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Scaling law in laser cooling on narrow-line optical transitions
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The laser cooling of atoms with a narrow-line optical transition, i.e., in regimes of quantum nature of laser-light
interactions resulting in a significant recoil effect, is studied. It is demonstrated that a minimum laser-cooling
temperature for two-level atoms in a standing wave reached for red detuning close to three recoil frequencies is
vastly different from the theory used for a semiclassical description of Doppler cooling. A set of dimensionless
parameters uniquely characterizing the time evolution and the steady state of different atoms with narrow-line
optical transitions in the laser field is introduced. The results can be used for analysis of optimal conditions for
laser cooling of atoms with narrow lines such as Ca, Sr, and Mg, which are of great interest for atomic clocks.
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I. INTRODUCTION

Nowadays, laser cooling of neutral atoms is routinely used
for a wide range of modern quantum physics investigations,
including metrology and atom optics. There are well-known
techniques for laser cooling below the Doppler limit, such
as sub-Doppler polarization gradient cooling [1–4], velocity-
selective coherent population trapping [5–7], or Raman cool-
ing [8,9] restricted to atoms with energy levels degenerated
over angular momentum or hyperfine structure. However,
these techniques cannot be applied to atoms with a single
ground state, such as 24Mg, 40Ca, 88Sr, and 174Yb, which are
of great interest for atomic clocks.

For these atoms the well-known semiclassical theory pre-
dicts the Doppler laser-cooling temperature [10,11]

kBTD ≈ h̄γ /2 (1)

proportional to the natural linewidth γ . One way of reaching a
deeper cooling for these atoms is to use a narrow-line optical
transition (clock transition) with a smaller γ . However, the
basic semiclassical theory becomes no longer valid, since
the main requirement ωR/γ � 1 (where ωR = h̄k2/2M is the
recoil frequency) is violated and the Doppler temperature (1)
(Table I) may not be reached, as was clearly shown in [12] for
an atom in the σ+-σ− light field.

There are several experimental realizations of laser cooling
of 174Yb [13] and 88Sr atoms [14–16] on the intercombination
line 1S0 → 3P1. In order to increase the capture velocity range
to larger than the Doppler velocity vD = γ /k, it was proposed
to use the broadband light sources [17] that were also used for
laser cooling of 88Sr atoms [18].

The ωR/γ ratios for 40Ca and 24Mg atoms are larger and the
laser cooling of these atoms on the intercombination line does
not seem possible in monochromatic light. The deep laser
cooling of Ca atoms at the narrow-line optical transition was
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reached by using the quenching cooling techniques [19–21]
that effectively increase the spontaneous decay rate. However,
no significant progress for 24Mg atoms has been achieved so
far. Thus, while for atoms with a strong optical transition
ωR/γ � 1 the laser cooling is well described by semiclassical
theory, the laser cooling of atoms with narrow lines ωR/γ � 1
(Table I) requires a separate study, which can be done by nu-
merical simulation taking into account quantum recoil effects
of atom-light interaction.

Here we present a quantum theory of laser cooling in a
standing wave far beyond the semiclassical limit, i.e., for
ωR/γ � 1. This allows us to clarify the laser-cooling mech-
anisms with narrow-line optical transitions and estimate the
optimal parameters for minimum cooling temperatures and
time, especially for a sufficiently strong light field intensity,
resulting in the power broadening regime of laser cooling.
We find that the cooling dynamics and steady-state momen-
tum distribution can be uniquely characterized for various
atoms with different ωR/γ ratios, which allows us to identify
the scaling law in laser cooling for the narrow-line optical
transition. The proposed universal scalability allows us to
transfer the results of laser cooling (momentum distribution
of atoms, energy, cooling time, and light field parameters),
once obtained for certain atoms, to various elements with
ωR/γ � 1.

II. SCALING IN LASER COOLING

The evolution of atoms in resonant monochromatic light
can be described by the density-matrix equation, taking into
account the quantum recoil effects in the processes of absorp-
tion and emission of light field photons (see Fig. 1)

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] + �̂{ρ̂}. (2)

Here Ĥ is the Hamiltonian and �̂{ρ̂} is the relaxation op-
erator due to spontaneous emission (see, for example, [10]).
The Hamiltonian in the rotating-wave approximation has the
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TABLE I. Semiclassical parameter ωR/γ intercombination line
1S0 → 3P1 of various atoms and estimation of kBTD ≈ h̄γ /2.

Atom TD λ (nm) ωR/γ

200Hg 32 μK 254 0.01
174Yb 4.5 μK 556 0.02
88Sr 0.17 μK 689 0.635
40Ca 10 nK 657 32.3
24Mg 0.75 nK 457 1100

standard form

Ĥ = p̂2

2M
− h̄δP̂e + V̂ed. (3)

The first term is the kinetic energy, P̂e = |e〉〈e| is the pro-
jection operator to the excited state |e〉, V̂ed = h̄	/2|e〉〈g| +
H.c. is the atom-light coupling of the ground (g) and ex-
cited (e) states, and 	 is the Rabi frequency. In the stand-
ing light field 	(z) = 4	0 cos2(kz), where 	0 is the Rabi
frequency per wave. Here δ = ω − ω0 is the detuning of
the laser light frequency ω from the atom optical transition
frequency ω0.

Let us focus on the light field and atomic parameters that
define the time evolution and the steady state of atoms. The
steady state of Eq. (2) for the two-level atom is determined
by the set of parameters of the frequency dimension: γ is the
natural linewidth, δ is the detuning, 	 is the Rabi frequency,
and ωR is the recoil frequency.

A. Semiclassical limit

Let us first briefly consider the well-known semiclassical
limit

ωR/γ � 1, (4)

which is valid for the majority of atoms with strong dipole
transitions where laser cooling is realized (see, for example,
[22]). Here, within the framework of a two-level model (an
atom with a nondegenerate ground state), the steady-state mo-
mentum distribution in the limit (4) can be equally described
by only two of the aforementioned dimensionless parameters:

δ/γ , 	/γ . (5)

The steady-state momentum distribution for low saturation
|	|2/(δ2 + γ 2/4) � 1 and red detuning scales in these param-
eters as

Fp = Fp

(
p

p̃
,
	

γ
,

δ

γ

)
, p̃ = h̄k

√
γ /ωR, (6)

(a) (b)
e

eikz e-ikzp, M g

FIG. 1. Scheme of laser cooling in a standing light wave (a).
Scheme of interaction of laser light with atomic energy levels (b).

FIG. 2. Steady-state momentum distribution of cold atoms in
the semiclassical limit (4) for the field parameters (a) 	0/γ = 1/2
and δ/γ = −1/2, (b) 	0/γ = 1 and δ/γ = −5, (c) 	0/γ = 1 and
δ/γ = −1/2, and (d) 	0/γ = 2 and δ/γ = −5.

which represents the scaling law in the semiclassical limit (4).
In particular, the steady-state average kinetic energy is scaled
in units of γ and is a function of dimensionless parameters
(5),

Ekin = 〈p2/2M〉 = h̄γ ES (δ/γ ,	/γ ), (7)

where 〈· · · 〉 denotes the averaging with the Fp momentum
distribution function.

The momentum distribution in Fig. 2 for various small
ratios of ωR/γ is obtained by numerical solution of Eq. (2)
with the use of the method suggested by us in [23,24]. The
momentum distribution function is well scaled for the set of
parameters introduced, and for sufficiently small ωR/γ the
difference between the curves becomes less noticeable in low
intensity [see Figs. 2(a) and 2(b)]. Here, for Figs. 2(c) and 2(d)
we choose a larger field intensity to make the difference more
visible.

As an example, the momentum distribution function
Fp(p/p̃,	/γ , δ/γ ) in the low-intensity limit, neglecting the
atom localization in the optical potential of the standing light
wave, can be represented by a Gaussian function with a width
that determines the laser-cooling temperature. This is the ratio
of diffusion D and friction κ coefficients (see, for example,
[10])

kBT =
〈

p2

M

〉
= D

κ
= −h̄γ

7

20

δ2/γ 2 + 1/4

δ/γ
. (8)

In addition, the function ES (δ/γ , 	/γ ) for this case has a
minimum �1/6 at δ/γ = −1/2 for 	/γ → 0, which is the
so-called Doppler cooling limit.

Note that the cooling rate of slow atoms with p < h̄kγ /ωR

in the semiclassical limit (4) can also be represented in an
equivalent form for various atoms by introducing a dimen-
sionless time t/tS ,

tS = ω−1
R τS (	/γ , δ/γ ), (9)
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which is scaled in units of ω−1
R and is a function of the

parameters 	/γ and δ/γ only. As is well known, the cooling
rate of slow atoms in the semiclassical limit is determined by
the friction coefficient κ and the evolution of the averaged
square momentum is described by

〈p2〉(t ) = M
D

κ
+ exp

(
−2κ

M
t

)[
〈p2〉0 − M

D

κ

]
. (10)

Note that the friction coefficient for two-level atoms in a low-
intensity standing wave has the form [10,11,22]

κ = −h̄k2 	2
0

γ 2

δ/γ

[δ2/γ 2 + 1/4 + 	2
0/γ

2]2
, (11)

which results in the cooling rate for the case considered in the
form (9) for red detuning δ < 0.

B. Quantum limit

In the quantum regime being considered,

ωR � γ , (12)

we may expect significant modification of the scaling law.
The simple scheme of atom-light interaction [Fig. 1(b)] is
significantly modified. The internal states can be written in
a momentum representation as a set of families

|ψ (t )〉 =
∑

n

αn(t )|g, p0 + 2nh̄k〉

+βn(t )|e, p0 + (2n + 1)h̄k〉, (13)

with quasimomentum p0 in the range −h̄k � p0 � h̄k. Cou-
pling schemes for families for p0 = h̄k and p0 = 0 are shown
in Fig. 3. In the regime (12) the processes of induced ab-
sorption and emission of light field photons are beyond the
resonance contour γ and have different detuning

δp = δ − ωR(1 ∓ 2p/h̄k), (14)

depending on the atom momentum on the ground state p. The
minus sign is related to induced emission of the photon to a
copropagating wave or absorption from a counterpropagating
wave. The plus sign is related to the reverse processes.

Let us define the scaling law in the regime (12). Here γ is
the smallest parameter of Eq. (2) and its steady-state solution
is governed by a different set of dimensionless parameters

δ/ωR, 	/ωR, (15)

which define the equivalence of laser cooling of various
atoms for (12). The momentum distribution is a function of
parameters scaled in units of ωR, contrary to semiclassical
limit

Fp = Fp

(
p

h̄k
,

	

ωR
,

δ

ωR

)
, (16)

which results in the average kinetic energy

Ekin = 〈p2/2M〉 = h̄ωREQ(δ/ωR,	/ωR), (17)

with EQ(δ/ωR,	/ωR) a dimensionless function of the param-
eters introduced.

To confirm this, we perform numerical simulations of the
master equation (2) for various atoms with narrow-line optical
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FIG. 3. Schemes of atomic energy-level coupling by light for
quasimomentum (a) p0 = h̄k and (b) p0 = 0.

transitions using the method in [23,24]. This method allows
us to get a density matrix containing all the information on
internal and external states of the atom without any restric-
tions or limits. The results in Fig. 4 show a strong equiv-
alence of the steady-state momentum distribution of laser-
cooled 24Mg (ωR/γ � 1100), 40Ca (ωR/γ � 32.3), and 88Sr
(ωR/γ � 0.635) atoms for the 1S0 → 3P1 optical transition,
which confirms the scaling law (15)–(17) of laser cooling on
narrow-line optical transitions.

The sharp peaks in the momentum distribution at p = ±h̄k
represent the effects of velocity-selective coherent population
trapping [5–7] for the � scheme of families (13) with p0 =
h̄k [Fig. 3(a)]. This effect was first demonstrated in two-level
system for metastable helium [25] with ωR/γ � 0.22.

The numerical simulation [Fig. 5(a)] shows that the mini-
mum kinetic energy of laser cooling on narrow lines (12) in a
low-intensity standing wave is reached for detuning about

δ∗ � −3ωR, (18)

which is far beyond the optimal condition of laser cooling
in a semiclassical limit and close to the one was shown in
[12] for the σ+-σ− light field configuration. The momentum
distribution is a significantly non-Gaussian function for the
entire range of detuning considered [Fig. 5(b)].

The possible qualitative explanation of the optimal value of
detuning (18) can be given as follows. For a low field intensity
the population of the excited state is negligibly small. In this
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FIG. 4. Steady-state momentum distribution of laser-cooled
atoms for different sets of equivalent parameters (15), including
the light field detuning δ = −3ωR and Rabi frequency per wave
(a) 	0 = 0.64ωR, (b) 	0 = 6.4ωR, and (c) 	0 = 64ωR.

case, the atom distribution in the momentum space can be
represented as a set of families (13) with nonzero amplitudes
αn(p0) near p0 = 0 (i.e., |g, p = 0〉 and |g, p = ±2h̄k〉 states),
which results in a main peak in the momentum distribution
with p = 0 and two side peaks at p = ±2h̄k [Fig. 5(b)]. To
obtain a minimum kinetic energy, it is necessary to suppress
the amplitudes of these side peaks. The depopulation of
|g, p = ±2h̄k〉 states is reached for detuning δp, providing
resonance for transitions |g, p = ±2h̄k〉 → |e, p = ±h̄k〉, i.e.,
for δp = δ + 3ωR = 0 according to (14) [see Fig. 3(b)]. Thus
the detuning δ = −3ωR results in the effective suppression
of side peaks of the momentum distribution at p = ±2h̄k
[Fig. 3(b)] and the effective population of the |g, p〉 state
around p = 0.

Finally, an important question is the time evolution of
the atomic distribution and cooling time. In the quantum
regime (12), the atom cooling rate can be represented in an
equivalent form that is different from the semiclassical case
(4). Here the scaling law for the cooling rate can be written
for dimensionless time t/tQ,

tQ = γ −1τQ(	/ωR, δ/ωR), (19)

FIG. 5. (a) Kinetic energy and (b) steady-state momentum dis-
tribution of atoms for different detunings and small Rabi frequency
	0 = 0.64 ωR.

where time tQ scales in units of γ −1, in contrast to the
semiclassical limit (9), and is a function of the dimensionless
parameters 	/ωR and δ/ωR.

Figure 6 shows the time evolution of the momentum dis-
tribution obtained by the quantum Monte Carlo method [26]
averaging over 3000 trajectories. Here we consider the laser
cooling from an initial Gaussian momentum distribution with
pσ = 20h̄k, which corresponds to the initial temperature of
Mg atoms, T � 1.5 mK, that is, the cooling temperature in a
magneto-optical trap using the strong dipole optical transition
1S0 → 1P1 [27], which can be treated as an initial stage of
laser cooling.

The scaling law we discover for the quantum regimes is
significantly different from the semiclassical one. In partic-
ular, the field dependence in the semiclassical regime 	/γ

t = 500 γ−1

t = 400 γ−1

t = 300 γ−1

t = 200 γ−1

t = 100 γ−1

t =   0 γ−1

24Mg
40Ca
88Sr

−30    300 p ( h̄k )

FIG. 6. Time evolution of the momentum distribution of various
laser-cooled atoms for equivalent times in units of γ −1. The light
field parameters are 	0 = 2ωR and δ = −3ωR.
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FIG. 7. (a) Steady-state kinetic energy of atoms as a function of
Rabi frequency in units of ωR and (b) time evolution of the cold-
atom fraction with momentum |p| < 3h̄k in units of γ −1 for detuning
δ = −3ωR.

changes to 	/ωR, which makes it possible to use a more
intense laser field without much of an increase in temperature
of the cold atoms [Fig. 7(a)]. This power broadening allows
a significant decrease in cooling time. The cooling time can
be considered by analyzing the evolution of the cold-atom
fraction. The evolution of the atom fraction with |p| < 3h̄k is
shown in Fig. 7(b). The cold-atom fraction increases quickly
for times t ∼ 100γ −1 and sufficiently large Rabi frequency
	0 = 6ωR. As an example, for 24Mg atoms cooling with the
use of the intercombination line 1S0 → 3P1, the required Rabi

frequency corresponds to a sufficiently large field intensity
I � 5 W/cm2. In addition, the cooling time t ∼ 100γ −1 cor-
responds to about 0.5 s, which may require an additional
dipole trap to prevent the loss of atoms from the cooling region
during this time.

III. CONCLUSION

In attempts to reach deep laser cooling of atoms with
nondegenerate ground states, such as 24Mg,40 Ca, and 88Sr,
the researchers tried to use the narrow-line optical transitions.
The laser cooling at the narrow-line optical transition requires
a special study, which we have performed here. We have
shown the equivalence of laser cooling of various atoms
with ωR � γ , which refers to the momentum distribution,
energy, and cooling rate for a set of dimensionless light field
parameters (	/ωR and δ/ωR) that represent a scaling law
in laser cooling on the narrow-line optical transition. The
momentum distribution of various atoms is scaled for the
light field parameters expressed in recoil frequency units and
momentum in units of h̄k. We have demonstrated that the
kinetic energy of cold atoms in a low-intensity standing wave
reaches a minimum for detuning close to δ � −3ωR, i.e., far
from the Doppler theory of laser cooling.

The cooling time using narrow-line optical transition scales
in units of γ −1 differs from the semiclassical limit. The
efficient cooling rate can be achieved with power broadening
for the Rabi frequency of few recoil frequency.

The scaling law introduced allows us to transfer the results
of laser cooling (momentum distribution of atoms, energy,
cooling time, and light field parameters), once obtained for
certain atoms with a narrow-line optical transition, to various
elements with ωR � γ and predict appropriate light field
parameters required for laser cooling.
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