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Metastable hard-axis polar state of a spinor Bose-Einstein
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We investigate the stability of a hard-axis polar state in a spin-1 antiferromagnetic Bose-Einstein condensate
under a magnetic field gradient, where the easy-plane spin anisotropy is controlled by a negative quadratic
Zeeman energy q < 0. In a uniform magnetic field, the axial polar state is dynamically unstable and relaxes
into the planar polar ground state. However, under a field gradient B′, the excited spin state becomes metastable
down to a certain threshold qth, and as q decreases below qth its intrinsic dynamical instability is rapidly recalled.
The incipient spin excitations in the relaxation dynamics appear with stripe structures, indicating the rotational
symmetry breaking by the field gradient. We measure the dependences of qth on B′ and the sample size, and
we find that qth is highly sensitive to the field gradient in the vicinity of B′ = 0, exhibiting power-law behavior
of |qth| ∝ B′α with α ∼ 0.5. Our results demonstrate the significance of the field gradient effect in the quantum
critical dynamics of spinor condensates.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) of atoms with an inter-
nal spin degree of freedom, so-called spinor BECs, represent
a quantum fluid system with both superfluidity and magnetic
order [1–4]. Due to their rich phase diagram and the ex-
perimental capability of dynamically controlling the system
parameters, the spinor BECs provide unique opportunities
for studying quantum phase transition dynamics, which is an
important subject to understand in modern physics [5,6]. For
the study, a quantum quench protocol is typically employed:
a system is initially prepared in a well-defined phase, and, by
changing the system’s Hamiltonian, it is driven to undergo a
phase transition into another phase with different symmetry.
As the evolution of the system’s wave function is directly
probed, many aspects of the phase transition dynamics can
be revealed in an unprecedented level of details, including
domain and defect formation [7–9], phase-ordering dynamics
[10–13], and possible dynamic scaling behavior [14–17].

Recently, a quantum phase transition from the easy-
axis polar (EAP) phase to the easy-plane polar (EPP)
phase was studied with spin-1 antiferromagnetic BECs
[18–20]. For antiferromagnetic interactions, the ground spin
state is a polar state with 〈F〉 = 0, where F is the spin-1
operator for the atoms, and the order parameter is represented
by a unit vector d for spin orientation such that the BEC
is in the mF = 0 state for the quantization axis parallel to
d. In the presence of an external magnetic field, e.g., along
the z direction, the system has uniaxial spin anisotropy due
to the quadratic Zeeman energy Eq = q〈F 2

z 〉, where Fz is the
z projection of F. Depending on the sign of q, there are
two phases for the ground state: for q > 0, EAP phase with
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d ‖ ẑ and for q < 0, EPP phase with d ⊥ ẑ. The EAP-to-
EPP phase transition is special in that, although it is first-
order, metastable states are prohibited due to the flat energy
landscape at the quantum critical point qc = 0 [21]. The
quench dynamics from the EAP phase to the EPP phase was
experimentally investigated by suddenly changing the q value
from positive to negative [18–20]. It was shown that the initial
axial polar state with d = ẑ is dynamically unstable for q < 0
so that spin fluctuations are exponentially amplified to cause
the phase transition. In a two-dimensional (2D) situation [19],
the quench dynamics was characterized by the emergence and
decay of spin turbulence and the formation of topological
defects, such as half-quantum vortices [22].

A notable observation in the previous experiments was
that the dynamical instability of the initial axial polar state is
significantly suppressed by a magnetic field gradient [20]. In
the early works of antiferromagnetic spinor BECs [23,24], the
metastability of the axial polar state under a field gradient was
demonstrated for q > 0, where the ground state of the system
has an inhomogeneous spatial structure of spin domains. So,
it is natural to ask how the suppression of dynamical insta-
bility on the q < 0 side is related to the metastability on the
q > 0 side. In the prospect of the quantitative study of scaling
behavior near the critical point, it is particularly important
to understand the field gradient effect on the phase transition
dynamics.

In this paper, we examine the stability of the axial polar
state in the antiferromagnetic BEC under an external magnetic
field gradient. In contrast to the previous result [20], we
observe that the dynamical instability is fully suppressed by
a magnetic field gradient down to a certain threshold value
of qth < 0, demonstrating the metastability of the axial polar
state in the q < 0 region with easy-plane spin anisotropy.
Furthermore, we observe that below the threshold qth, the
dynamical instability is rapidly recalled in the system. The
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incipient spin excitations in the relaxation dynamics exhibit
a stripe spatial structure, indicating the rotational symme-
try breaking by the field gradient. The transition from the
metastable regime to the dynamically unstable regime occurs
quite suddenly, and the threshold value qth is unambiguously
determined. We measure qth as a function of the field gradient
B′ as well as the sample size, and find that qth is highly
sensitive to B′ at B′ = 0. Our results show that the field
gradient effect is significant in the quantum quench dynamics
of the spinor BEC. This is critical in the efforts to precisely
determine the properties near the quantum critical point and
to probe possible scaling behavior in the quantum phase
transition dynamics.

This paper is organized as follows. In Sec. II, we present
a brief description of the mean-field ground state under a
magnetic field gradient. In Sec. III, we describe our quantum
quench experiment, and in Sec. IV we present the experimen-
tal results. Finally, a summary and outlook are provided in
Sec. V.

II. MEAN-FIELD GROUND STATE

In a mean-field description, the spin-dependent energy
functional of a spin-1 spinor BEC is given by

Espin =
∫

dr n

(
c2n

2
〈F2〉 − (p − p0)〈Fz〉 + q

〈
F 2

z

〉)
, (1)

where n(r) is the density of atoms [3,4]. The first term is
the spin interaction energy and c2 > 0 for antiferromagnetic
interactions. The second and third terms are, respectively, the
linear and quadratic Zeeman energies for an external magnetic
field B(r) along the z direction. Here, p(r) = gF μBB(r), with
gF being the Landé hyperfine g-factor and μB the Bohr mag-
neton, and p0 is the Lagrange multiplier for the total magneti-
zation Mz = ∫

dr n〈Fz〉, which is conserved in the system. For
Mz = 0, the magnetic field gradient effect is represented by
p̃(r) ≡ p − p0 = gF μBB′x, where the field gradient direction
is assumed to be the x direction.

The order parameter of the BEC is expressed as � =
(ψ1, ψ0, ψ−1)T, where ψl is the mz = l spin component of the
condensate (l = 1, 0,−1), and its ground state is given by

�I = √
neiθ

⎛
⎝0

1
0

⎞
⎠ (2)

for p̃2 < 2c2nq and

�II =
√

n

2
eiθ

⎛
⎜⎝

−e−iφ√
1 + fz

0

eiφ√
1 − fz

⎞
⎟⎠ (3)

for p̃2 > 2c2nq, where θ is the superfluid phase and fz =
min[ p̃

c2n , 1] [3]. �I is the axial polar state having only the mz =
0 component and �II is a mixture of the mz = ±1 components
with net magnetization fz. For fz = 0, �II corresponds to the
planar polar state with d = cos φ x̂ + sin φ ŷ.

The spatial structure of a BEC trapped in a harmonic
potential and under a magnetic field gradient B′ can be
described in the local density approximation. As p̃ and n
vary spatially over the sample, different spin domains are
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FIG. 1. Spin-1 antiferromagnetic Bose-Einstein condensate
(BEC) in a harmonic trapping potential under a magnetic field
gradient B′. (a) Schematic description of the spatial structure of
the BEC in various states: (I) axial polar state and (II) ground
states for positive quadratic Zeeman energy q > 0 and (III) for
q < 0. The blue, gray, and red shades represent the mz = −1, 0, 1
spin components, respectively, and the black dashed line indicates
the density of the condensate. (b) Fractional population η of the
mz = 0 component in the ground state of the trapped condensate
as a function of q for B′ = 0 (blue line) and B′ �= 0 (green line).
(c) Energy level of the BEC in the ground state as a function of q
(green line). The E = 0 horizontal line denotes the energy level of
the axial polar state, and the red dashed line shows the energy level
of the planar polar state. In this work, we investigate the relaxation
dynamics from the axial polar state (I) to the ground state (III) for
q < 0 in the presence of the magnetic field gradient.

formed in the trapped condensate and their interface is located
at rc with xc = ±

√
2c2n(rc )|q|
gF μBB′ for q > 0, which is determined

from p̃2 = 2c2nq. In this case, an axial polar domain of the
mz = 0 component is formed in the inner region of |x| < |xc|,
and magnetized domains, having an unequal mixture of the
mz = ±1 components, appear in the outer region of |x| > |xc|
[Fig. 1(a)II].

In Fig. 1(b), the fractional population η of the mz = 0
component in the trapped BEC is displayed as a function
of q. Here, we assume a Thomas-Fermi (TF) density profile
of n(r) = max[n0(1 − x2

R2
x
− y2

R2
y
− z2

R2
z
), 0] and calculate η by

integrating the density over the inner region bounded by the
domain interface, where we obtain the analytic expression

ηm(q, B′) = β

2
2β2+3R2

x
(β2+R2

x )3/2 with β =
√

2c2n0|q|
gF μBB′ for q > 0. As q de-

creases below zero, η vanishes, i.e., the axial polar domain in
the middle of the trapped condensate shrinks to disappear, and
for q < 0 the ground state becomes a two-component BEC,
where the mz = ±1 components are displaced symmetrically
along the direction of a field gradient [Fig. 1(a)III]. In the case
of a zero-field gradient, η shows a step change from 1 to 0 at
q = 0, which represents the quantum phase transition between
the EAP and EPP phases.

In Fig. 1(c), we plot the energy level of the ground state
under a magnetic field gradient as functions of q, together
with those of the axial polar state and the planar polar state.
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To introduce the current work in comparison with the previous
experiments, we mark several points of interest in the plot by I,
II, and III. In Ref. [24], it was demonstrated that the axial polar
state (I) in the q > 0 region is metastable against relaxation
to the ground state with spin domains (II). In Refs. [19,20],
it was observed that the axial polar state (I) in the q < 0
region is dynamically unstable to relax into the planar polar
state (dashed red line) for B′ ≈ 0. In this work, we examine
the stability of the axial polar state in the q < 0 region
for relaxation into the ground state under a magnetic field
gradient (III).

III. EXPERIMENT

We start our experiment by preparing a BEC of 23Na atoms
in the |F = 1, mF = 0〉 hyperfine spin state in a highly oblate
optical dipole trap (ODT) with the trapping frequency of
(ωx, ωy, ωz ) = 2π × (5.1, 7.2, 548) Hz. The sample prepara-
tion is carried out in a magnetic field of Bz = 0.2 G. The
condensate contains typically Ntot ≈ 4.5 × 106 atoms and its
TF radii are given by (Rx, Ry, Rz ) ≈ (186, 131, 1.7) μm. The
density and spin healing lengths are given by, respectively,
ξn = h̄/

√
2mc0n0 ≈ 0.5 μm and ξs = h̄/

√
2mc2n0 ≈ 3.8 μm

for the peak atomic density n0 of the condensate, where m is
the atomic mass and c0 (c2) denotes the density (spin) inter-
action coefficient [25]. Note that Rz < ξs 
 Rx,y, and the spin
dynamics in our system are effectively two-dimensional. In
the experiment, Ntot is controlled by adjusting the evaporation
cooling process in the ODT, and the final thermal fraction of
the sample is kept less than 15%.

A quantum quench experiment is performed by suddenly
changing the sign of q with a microwave field dressing
technique, as described in Ref. [19]. First, we adiabatically
ramp Bz down to 50 mG. During the field ramp, we control
a magnetic field gradient B′ = ∂|Bz |

∂x along the x direction.
The final Bz value is measured within 1 mG from the ra-
diofrequency (RF) spectroscopy of the energy levels of the
F = 1 hyperfine spin states, and B′ is calibrated using an
interferometric technique, where the growth rate of the spatial
frequency of Ramsey interference fringes between the spin
components is measured [26]. Before the quench, the value
of q is determined by the intrinsic quadratic Zeeman energy
qB = q0B2

z with q0/h = 278 Hz/G2 [23]. At Bz = 50 mG,
qB/h = 0.7 Hz and the initial mz = 0 state is dynamically
stable under the field gradient [24]. Then, by suddenly turning
on a microwave field, we tune q to a target value q f [27,28].
Here, q f = qB + qμ with the additional quadratic Zeeman
energy qμ induced by the microwave field. After a variable
hold time t , we take an absorption image of the sample
with Stern-Gerlach (SG) spin separation. After releasing the
trapping potential and turning off the microwave field, a short
pulse of an additional magnetic field gradient is applied to
spatially separate the three mz = −1, 0, 1 spin components,
and the magnetic field is ramped to Bz = 0.5 G during a 24-ms
time of flight before imaging.

Under a microwave field dressing, qμ is given
by qμ = (δE1 + δE−1 − 2δE0)/2 with δEmF =∑

m′
F

h̄�2
mF ,m′

F
/(4�mF ,m′

F
), where �mF ,m′

F
is the Rabi

oscillation frequency and �mF ,m′
F

is the frequency detuning of
the microwave field for the |F = 1, mF 〉 → |F = 2, m′

F 〉
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FIG. 2. Decay rate � of the axial polar state after the quench to
qf < 0 as a function of |qf |/h. The red circles and the blue squares
show � for B′ ≈ 0 and 2.6 mG/cm, respectively. � is obtained from
the curve fit of η(t ) = 1 − beκt to the experimental data (right insets),
and its error bar indicates a 95% confidence interval of the fit. The
red solid line denotes a power-law fit to the B′ ≈ 0 data, which
gives an exponent of 0.53(10). The blue solid line is a guide for the
eyes to the B′ ≈ 2.6 mG/cm data, which shows onset behavior for
|qf |/h > 2 Hz. The right insets display the temporal evolutions of
η at (i) qf /h ≈ −1.4 Hz, (ii) −2.7 Hz, and (iii) −20 Hz for B′ ≈ 0
(red) and 2.6 mG/cm (blue). Each data point in the insets was
typically obtained from five measurements of the same experiments,
and the standard error of the mean is denoted by its error bar.

transition. In the experiment, we spectroscopically
determine �0,0 using the resonance frequency for the
clock transition and measure the Rabi frequencies,
�mF ,m′

F
, for all the allowed |F = 1, mF 〉 → |F = 2, m′

F 〉
transitions. Then, qμ is determined by calculating δEmF with
�mF ,m′

F
= �0,0 − (mF + m′

F )μB

2h̄ Bz.

IV. RESULTS

A. Metastable axial polar state

We measure the temporal evolution of η to characterize the
stability of the axial polar state after the quench to q f < 0.
The decay rate � is determined as the inverse of the time
t0 at which η(t0) = 0.7, where t0 is obtained from a curve
fit of η(t ) = 1 − beκt to the experimental data for η > 0.6 at
the initial stage. Figure 2 displays the measurement results
of � for B′ ≈ 0 and 2.6 mG/cm as a function of |q f |/h. For
B′ ≈ 0, � exhibits a power-law behavior of � ∝ |q f |γ with
an exponent of γ = 0.53(10), which is consistent with the
result of the previous experiment [19]. For B′ ≈ 2.6 mG/cm,
� is found to be suppressed in a small |q f | region, and as |q f |
increases, � is restored to the value for B′ ≈ 0. Remarkably,
for |q f |/h < 2 Hz it was observed that η remains unity for
a long hold time, even up to 10 s, which is limited by the
sample lifetime under the microwave field dressing. In this
case, � cannot be determined and we practically set � = 0.
This observation clearly shows that the dynamical instability
of the axial polar state is not only mitigated by a magnetic field
gradient, but completely quenched to make the spin excited
state metastable against relaxation into the ground state.
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Since in Ref. [24] the axial polar state was shown to be
metastable under a field gradient for q > 0, our observation
seems to be a simple extension of its metastability to the q < 0
region. However, we note that the underlying mechanism for
negative q should be different from that for positive q because
of the absence of the energy barrier for local spin relaxation.
For q > 0, local spin relaxation via the spin-exchange process
is prohibited due to the energy barrier of the positive quadratic
Zeeman energy and requires thermal activation. However, for
q < 0 it is an exothermic process that would necessarily en-
hance the relaxation of the axial polar state. Furthermore, one
can think of an evolution path of the system from the initial
excited state to the ground state along which the system’s
energy decreases continuously. For example, the spin is first
rotated from d = ẑ to ŷ, which reduces the quadratic Zeeman
energy, and the resulting planar polar state is transformed to
the ground state by redistributing the mz = ±1 spin compo-
nents in the trapped condensate. Therefore, the metastability
observed in the q < 0 region cannot be accounted for by the
conventional frame based on the energy barrier in the system
configuration.

We indeed observe that the metastable axial polar state is
fragile for small spin perturbations. When the spin director
d is tilted slightly away from the z axis by applying a short
pulse of RF field, the BEC immediately proceeds to relax
into the ground spin state. Also, when the system has small
ferromagnetic domains at both ends, which is achieved by
preparing the sample in the ground state with positive q under
a small magnetic field gradient, the spin domains at both ends
permeate through the condensate after the quench to q f < 0,
resulting in the ground spin state. This indicates that the
metastable hard-axis polar state is sustained as a global prop-
erty of the condensate. Meanwhile, we find that the metastable
spin state is intact in a turbulent condensate containing many
vortices, which is prepared by violently stirring the sample
with an optical obstacle [29,30], demonstrating its stability for
density perturbations.

B. Recurrence of dynamical instability

As |q f | increases, the metastability of the axial polar state
eventually breaks down (Fig. 2). The rapid recovery of �

to the value of B′ ≈ 0 and the resemblance of the evolution
curve η(t ) for high |q f | suggest that the system suffers from
the same dynamical instability as in the B′ ≈ 0 case, which
is associated with transverse magnon excitations. However,
the details of the relaxation dynamics under a field gradient
are observed to be different from those for B′ ≈ 0. In Fig. 3,
we display absorption images of the sample at the early
stage of the quench evolution for B′ ≈ 0 and 2.2 mG/cm. At
B′ ≈ 0, the quench dynamics proceeds first with generating
ring-shaped, long-wavelength spin excitations, whose spatial
pattern is inherited from the elliptical geometry of the conden-
sate [19]. On the other hand, when a field gradient is applied,
the incipient spin excitations appear with a stripe structure that
is orthogonal to the field gradient direction and has a higher
wave number. This means that the most unstable modes for
the dynamical instability are modified in the presence of the
field gradient, which breaks the rotational symmetry of the
system. At sufficiently high |q f |, the stripe spin excitations
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FIG. 3. Field gradient effect on the quench dynamics of a BEC.
Absorption images of the three mz = −1, 0, 1 spin components for
various hold times after the quench to (a) qf /h ≈ −2.3 Hz and
(b) −7.3 Hz. For B′ ≈ 2.2 mG/cm, qf /h ≈ −2.3 Hz is in the transi-
tion between the metastable and dynamically unstable regimes, and
the condensate relaxes slowly in comparison to that for B′ ≈ 0. In the
images, the optical densities (ODs) of the spin components appear
different due to their different optical transition strengths in the
F = 1 absorption imaging [31].

are followed by ring-shaped excitations [Fig. 3(b)], imply-
ing tight competition between the two excitation modes. In
the subsequent relaxation, an irregular spin texture develops,
wherein global spin polarization gradually develops over the
condensate, according to the applied field gradient.

In Fig. 4, we display the fractional population of the
mz = 0 component, η, measured at t = 3 s as a function
of q f /h for various B′. η collapses rapidly as q f decreases
below a threshold, which represents the sharp transition from
the metastable regime to the dynamically unstable regime,
as observed in Fig. 2. The sudden collapse behavior allows
unambiguous determination of the threshold value qth, which
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FIG. 4. Fractional population η of the mz = 0 component mea-
sured at a hold time t = 3 s after the quench as a function of qf /h,
for various B′ (Ntot ≈ 4.5 × 106). The solid lines denote sigmoid
fits to each measurement data set, from which the threshold qth is
determined for the collapse of the metastable hard-axis polar state.
Each data point was typically obtained from five measurements, and
its error bar indicates the standard error of the mean.

we determine using a sigmoid function fit to the experimental
data. With increasing B′, the metastable-to-unstable transition
position is further shifted away from the critical point qc = 0.
This corroborates that the field gradient induces the metasta-
bility of the axial polar state.

C. Dependence of qth on B′ and Ntot

We investigate the dependence of qth on B′ over a broad
range of field gradients up to B′ < 90 mG/cm [Fig. 5(a)]. |qth|
monotonically increases with growing B′. Remarkably, for
low B′, the increase of |qth| exhibits power-law behavior. We
characterize the behavior by fitting a curve of |qth|/h = κB′α
to the measurement results for B′ � 20 mG/cm, obtaining
α = 0.41(18) and 0.49(07) for Ntot ≈ 4 × 106 and 1 × 106,
respectively. As B′ increases over a few tens of mG/cm, qth

deviates from the power-law relation with B′. Interestingly, we
notice that the magnitudes of the field gradient at which the
deviation becomes noticeable are close to the values given by
μBB′Rx = μ, which are B′ ≈ 38 mG/cm and B′ ≈ 29 mG/cm
for, respectively, Ntot ≈ 4 × 106 and 1 × 106, where
μ= 1

2 mω2
x R2

x is the chemical potential of the condensate.
The field gradient effect of suppressing the dynamical

instability might be described as a result of spatial dephasing
of the spin excitations, which are otherwise amplified in the
quenched condensate [20]. In the Bogoliubov analysis of the
initial axial polar state at q f < 0 for B′ = 0, the characteristic
time and length scales for the quench dynamics are given by
tq ∝ |q f |−1/2 and lq ∝ |q f |−1/2, respectively, which was also
experimentally demonstrated [19]. Then, one may consider
a dimensional analysis to set the characteristic dephasing
condition as μBB′lq ∼ h/tq. This suggests |qth| ∝ B′, which
cannot explain the measured exponent α in the experiment.

We also investigate the dependence of qth on the sample
size for various B′ [Fig. 5(b)]. For a given B′, it is observed
that |qth| increases noticeably as Ntot decreases below a certain
number, which is reduced for lower B′. This is consistent
with the previous observation in Fig. 5(a) that the condensate
with the smaller Ntot exhibits the larger exponent α and takes
off earlier from the power-law line. The measurement results
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FIG. 5. Dependence of qth on B′ and Ntot. (a) |qth|/h as a function
of B′. The green triangles (black open circles) display the mea-
surement results with Ntot ≈ 4.0 × 106 (1.0 × 106). The solid lines
denote power-law fits to each data set up to B′ ≈ 20 mG/cm, where
the exponents are given by α = 0.41(18) (green) and α = 0.49(07)
(black), respectively. The red dotted line indicates the |qth|/h value
measured for B′ � 0.1 mG/cm. (b) |qth|/h as a function of Ntot for
various B′. The error bar of each data point indicates the range of
0.1 < η < 0.9 in the sigmoid curve fit to the experimental data of η

(Fig. 4), including the long-term systematic drift of ±0.3 Hz in our
measurements.

show that the finite-size effect enhances the metastability of
the axial polar state, but it is not a fundamental requisite for
having the metastable state.

It is important to note that the quench threshold for B′ ≈ 0
was measured to be qth/h ≈ −0.7 Hz regardless of the sample
size [Fig. 5(b)]. This is different from the general expectation
that qth should be equal to the critical point qc = 0 at B′ = 0.
We attribute its deviation to a residual field gradient B′

z along
the tightly confining z direction. In the experiment, it is
difficult to precisely calibrate B′

z using the interferometric
method due to the small sample extent along the z direction.
From the power-law relation of |qth| with B′ in Fig. 5(a), the
residual field gradient is estimated to be B′

z < 0.2 mG/cm.

D. Quantum critical point

The quantum critical point between the axial and planar
polar phases is fundamentally given by qc = 0, where the spin
rotation symmetry is fully restored. However, in Ref. [20]
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FIG. 6. Fractional population η of the mz = 0 component mea-
sured at t = 3 s after the quench as a function of qf /h for various
B′ (Ntot ≈ 4.5 × 106). The condensate was initially prepared in the
easy-plane polar state. The solid lines show curve fits of η(qf ) =
ηm(qf − q∗

th, B′
eff ) to the measurement data sets, where ηm(q, B′) is

the analytic function of η for the ground state in the mean-field
description of Sec. II. As free parameters, q∗

th represents the onset
point of η �= 0, and B′

eff is the effective magnetic field gradient for
the response of η. Each data point was typically obtained from five
measurements, and its error bar indicates the standard error of the
mean. The left inset shows ηm(q, B′) for the experimental conditions.
The right inset displays absorption images of the mz = 1 (up), mz = 0
(middle), and mz = −1 (down) spin components of the condensate
after 3 s relaxation at qf /h ≈ 5.1 Hz under B′ ≈ 10.4 mG/cm. The
density-depleted holes in the mz = ±1 components indicate quantum
vortices generated via complex spin flow dynamics in the relaxation
from the initial easy-plane polar state [32].

it was reported that the critical point is located at qc/h ≈
+0.65 Hz. The physical origin of its deviation from the ideal
point was not identified. Furthermore, the shift direction is
positive in q, which cannot be accounted for by the field
gradient effect observed in this work.

To address the issue of locating the critical point, we
examine the ground-state spin profile of the condensate as a
function of q f /h. We prepare the ground state by rotating the
spin direction d to the xy plane by applying a pulse of RF
field before quenching to a target q f . The initial condensate is
an equal mixture of the mz = ±1 spin components, and when
q f < qc the system can easily relax to the ground state via
spin flow dynamics [32]. If q f > qc, it will be revealed by the
mz = 0 population in the ground-state condensate. In Fig. 6,
we display η measured at t = 3 s after the quench as a function
of q f /h. The hold time t = 3 s is set to be long enough to
ensure the equilibrium state. For B′ ≈ 0, a sudden onset of
η is observed when q f /h increases over ≈ −0.7 Hz, whose
position is coincident with the measured threshold qth for the
collapse of the axial polar state. This is surprising because it
means that the axial polar state is the true ground state of the
system for q/h > −0.7 Hz, i.e., qc/h ≈ −0.7 Hz.

This finding seems to be inconsistent with our previous
explanation of qth �= 0 for B′ ≈ 0, where we attributed it to
the residual field gradient B′

z along the z direction. To test
the possible association of qc not being zero with B′

z �= 0,
we repeat the same measurements with various magnetic
field configurations, where the background magnetic field Bz

is slightly changed or reversed while we maintain the field

qth
qth

*
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B
' (

m
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/c
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FIG. 7. Measurement results of qth (gray triangle) and q∗
th (open

circle) in the plane of q/h and B′. qth is the threshold for the
metastable axial polar state to collapse, and q∗

th is the threshold for
the ground state to have the mz = 0 spin component. The data points
are obtained from the fits to the η measurement data in Figs. 4 and 6
(see the figure captions).

gradient B′ < 0.1 mG/cm in the xy plane, but B′
z remains

uncontrolled. In our measurements, we observe that qth varies
even by a few Hz in the q < 0 side, and also that the onset
point q∗

th for η �= 0 in the ground state always follows the
variations of qth. Thus, it is tentatively suggested that the
field gradient along the tightly confining direction affects
the quantum critical point of the system, although there is
currently no theoretical scenario supporting the possibility.

Another notable observation in the η measurement in Fig. 6
is that as B′ increases, q∗

th is shifted from qc to the positive q
direction. This might be attributed to the domain-wall energy,
which is neglected in the mean-field description of the ground
state. Under a field gradient, an axial polar domain of the
mz = 0 component is sandwiched by ferromagnetic domains,
and its spatial extent decreases with increasing B′ (Fig. 6,
inset). Therefore, for a given energy cost of the domain walls,
it can be energetically unfavorable with small q > 0 to have
the middle axial polar domain. A quantitative analysis on the
energetics of the spin domain structure will be pursued in
future works. We note that the shift of q∗

th can be ensured
by observing spin domain formation via thermal cooling at a
fixed q, which might provide a more reliable method to reach
the ground state of the system [33–36].

V. SUMMARY AND OUTLOOK

We observed the metastable hard-axis polar state in a spin-
1 antiferromagnetic spinor BEC under a magnetic field gradi-
ent. It was demonstrated that the metastability is driven by the
field gradient and breaks down below a certain threshold qth of
the quadratic Zeeman energy, due to the intrinsic dynamical
instability. We investigated the dependence of the threshold
qth on the field gradient B′, and found that qth is highly
sensitive to B′ in the vicinity of B′ ≈ 0, exhibiting power-law
behavior of |qth| ∝ B′α with α ∼ 0.5. The finite-size effect
on qth was also examined, showing that the metastability is
enhanced for small samples. By exploring the ground spin
states of the condensate depending on q, evidence was found
that the quantum critical point is shifted away from qc = 0. In
Fig. 7, we summarize the measurement results of qth for small
B′, together with q∗

th for the onset of η �= 0 in the ground state.
We expect that our measurement results will stimulate fur-

ther theoretical investigations on the underlying mechanism
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of the observed field gradient effect in the quantum phase
transition dynamics in the spinor condensate. In particular, the
observation of the shift of the quantum critical point poses an
open question as to how the field gradient along the tight con-
fining direction of the sample can affect the critical point of
the system. This question is crucial for investigating possible
scaling behavior in the quantum transition dynamics [19,37]
and studying many novel phenomena anticipated near the

quantum critical point, such as the formation of spin-singlet
states [38–41] and critical spin superfluidity [32,42–44].
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