(∫∫
|�↑(x, y)|2dx dy

)
ln r. (24)

The difference in the field component of the self-accelerating
2D solitons from that of their quiescent counterparts is more
essential than in the 1D case, as the potential terms linear
in x and y [see Eq. (23)] are qualitatively different from the
logarithmic term in Eq. (24).

The predictions are corroborated, in Figs. 6 and 7, by
numerical solutions of Eqs. (21) and (22) (in the absence
and presence of the contact interaction, severally) for stable
2D solitons with embedded vorticity S = 1 (vortex rings),
which move at a constant acceleration in the x direction, in
exact agreement with Eq. (23). A remarkable fact is that,
in the case shown in Fig. 7, the accelerating vortex soliton
remains stable in the presence of a relatively strong contact
self-attraction with β1 + β2 = 10 in Eq. (21), in spite of the
well-known propensity of the cubic self-attraction to desta-
bilize 2D vortex-ring solitons against the collapse and ring
splitting [88]. Note also that the action of the self-attraction
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FIG. 6. Plot of |�↓|2 = |�↑|2 for a stable self-accelerating vor-
tex soliton with ax = 10, ay = 0, Vx,y = 0, β1,2 = 0 [no contact
interactions in Eq. (21)], and γ = π . The right panel shows the time
evolution of coordinate x of the vortex center.

naturally leads to compression of the vortex ring. Finally, it
is relevant to stress that the acceleration observed in Figs. 6
and 7 is much larger than in Figs. 3–5, because in the latter
case it was induced by small random perturbations initially
added to the 1D solitons, while in the situation displayed in
Figs. 6 and 7 the acceleration was explicitly added to the input
generating the 2D vortex solitons, as per Eq. (23).

B. The nonlocal optical system

The mechanism of the formation of the tailless self-
accelerating solitons, elaborated above in terms of the two-
component BEC coupled by the MW field, can be realized
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FIG. 7. Same as in Fig. 6, but in the presence of relatively strong
contact self-attraction, represented by the coefficient β1 + β2 = 10
in Eq. (21).
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as well in a nonlocal optical model with amplitude E(x, y, z)
of the electromagnetic wave and local perturbation n(x, y, z)
of the refractive index, which are governed by the coupled
system of the paraxial propagation equation and an equation
which determines how the index perturbation is created by the
field distribution [89]:

iEz + (1/2)(Exx + Eyy ) + nE = 0, (25)

n − l2(nxx + nyy ) = |E|2. (26)

Here z is the propagation distance, x and y are transverse
coordinates, and l is the correlation length of the nonlocality.
Rescaling E ≡ lE and taking the limit of strong nonlocality
n/l → 0, Eqs. (25) and (26) are reduced to a form tantamount
to Eqs. (21) and (22):

iEz + 1
2 (Exx + Eyy ) + nE = 0,

nxx + nyy = −|E |2.
(27)

The 1D reduction of the 2D system (27) is obviously possible
too. Thus, stable 1D and 2D self-accelerating solitons may
also be predicted in this optical setting.

V. CONCLUSION

The objective of this work was to investigate the dynamics
of the binary BEC whose components, representing different
hyperfine atomic states, are coupled by the magnetic compo-
nent of the microwave field. In the general case, the spin-orbit
coupling is included too. The effective interaction between
the two components via the feedback of the atomic states on
the MW field supports self-trapped modes (solitons), whose
asymptotic form is the same as that of the Airy function,
in the 1D case. In the presence of SOC, we have found
stable 1D solitons of the regular (single-peak) and stripe
types and solitons in the form of envelopes carried by plane
waves. The most essential finding is the existence of stable
self-accelerating solitons of the plane-wave type and their 2D
counterparts, including vortex solitons. In contrast to the pre-
viously studied self-accelerating Airy waves [2], in the present
system the solitons keep simple self-trapped shapes, without
oscillatory tails attached to them, hence their integral norm

is well defined and convergent, unlike the divergent norm of
the exact Airy waves. The present system, being conservative,
is also different from previously studied models which admit
self-acceleration of localized modes in optical media featuring
nonconservative effects, such as the sliding filtering, diffusion,
ionization, and stimulated Raman scattering. The existence
of the family of the self-accelerating solitons is demon-
strated analytically, by reducing the two-component systems,
in the 1D and 2D settings alike, to a single GPE, coupled
to the Poisson equation for the potential of the MW field.
These reduced systems admit the exact transformation to a
reference frame moving with arbitrary acceleration, thus gen-
erating self-accelerating solitons from quiescent ones in the
exact form. In the 2D geometry, the transformation generates
2D solitons which may move along curved trajectories, due to
the interplay between the 2D velocity and acceleration. The
self-acceleration mechanism persists if the contact nonlinear-
ity is included. It can also be realized in strongly nonlocal
optical media, with the 1D or 2D transverse geometry.
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