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We consider the linear stability of chiral matter-wave solitons described by a density-dependent gauge theory.
By studying the associated Bogoliubov—de Gennes equations both numerically and analytically, we find that
the stability problem effectively reduces to that of the standard Gross-Pitaevskii equation, proving that the
solitons are stable to linear perturbations. In addition, we formulate the stability problem in the framework of
the Vakhitov-Kolokolov criterion and provide supplementary numerical simulations which illustrate the absence
of instabilities when the soliton is initially perturbed. These results justify the production of chiral solitons
in ultracold experiments and their potential application for practical transport dynamics in interferometry and

atomtronics.
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I. INTRODUCTION

The stability of solitons in the presence of perturbations
represents one of the fundamental problems in the study of
solitary waves. Only solitons which are generally robust to
perturbations are suitable for study in a physical setting and,
by extension, implementing into potential applications in both
science and industry [1,2]. Over the years, this topic has
been studied extensively for various nonlinear models, with
analysis generally falling into two frameworks: the study of
small (linear) perturbations of the soliton envelope via a linear
stability analysis [3—6] or the study of additional perturbative
terms in the model through a perturbation theory or variational
analysis [7—12]. The motivation here is twofold: to establish
the intrinsic stability of the soliton in a given model, but
also to consider the effect of physically relevant perturbations
which may influence or potentially damage the soliton. The
latter point is of particular importance, as realistic systems
are generally described by nonintegrable models, in which
solitons can potentially be unstable.

In the setting of nonlinear optics, described by the gen-
eralized nonlinear Schrodinger equation, understanding the
stability of solitons in the presence of perturbations has been
a fundamental area of research in the design of soliton-
based optical communications [13,14]. Most notable is the
Vakhitov-Kolokolov criterion [15,16], which connects the
linear stability of bright solitons to two key properties:
the number of negative eigenvalues in the spectral problem,
and the behavior of the power integral with respect to the prop-
agation constant. In addition to this pioneering work, several
studies have addressed the addition of perturbative terms in
the model, such as, but not limited to, the excitation of internal
modes in non-Kerr media [17-19], the effects of third-order
dispersion and self-steepening [10,20], and more recently for
‘P T -symmetric potentials [21-24], which describe media with
complex refractive indices.

In ultracold atomic gases, the linear stability framework
is more commonly referred to as the Bogoliubov—de Gennes
equations and plays a historic role in understanding the super-
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fluid properties of the gas [25-27]. Following the first experi-
mental realization of these ultracold gases, considerable work
was centered around studying the response of the trapped
condensate to small perturbations [28-32], highlighting the
collective nature of the low-lying excitations. The second gen-
eration of studies considered the case of both dark and bright
solitons [33—38], which in turn has led to a number of key
works, such as the interactions between trapped bright solitons
[39,40], generation of soliton trains [38,41,42], the reflection
properties of bright solitons [43,44], and understanding the
snaking instability of dark solitons [45,46].

As the design of these ultracold systems become more
involved, it is important to understand how the dynamics
and stability of the condensate is modified, as retaining the
coherence properties of the gas is often a desirable feature.
In particular, the ability to engineer artificial gauge potentials
in these systems can drastically alter the properties of the
gas [47,48], with the emergence of vortices and spin-orbit
coupling [49,50], as well as the breakdown of both Galilean
invariance and integrability in models featuring density-
dependent gauge potentials [51,52]. In the latter case, it has
been demonstrated how these features can lead to the onset of
chiral dynamics in the condensate, including collective modes
which violate Kohn’s theorem [53-56], unconventional vortex
dynamics [57,58], and the principal focus of this paper: the
emergence of chiral soliton solutions. These solitary waves
possess the interesting feature that their properties depend on
the direction that it is traveling [51,59], in addition to featuring
nonintegrable collision dynamics between pairs of solitons
[60]. Very recently, the first set of experiments in this area
have appeared, with a dynamical gauge theory realized in
trapped ion systems [61] and a density-dependent synthetic
gauge field in a Bose-Einstein condensate loaded into a two-
dimensional lattice [62].

With these ideas in mind, it is therefore an attractive
proposition if the coherence, localized nature, and dynamical
properties of a chiral soliton could be exploited for novel
transport dynamics in interferometry and future atomtronic-
based technologies [63—65]. The first step in achieving this
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requires studying the response of the soliton to the broad
class of perturbations typically encountered in experiments,
as these can often modify the soliton dynamics significantly.
For example, it is known that perturbed solitons in models
featuring a cubic-quintic nonlinearity can oscillate and emit
radiation due to the excitation of an internal mode [17-19].
As such, we study in this paper, the linear stability of one-
dimensional chiral matter-wave solitons. We begin by briefly
reviewing the physical model, in which a density-dependent
gauge potential is optically engineered in a ultracold atomic
gas. Then, in Sec. III, we derive the Bogoliubov—de Gennes
equations and study the stability spectrum both numerically
and analytically in Secs. IV and V, respectively. Finally,
in Sec. VI we reformulate the stability problem using the
Vakhitov-Kolokolov criterion, before concluding in Sec. VII.

II. THE MODEL

We consider the model studied in Ref. [51], in which a
harmonically trapped two-level Bose-Einstein condensate is
optically dressed by an external laser field. The Hamiltonian
describing the system can be written as

N p> | P .
H = %—{—Emwlrl ®H+Hinl9 (1)
with the interaction matrix
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The light-matter interactions are parametrized by the Rabi
frequency €2 and phase ¢, (r) of the laser field, with the mean-
field interactions controlled by the scattering parameters g;; =
4 h%ajy /m, with a;; corresponding to the scattering lengths
for collisions between atoms in state i and i’. The harmonic
potential appearing in Eq. (1) is chosen to be tightly confined
in the radial plane r (y, z), but free along the axial x axis such
that the condensate dynamics is effectively one-dimensional.

By treating the mean-field interactions as a small perturba-
tion to the laser coupling /2 3> g;i|W;|?, it can be shown in
the dressed state picture [47,51], that the effective detuning
induced by the interacting gas can give rise to a density-
dependent gauge potential

AL =AD La v, (n)f

Vi (r)(gi — g22)
8Q

where A is the single-particle vector potential and a; con-
trols the strength of the density-dependent gauge potential
with &+ indices labeling the dressed states. In the following
we choose without loss of generality one of the dressed states
and drop the =% indices. By reducing to the one-dimensional
picture, the dynamics is described by the Gross-Pitaevskii
equation
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which contains a probability current of the form

1
@) =[P+ al[WHW* — U (p — a [T )], (5)

in addition to the standard cubic nonlinearity. The
strengths of the scattering parameters are given by
a; = k(g1 — &22)/(16m13 Q) and gip = (11 + g22 + 2812)/
(871%), which are scaled by the harmonic length
l; = +/h/mw,; and laser phase ¢; = k;x. The interacting
gauge theory described by Eq. (4) represents a nonlinear
model, in which the condensate dynamics is influenced by a
back-action between the matter-field and the gauge potential.

Rather than working with Eq. (4) directly, we will instead
consider the system
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which is arrived at by using the nonlinear transformation

ia1

W(x, 1) = ¥(x, t)exp|:7/ dx' |y (x, t)|2]. ®)

In the literature, Eq. (6) is often referred to as a chiral
nonlinear Schrodinger equation, which was originally studied
in the context of one-dimensional anyons [59]. Compared to
the standard Gross-Pitaevskii equation, this model is generally
nonintegrable [66,67] and possesses chiral soliton solutions
which arise due to the breakdown of Galilean invariance
[68,69]. As solitons in nonintegrable models can be unstable
to perturbations [5,6], we are naturally concerned with the
stability of the soliton solutions in our model.

A. Conservation laws

The principle conservation laws underlying the chiral
model are given by the integral expressions [68]

N:/oo dx |y )%, )
P:—ihfoo dx U o + a /OO dx |y|*, (10)
and
00 2
E =/ dx (;—|axw2+g£|w|“>, (11)
oo m 2

which quantify the number of atoms (power integral), momen-
tum, and energy of the condensate, respectively. An important
dynamical feature of the model is highlighted by Eq. (10),
which shows that the gauge field contributes to the momentum
of the condensate in a similar manner for a particle traveling
in an electromagnetic field. Note that the Hamiltonian density
defined by the integrand of Eq. (11) excludes the probability
current but does correctly reduce to Eq. (6) provided Hamil-
ton’s equations are also transformed via Eq. (8).

B. Chiral solitons

In order to derive and subsequently study the stability of
the soliton solutions of Eq. (6), it will prove advantageous to
work in the moving frame of the condensate as opposed to
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the stationary frame. To this end, we introduce the Gailiean
transformation

U(x, 1) = (D(x/’ t/)ei(mvx/+mvzt’/2)/h’ (12)

where the stationary coordinates (x,?) and moving coordi-
nates (x', t") are related by the translations, x’ — x — vt and
t' — t, with frame velocity v. The dynamics of the condensate
in the moving frame is then described by the equation of
motion

L 0P R, )
i = | =5-0 =21/ () + (g — 2a10)| D]

(13)

The introduction of the renormalized scattering parameter
2ip = gip — 2a;v highlights that Eq. (6) is not Galilean in-
variant, with the strength of the mean-field interactions depen-
dent on both the magnitude and direction that the condensate
is moving. For the remainder of this paper, we will explicitly
drop the prime notation in the coordinates for brevity and
work exclusively in the moving frame unless otherwise stated.
The bright soliton solutions of Eq. (13) then admit the
standard form ®(x, t) = @s(x)e /", with envelope

1
NeT: sech (x/b), (14)
width b = —2/? /m3,p, and chemical potential (propagation
constant) u = —mg>,/8h%. In this example, each of these
quantities is constrained by normalizing ¢g to unity, provided
21p < 0. Due to the breakdown of Galilean invariance, both
the width and chemical potential of the soliton will depend
on the direction of motion. The soliton solution described
by Eq. (14) is therefore chiral, such that under appropriate
conditions the soliton can be either stable or unstable in a
given direction [51]. In recent work, we have shown how the
nonintegrability of the model can lead to interesting collision
dynamics between pairs of chiral solitons, featuring inelastic
trajectories and population transfer, in addition to soliton
fission and the formation of two-bounce resonance states [60].

ps(x) =

III. BOGOLIUBOV-DE GENNES EQUATIONS

To study the linear stability of the chiral soliton, we pro-
ceed in the standard way by introducing the condensate wave
function [18,26]

D(x, 1) =[gs + (u+v)e ™ — (u

in which the soliton envelope ¢s is perturbed by small-
amplitude excitations, u(x) and v(x), with frequency w. Sub-
stituting Eq. (15) into Eq. (13) and linearizing to first order in
u(x) and v(x) leads to the zeroth-order equation

Ligs =0, (16)

_ U)*eia)f]efiﬂt/h’ (15)

and the pair of Bogoliubov—de Gennes equations [53]

()-( SO+ o

which feature the standard linear operators

2

h
Lo=— 3> — w+ kZiples|, (18)
m

for k = {1, 3}, in addition to the current operator

h
Jo =@ |:|§Os| 9, — —a |<ﬂs|2} (19)

Together Eqgs. (16) and (17) describe the perturbation dynam-
ics of the soliton, with the stability properties determined by
the nature of the eigenvalues, or “stability spectrum,”’ of the
Bogoliubov—de Gennes equations. Note that the linearized
operator L is not self-adjoint [see Eq. (34)], even in the
standard case with a; = 0.

A key feature of these equations is highlighted by the prop-
erty that in the moving frame the current operator does not
explicitly couple to the envelope of the soliton but does couple
to the excitations around it. In turn, this leads to the zeroth-
order equation for the stationary soliton being described by
the integrable Gross-Pitaevskii equation, despite Eq. (6) being
generally nonintegrable. Therefore, it is expected that the
spectrum of excitations around the chiral soliton will be
similar to that of integrable models, with only their form
modified slightly due to the coupling of the current operator,
as per Eq. (19). This proposition will be a key underlying point
in the analysis to follow.

We can also conclude several additional properties of the
excitations by studying the matrix

» _ (Gaih/mb)sech® (x/b)d, —iW Lo+ 3V

which is obtained by substituting the soliton solution into
Eq. (17). Appearing in Eq. (20) are two potential functions,

V(x) = —b 8 sech(x/b) (1)
and
iW(x) = zgz'—; — tanh(x/b) sech?(x/b), (22)

which are a standard reflectionless potential [70,71] and a
gain-loss distribution for the excitations, respectively [21-24].
Together they form a modified (hyperbolic) Scarf-1I potential
with the following properties [21]:

(i) Bounded with V (x) < 0, W (x)| < gipa1/(3+/3bh).

(i1) Convergent with x — oo, V(x) and W (x) — O.

(iii) Not self-adjoint [zW(x)] # iW (x) [see Eq. (35)].

(iv) PT-symmetric, PTV (x)+iW (x)]=V (x)+iW (x).

These properties highlight that the soliton acts as a com-
plex effective potential for the excitations, with bound states
and scattering states supported for the attractive potential
V(x), and the gains and losses of the excitations balanced by
the symmetry of the imaginary potential ffooo dx W(x)=0.
As this potential is not self-adjoint, the stability spectrum for
the excitations could potentially contain complex eigenvalues,
in addition to a P -symmetry breaking point featuring excep-
tional points [72].

IV. NUMERICAL RESULTS

With the Bogoliubov de-Gennes equations derived and
their properties reviewed, we can now proceed in solving for
the stability spectrum of the soliton. To achieve this, we first
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FIG. 1. (a) Numerically obtained eigenvalue spectrum of the
Bogoliubov—de Gennes equations with discrete states (green-dash)
and continuous states (gray-shaded). The band edge of the con-
tinuous spectrum is highlighted in red, for both numerical (solid)
and analytical (dots) results. The soliton parameters are taken as
gipml/F* = —1, and vmt/li=1. (b) Subset of (a) taken at a, /hi=1.
All energies are scaled to units of €, = A% /mé?.

consider a numerical solution, in which Eq. (17) is discretized
with periodic boundary conditions and subsequently solved
using a sparse eigenvalue solver. The resulting eigenvalues
and eigenvectors are shown in Figs. 1 and 2, respectively.

As expected, we find that the eigenspectrum retains several
characteristic features commonly encountered in integrable
models [5]. The eigenvalues consist of the union of two
sets: a continuous spectrum with two symmetric branches
each gapped from the origin by |iw| = ||, and a discrete
spectrum with one pair of eigenvalues located at i = 0 and
another pair displaced from the origin by a small imaginary
component. At first glance, this pair of imaginary eigenvalues

Re{u(z),v(z)} — — —Im{u(z),v(z)}

1 0.5
3 Owﬂ/\\‘—“‘ 3 0
3 =
(@) (b)
1 0.5
1 1
3 0 3 0’_‘\/\~.
3 <)
() (d)
-1 -1
0.01 0.05
- @] _ ("
-0.01 -0.05
-5 0 5 -5 0 5
x/l x/l
FIG. 2. Bogoliubov—de Gennes eigenvectors (u v)' for

gioml/R* = —1, vml/li=1, and a;/hi =1. Pictured are the
degenerate bound states, (a-b) and (c—d), corresponding to
the discrete spectrum and the first continuous state (e—f). All
eigenvectors are scaled to units of £7'/2 for both numerical (solid
line) and analytical (dots) results.

would indicate an instability mode where the soliton state
can collapse. However, this component arises instead due to
the discreteness of the numerical analysis and subsequently
vanishes in the continuum limit (see Appendix A). The eigen-
values of Eq. (17) are therefore entirely real with a fourfold
degenerate eigenvalue at /iw = 0, in an identical manner as
for the Gross-Pitaevskii equation. In reference to the P7T -
symmetry breaking proposed earlier, we find that the eigen-
values are consistently real in the parameter space gip < 0,
indicating the absence of a P7 -symmetry breaking point for
the regime in which the soliton solution is valid. Therefore we
may conclude that in free space, the chiral soliton is stable to
linear perturbations.

The eigenvectors of Eq. (17) are also consistent with that of
integrable models, with the discrete spectrum corresponding
to localized real-valued solutions in the vicinity of the soliton
[Figs. 2(a)-2(d)], while the continuous states are complex-
valued and generally oscillatory at x/¢ = oo [Figs. 2(e) and
2(f)]. In fact, the discrete states pictured are exactly the same
as for the Bogoliubov—de Gennes equations associated with
the Gross-Pitaevskii equation, with the first and second states
taking the form of the envelope of the soliton and its deriva-
tive, respectively. This similarity, or rather the invariance of
the form of the discrete states in the presence of the current
operator, will become clear from the analytical results in the
next section.

In obtaining these numerical results, the proposition that
the stability spectrum of the chiral soliton is similar to that of
integrable models is validated. As such, the interacting gauge
theory represents a nonintegrable model in which the soliton
solutions are stable to linear perturbations. The absence of in-
stability modes in the model will be revisited in the numerical
simulations presented in Sec. VI A.

V. ANALYTICAL RESULTS

For several integrable models, the spectrum of excita-
tions around the soliton solution can be derived analyti-
cally [4,73,74]. This is generally achieved either through a
connection to the squared eigenfunctions of the associated
eigenvalue problem [75] or, in some cases, by direct methods.
As our model is generally nonintegrable, it is unclear whether
the former method would be applicable. However, using the
numerical results obtained previously as a basis, we can at the
very least obtain expressions for the discrete spectrum using
traditional methods.

A. Discrete spectrum: Bound states

As was demonstrated previously, the discrete spectrum of
the excitations correspond to a set of bound states which are
a zero-eigenvalue solution of Eq. (17). For this reason, the
Bogoliubov—de Gennes equations can be written as

Liu=0 (23)
and
Liv = -2 u. (24)

The above set of differential equations can be solved analyti-
cally using either a hypergeometric series approach [76-78] or
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by operator methods [79] (see Appendix B for details on the
former). Then, by denoting ¢, = (uv)" for n € Z*, we find
the pair of zero-eigenvalue solutions

&= (Cl sech X ) (25)

and

0
= <C4 sech x tanh X)’ (26)

where x = x/b, and c¢; and ¢4 are arbitrary constants to be
determined. Due to the fourfold degeneracy of the zero eigen-
value, two linearly independent solutions, {3 = 2(43,— + £3.4+)
and &4 = 2(%s,— + 4.4 ), are also required for completeness,
where

- = cysech x (im /)227:))’ Q7
bt = CZ(—(zia1 hysechx i tan x — 3 /4})’ %)
b4 = (C3 sech x { Xotanh X — 1})’ (29)
and
b4t = <(C3/3)Ocosh x) (30)

are a set of generalized eigenvectors which satisfy the eigen-
relations, i{s,i = 12¢ and ﬁé‘4,i = +2¢;, up to a constant
[7,74]. Tt is straightforward to verify that the solutions form a
linearly independent set by calculating the Wronskian

sech x 0

W (&1, &) = det 0 tanh y sech x

£0, (3

and likewise for the remaining solutions.

Together, these states compose the discrete spectrum of
Eq. (17), corresponding each to small variations of the soliton
with respect to its four free parameters: phase, position, veloc-
ity, and chemical potential. As an example, by expanding the
soliton solution around a small variation of the velocity v,
such that b — b + 8b, one finds to first order that

idvx

= sech x + idvxsech x
x (1 — 2ia; tanh x) + O(X)z, (32)

sech x e

which is captured by ¢3 with reference to Eq. (15). Sur-
prisingly, this set of discrete states is identical to that of
the Bogoliubov—de Gennes equations for the Gross-Pitaevskii
equation, except for ¢3, which features current-dependent
terms due to the width of the soliton being defined in part by
its velocity. This similarity becomes clear when obtaining the
solutions, as one finds that the soliton envelope is a zero eigen-
value solution of the operator £,¢s = 0 and the linearized
current operator Jops = 0. Therefore, the eigenvalue problem
for both ¢; and ¢, effectively reduces to the standard case,
which naturally leads to the form of the solutions pictured in
Fig. 2.

Defining the inner product between any pair of solutions as

(for fr) = / dx f f. (33)

together with the normalization constraint defined by Eq. (9),
leads to the values of |c;|> = 1/(2b) and |c4|* = 3/(2b) for
the arbitrary constants. Note that since ¢3 and ¢4 are not
square-integrable solutions, we are not required to compute
inner products for the remaining constants as these states are
not physical.

With the form of the solutions now reduced, we are now in
a position to compare our analytical results to the numerical
ones obtained earlier. In Fig. 2 we find exact agreement
between the analytical (dots) and numerical (solid line) results
for the degenerate bound states ¢; and ¢,. This reinforces the
statement that the discrete eigenvalues in the chiral model are
fourfold degenerate at iw = 0, with the imaginary component
in the numerical analysis attributed to numerical artifacts.
Therefore we may conclude that due to the consistent results
obtained from both methods the chiral soliton is stable to
linear perturbations.

B. Discrete spectrum: Adjoint bound states

In addition to the standard eigenvalue problem, we can
also solve the corresponding adjoint problem using the same
analytical techniques. Although this system does not have
any physical relevance, the equivalence of both eigenvalue
problems will be a key property which we will exploit when
deriving the Vakihitov-Kolokolov criterion in the next section.

For the subspace of square-integrable solutions of L with
the inner product defined by Eq. (33), we write the adjoint
operator

.
it — (22730 E()l), (34)

whose right eigenvectors are the adjoint of the left eigen-
vectors of L. The adjoint of the linearized current operator
appearing in Eq. (34) is given by

ialh

%T_

m

2 3 2
losI70: + S dcles™ . (35

Together Egs. (34) and (35) explicitly highlight that L, as
mentioned previously, is not self-adjoint.

Using the same methodology as before, we denote the left
eigenvectors of L as 9, = (uv) and find the adjoint solutions

0 T
o= (cs sech X) (36)

i
_ tanh x
¥, = cgsech x (—(ial/h) sech? X) . 37

Again, due to the degeneracy of the zero eigenvalue, two addi-
tional solutions, 93 =2(13,_+33,1) and P4 =2(04 _+V4 4),
are also required for completeness, where

0 T
U3 = <C6X sech X) ’ (38)

0 T
Usg = <06 sinh X) ’ (39)

and

i
_ xtanh x — 1
U4, = cysechx <—(ia1 JR){(x sech? x — tanh x}> » 40
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and

9L = 1 cosh x f 1)
4+ = 3\ (2ia; /1)y sech x

are the set of generalized eigenvectors satisfying the eigenre-
lations, LT193¢ = £29, and L4 . = 29, up to a constant.

C. Continuous states

For the continuous states, we are unfortunately unable to
derive a closed-form expression due to the complexity of
the eigenvalue problem. Although we may be able to obtain
these solutions using a power series method [80,81], the
complicated nature of the calculation presents little benefit
for the knowledge gained, since the continuous states are
irrelevant for addressing the stability of the soliton. However,
we can still obtain an expression for the eigenvalues using an
asymptotic approach as follows.

The key point to note is that for large distances away from
the center of the soliton, the continuous states are generally
oscillatory such that they can then be written as plane waves

of the form
. u el
i (4) ~ () @)

with wave number g. Then, by substituting Eq. (42) into
the asymptotically reduced form of Eq. (17), one finds the
continuous-eigenvalue expression

h2q2
he, ~ i(— - ,U~>7 (43)
m

which, as expected, is simply a free-particle dispersion re-
lation gapped by the chemical potential of the soliton. In
Fig. 1(a) we compare both the numerical (red solid line) and
analytic (red dots) values for the continuous-state band edge
(g = 0), which as shown is in exact agreement.

VI. VAKHITOV-KOLOKOLOV CRITERION

As the chiral solitons present in our model are solutions
to a generalized Gross-Pitaevskii equation with a real positive
envelope, we can also establish their stability properties using
the Vakhitov-Kolokolov criterion [5,15]. For the standard
Gross-Pitaevskii, the stability criterion requires:

(i) The eigenspectrum of the operators £; and L3, should
contain at most only a single negative eigenvalue.

(i) The slope of the power integral, dN/du > 0, should
be non-negative for u < 0.

The first condition is straightforward to verify by noting
that both operators have a positive continuous spectrum Ao =
[—u, 00), and a discrete spectrum defined by the eigenrela-
tions,

Ligs =0 (44)
and
L3(3,98) =0 L3(ps)* = 3ulps)’. (45)

The second condition can also be proven easily by direct
integration, provided the particle number (power) is correctly
posed [3]. This criterion directly follows from the definiteness

of the operators in the eigenvalue problem and therefore re-
quires us to extend the Vakhitov-Kolokolov analysis to include
the linearized current operator as follows.

As the eigenvalues of L and L' are conjugate to each other,
we can without loss of generality consider the spectral proper-
ties of either system. To this end, it will prove advantageous to
work in the adjoint picture, as the following stability analysis
is simpler while exploiting the property that the operators £;
and L3 are self-adjoint.

We start by restating the adjoint eigenvalue problem

2T u+ Liv = ho'u (46)
and
Liu = ho™v. 47)

Taking the inner product of Eq. (46) with ps(x) leads to the
expression

2ps, Ty u) + {@s, L1v) = ho™* (gs, u). (48)

As L, is self-adjoint with £;¢s = 0, the above expression is
true Yo, provided the orthogonality condition

(@s, Tgu) = (s, u) =0 (49)

is satisfied. Therefore, for the nonzero eigenvalues in the
stability analysis, we may restrict ourselves to the function
space

S =) : (ps, Tyu) = (gs, u) = 0}, (50)

where the inverse operators ,Cl_l and £ ! are definable.
Returning to Egs. (46) and (47), we can now proceed in

constructing the stability criterion for the chiral soliton by

combining both equations into the fourth-order equation

L1L3v = (hw*)*v — 2ha* T v (51)

in the function space S. Multiplying Eq. (51) by /.Zl_l, taking
the inner product with respect to v(x), and completing the
square leads to the expression
2 2 2 172
y 28, B (ﬁ v ) |
o

_+_ — e
o a? A

(ho*)* = (52)

with o = (v, ﬁl_lv), B = (v, EI_IJJV), and y = (v, L3v).
The condition of stability is now set by requiring that the
right-hand side of Eq. (52) be non-negative, such that iw* by
extension is real. Otherwise for negative values, iw* would be
imaginary, thereby indicating an instability. As both £; and
L3 (and their inverses) are known to be positive definite in
the space S [75], the standard term y /o will not need to be
considered in our analysis. Instead, the stability of the soliton
will be resolved by studying the definiteness of EI’IJJ.

Despite being a trivial reduction of the problem, the non-
negativeness of Eq. (52) can be guaranteed if \7(; is nilpotent
in the domain considered, i.e., JJV =0, such that all the
eigenvalues of jg are zero. This can be proven by directly
solving the eigenvalue problem

Jjv = v, (53)
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FIG. 3. Propagation of a chiral soliton, in the moving frame,
whose initial envelope is perturbed due to a change in number of
atoms. Shown are the predicted trajectories from the variational
equations (white-solid) in comparison to the full numerics (shaded)
and the unperturbed case (red-dash). The soliton parameters are
gioml/R* = —1, vml/h = 1, and a; /i = 1, with the mismatch pa-
rameters A = +0.01 (a), and A¢ = —0.01 (b). The condensate
density is scaled to units of £, with the units of time given by
th = me? /h.

with eigenvalue A and eigenfunction v. The general solution
of Eq. (53) can be readily found,

v = Ccosh® x exp{—iek[x + %sinh(ZX )]}, (54)

where € = mb?*/a;h, and C is an arbitrary constant. For a ring
domain of length (circumference) L with periodic boundary
conditions v(—L/2) = v(L/2), the eigenvalues form a con-
tinuous spectrum

= 2no
" €[L/b + sinh(L/b)]’

with o =0, £1, £2, .. .. Then in the combined limit where
L — oo and 0 — %00, the eigenvalues of Eq. (53) coalesce
at A = 0, highlighting that for the ring domain considered in
our numerics, the adjoint current operator jOT is nilpotent.
Therefore, the stability condition, Eq. (52), reduces to the
form encountered for the standard Gross-Pitaevskii equation,
from which the Vakhitov-Kolokolov criterion is known to be
satisfied [5,15].

(55)

A. Numerics

In addition to the results obtained analytically, we also
consider a set of numerical simulations which illustrate the
stability of the chiral soliton under the influence of a per-
turbation. To achieve this, we follow the standard numerical
scheme in which the initial number of atoms (power) of the
soliton differs from the exact solution and observe whether
the soliton collapses or retains its shape [5,6]. As such, we
define the perturbed soliton state as

oa = ps(1 + Ag) (56)

and show two examples of the pertubation dynamics in Fig. 3,
each for a different sign of the perturbation parameter Ag.

In both cases, the soliton maintains its shape over the
course of the simulation and does not collapse, disperse, or
oscillate due to the excitation of an internal mode [6,19].
Instead, the soliton emits a small (nonvisible) amount of

radiation and decays to the stable low-amplitude solution, in
a similar manner to solitons of the Gross-Pitaevskii equation.
However, as the initial width of the soliton changes due to
the perturbation, with g,p and a; fixed, the velocity of the
perturbed soliton will differ from the frame velocity set by
Eq. (12). This results in the soliton drifting in the moving
frame, with the direction controlled by the sign of the per-
turbation. This effect is not captured by the stability spectrum
of the Bogoliubov—de Gennes, due to it being a higher-order
effect which is neglected in the linearization. Instead, we are
required to consider an alternative framework to explain the
presence of the soliton drift.

B. Variational equations

To quantify the drift of the soliton due to the action of the
perturbation, a variational approach can be employed to derive
a set of coupled equations which effectively describe the
soliton dynamics [82]. Although we will not be able to solve
these equations analytically, their numerical solutions will
provide sufficient illustrations of the perturbation dynamics
to compare with the results pictured in Fig. 3.

We begin by writing the Lagrangian density [69],

i "2
L= Z@aY" — v )+ -l + D4
m 2

X
raly Py [ aywonr, 57)
IJ-x
which is written in the stationary frame of the soliton, with
stationary coordinates (x, t). To accurately describe the per-
turbation dynamics, we choose a general variational ansatz of
the form [71,83]

Y(x,t) = asech[(x — 5)/b]eis, (58)

in which the width and position of the soliton envelope can
vary dynamically through the spatially varying phase

S(x, 1) =k(x — &)+ wx —£) + ¢. (39

Here a(t), b(t), £(t), k(t), w(t), and ¢(¢) are time-dependent
variational parameters corresponding to the amplitude, width,
center-of-mass coordinate, velocity, curvature, and absolute
phase of the soliton. As the form of Eq. (58) explicitly
assumes that the shape and particle number of the soliton is
conserved, the interplay of radiation will therefore be absent
in the analysis. However, as we will demonstrate, provided the
magnitude of the perturbation is kept small, this discrepancy
will not have significant implications.

Substituting Eq. (58) into Eq. (57) and minimizing the
corresponding action functional leads to the set of coupled
differential equations

. Nalb
mé = W’ (60)
2 —2a\hk/m)N K>
LA (g — 2a,hik/m) 7 1)
12 6b? 3mb?
and
mE Na,
k=—+4+—, 62
h + 3hb 62)
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which collectively describe the motion of the soliton. The
source of the drift is now clear from the coupling between
Eqgs. (60) and (61): that a time-dependent variation of the soli-
ton’s width, induced by a perturbation, can lead to a change
in the soliton’s center-of-mass proportional to the strength of
the gauge field. The trajectory of the soliton is then set by
Eq. (62), which in a consistent manner to Eq. (10) contains
an additional contribution from the gauge field. Therefore,
for either an increase or decrease in the particle number, it
is expected that the soliton will drift in the moving frame.

To illustrate the above reasoning, we solve the set of dif-
ferential equations numerically using a fourth-order Runge-
Kutta method and plot the predicted soliton trajectories (red
solid line) in Fig. 3. Both the direction and magnitude of
the drift are captured correctly by the variational equations
and therefore validate that the drift of the soliton arises due
to how the initial state is prepared. In addition, these results
show that in this weak perturbation regime, the emission of
radiation from the soliton plays no significant role in the
dynamics. However, its absence in the variational description
does lead to inconsistencies, as demonstrated by the presence
of small-amplitude oscillations in the predicted trajectories
which persist indefinitely.

To conclude, although we cannot strictly say the soliton
is stable due to the presence of the drift, we stress that it
is a manageable feature which does not destroy or damage
the envelope of the soliton. Therefore, we may view the
soliton as effectively stable, with the absence of the traditional
instability mechanisms consistent with the Bogoliubov—de
Gennes analysis.

VII. CONCLUSION

In this paper, we have demonstrated the linear stability of
chiral matter-wave solitons in an interacting gauge theory. De-
spite being described by a nonintegrable model, we found that
the stability spectrum of the soliton reduces to the standard
integrable case, with entirely real eigenvalues and the absence
of instability modes. This was then further understood by
studying the Vakhitov-Kolokolov criterion, which highlighted
that the linearized current operator was nilpotent in the numer-
ical domain and therefore does not contribute to dynamical
instabilities. The results concluded in this work, therefore
justify the implementation of chiral matter-wave solitons in
ultracold experiments.

One of the most intriguing aspects of the soliton dynamics
highlighted in the linear stability analysis is that a chiral
soliton drifts in the moving frame when its initial envelope
is weakly perturbed. By generalizing the study to a broader
class of perturbations [84], several questions are inspired not
only in regard to the stability, but also as to how these features
could be exploited in order to control the soliton. In particular,
since the chemical potential of a chiral soliton is defined in
part by its velocity, it is interesting if a perturbation could be
designed which enables the soliton to accelerate or decelerate
with minimal radiation losses. These questions, together with
the linear stability properties concluded in this work, therefore
offer a promising candidate for transport dynamics in atom-
tronic systems [65,85]. For example, it is speculative if these
chiral effects could lead to the realization of a matter-wave

diode in the continuum; one of the fundamental components
for atomtronic-based circuity. Similar proposals have already
appeared in discrete systems [65,86], with the first steps in the
experimental setting demonstrated recently [87].
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APPENDIX A: CONVERGENCE OF EIGENVALUES

In Sec. IV we claim that the imaginary component of the
discrete eigenvalues is a numerical artifact which vanishes in
the continuum limit. This feature is a common occurrence in
the study of spectral stability and arises from the numerical
model being ill-conditioned: that the soliton, which is strictly
speaking a solution in free space, is discretized and truncated
in the numerical picture.

To resolve this discrepancy, we define the numerical do-
main of the soliton as [-L/2,L/2]/¢, with length L/¢ and
spacing Ax/¢, provided L > b. Then, in the continuum limit,
where L/¢ — oo and Ax/¢ — 0, it is expected that the
numerical eigenvalue problem will become well conditioned
and match the analytical results. To demonstrate this, we
numerically solve Eq. (17) in each limit independently for
fixed 2 p and plot the behavior of the eigenvalues in Figs. 4(a)
and 4(b), respectively.

In both cases, we find that the eigenspectrum converges to
the exact values, with the ¢ = 0 continuous state approaching
|hiw| = || [as per Eq. (43)] when the domain length is
increased, and both pairs of discrete eigenvalues converging
linearly to Ziw = 0 when the domain spacing decreases. Note
that the discrete eigenvalues do not need to be considered
in the former case as they are localized to the width of the
soliton and will therefore be invariant to variations in L/¢,
provided L > b by an order of magnitude. For these reasons,
we may conclude that for the fixed chemical potential in this
example, a reasonably accurate solution for the eigenspectrum
can be obtained with a modest domain length of L/¢ = 100
and spacing Ax/¢ = 1073, corresponding each to a error
of #1073,

APPENDIX B: ANALYTICAL METHODS

In this appendix, we show how to construct the zero-
eigenvalue solutions of the Bogoliubov—de Gennes equations.
As this method uses standard techniques which are well
documented in the literature [76—78], we present the following
calculations solely for the sake of completeness.

We return to the zero-eigenvalue problem described by
Egs. (23) and (24), which contain a homogeneous and an
inhomogeneous eigenvalue problem for the eigenvector com-
ponents u(x) and v(x) respectively. The general solution

¢=(ﬁj)+(fp>=;¢+c,, (B1)
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FIG. 4. Numerical convergence of the Bogoliuvbov de-Gennes
eigenvalues in the continuum limit. (a) The continuous state band-
edge (¢ =0) eigenvalue compared to the chemical potential for
increasing domain length, and (b) discrete eigenvalues for decreasing
domain spacing. The soliton parameters are fixed at g;pmt/ m=-1,
vml/hi =1, and a,/h = 1, with the gray vertical line of each plot
corresponding to the spectrum shown in the respective inset with the
eigenvalues color- and shape-coded. All energies are scaled to units
of €g = B /me>.

will therefore be composed of a complementary solution ¢,
for the reduced homogeneous system and a particular solution
¢p to be solved for successively.

1. Complementary solution

By introducing the soliton width as a scaling parameter, we
write the homogeneous system as

2
[—d— — 0L+ 1)sechzx]§c =E¢., (B2)
dx?

with x = x/b, £ € Z¢, and dimensionless eigenvalue E. The
potential function appearing in Eq. (B2) is commonly re-
ferred to as a modified Poschl-Teller potential and has been
studied in the context of reflectionless scattering [70,71] and
supersymmetry [79,88]. As this potential is attractive, and
converges to zero when x — =00, the corresponding eigen-
spectrum will consist of two sets: a bound-state spectrum for
E < 0 and scattering states with £ > 0. For our purposes, we
will only be concerned with the bound-state spectrum.

To proceed we follow the method outlined by Fliigge [76],
in which we seek to transform Eq. (B2) into hypergeometric
form by introducing the change of variables y = cosh? . The
resulting transformed differential equation takes the form

d*c, 1 de, 2 +1 E
y(1—y) 1 +[——y} ¢ —[—( + )+ﬂ§c=0.

dy? 2 dy 4y
(B3)
Then, by further setting
Ce = wy D2, (B4)
we arrive at the hypergeometric differential equation
d*w dw
y=y) == +Ily —(@+ B+ Dyl-—— —apw =0, (B
dy dy

with the abbreviations « = (£ + 1 —ivE )/2, 8= (L + 1+
ivE )/2, and y = £ + 3/2. For the domain 0 < |x| < oo —
1 <y < oo, the general solution around the singular point
y = 11is given by [89]

¢ /Y2 = AsFi(a, Biys 1 —y) + (1 —y) 7'
XByFi(y —a,y —B;2—y";1—y), (B6)

where A and B are arbitrary constants with y' = o + 8
-y +1L

As we require the solutions described by Eq. (B6) to be
square integrable for E < 0, we can derive an expression for
the corresponding eigenvalues by studying the asymptotic be-
havior of the solutions. Introducing the asymptotic expression
y = cosh? x ~ ¢2*1/4 and using Kummer’s solutions [89],
one can write the independent solutions as

o TOT(B —a)

lim A 2F1 ~Yy

lx|—00 ryrg—-—y+1

s T —-p)
B B7
Y rer@—y+n PP

and

lim B,F ~ r'e—yHrep —a

|x|—00 'l —ao)l'ly —a)
2=yl —B) (B8)

F(1=Bry =B

The pair of asymptotic forms described above converge pro-
vided the ratio of I" functions vanishes. Therefore we require
B—y+l=—-nand l—a = —n, forn € Za’ provided E <0.
The resulting expression for the eigenvalues can then be
determined iteratively and takes the form

E=—(—n)>, (B9)

with the constraint 0 <n < € — 1.

To continue, it is instructive to consider specific values of
£ and E, to obtain the solution as required. Solving for f. in
Eq. (B2) with £ = 1 and E = —1, we find the complementary
solution

B
u. = Asech x +i5(x sech x + sinh ), (B10)
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using the hypergeometric identities

2Fi(1/2,3/2;1/2; —sinh? x) = sech® x (B11)
and
»Fi(2,1;3/2; —sinh? x)
= %sech2 x(xcschy sech x + 1). (B12)

Then in the same manner for g, in Eq. (B2) with £ = 2 and
E = —1, we find the complementary solution

A
Ve = ) sech x (3 — 3x tanh x — cosh?® x)

+ iB tanh yx sech y, (B13)
with
»Fi(1,2;1/2; —sinh? x)
= 3 sech® x(1 — xtanh x — (1/3)cosh® x)  (B14)
and
2Fi(5/2,3/2;3/2; —sinh? x) = sech® x.  (B15)

This completes the solution of the homogeneous problem.

2. Particular solution

With the complementary solution derived, we may now
proceed in solving for the particular solution of Eq. (24) using
the method of variation of parameters. Labeling the pair of
fundamental solutions of the homogeneous problem as

v; = sech x (1 — x tanh x — cosh? x /3) (B16)
and
v, = tanh y sech y, B17)
we write the Wronskian relation
dv, dv;
W(vi, v2) = v— — va— = 2/3b. (B18)
dx dx

The particular solution can then be obtained by direct integra-
tion

vy h(x) vy h(x)
v, = —v dx ————+ v dx ———, (B19)
P ! W,v) W (v, v2)
with h(x) = =2 ou. corresponding to the inhomogeneous

part of Eq. (24). As the expressions derived from Eq. (B19) are
often quite cumbersome, we refer the reader to the solutions
presented in Sec. V.
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