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Electron correlation effects in enhanced ionization of diatomic molecules in near-infrared fields
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We investigate electron correlation effects in internuclear-distance-dependent enhanced ionization of H2, LiH,
and HF molecules by intense near-infrared laser pulses using a three-dimensional description of the systems
with the time-dependent generalized-active-space configuration-interaction method. This method systematically
incorporates electron-electron correlation of the quantum many-electron system under consideration. Our
correlated description of diatomic molecules shows that enhanced ionization occurs at certain critical internuclear
separations and electron correlation systematically improves the ionization probability in this process until
convergence is reached. We demonstrate the failure of the single-active-electron and the configuration-interaction
singles approximations to produce the correct internuclear position and probability of the strong-field enhanced-
ionization process. We elucidate the role of low-lying electronic excited states in the enhanced-ionization process
of diatomic molecules. There is clear evidence that an accurate description of low-lying electronically excited
states is important to describe the nonperturbative enhanced-ionization phenomenon in the ultrashort intense
near infrared laser pulses.
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I. INTRODUCTION

The interaction of atoms and molecules with intense laser
fields gives rise to ubiquitous phenomena, such as above
threshold ionization, high-harmonic generation, and enhanced
ionization. With progress in experimental laser technology,
it is now possible to create and observe electronic dynamics
on their natural timescale [1,2]. Along with the experimen-
tal progress, theoreticians face the challenge to accurately
describe electron-electron correlation effects in strong-field
induced dynamics. Current challenges associated with the
development of time-dependent methods have led to a series
of investigations for simple to complex molecular strong-field
processes with both wave function [3] and density-functional
theory based methods [4].

In the present study we investigate electron correlation
effects in enhanced ionization (EI) in diatomic molecules. EI
describes the phenomenon that when a molecule is exposed
to a strong laser field, the ionization probability increases
significantly at certain critical internuclear separations. This
enhancement is also known as charge-resonance enhanced
ionization and has been studied extensively both experimen-
tally [5–12] and theoretically [13–18]. The quantum mechan-
ical study of simple diatomic molecules with double-well
potentials leads to many interesting features which are absent
in atomic processes. It is well examined that in a double-well
potential, the electron may localize in one of the potential
wells with a proper choice of the laser parameters [19,20].
This mechanism may also destroy the tunneling behavior of
the electron between the double wells and if the internuclear
separation is increased, the localized electron may easily
tunnel to the continuum from one of the potential wells as
described in Ref. [13]. Another mechanism explains EI as
the strong coupling of charge-resonant states at certain crit-
ical internuclear separation which then leads to an enhanced

molecular ionization probability [14]. Studies by numerically
solving the time-dependent Schrödinger equation (TDSE)
show that EI persists in two-electron homo- and heteronuclear
molecules [21–26]. An accurate description of EI is crucial
for the understanding of nuclear kinetic energy release spectra
following strong-field-induced dissociative ionization (see,
e.g., Ref. [27] and references therein).

The theoretical research of time-dependent processes
in many-electron systems involves solving the TDSE in
the presence of strong laser fields. To tackle this prob-
lem for more than two electrons, approximations such
as, e.g., the single-active-electron (SAE) [28,29] and the
time-dependent configuration-interaction-singles (TD-CIS)
approximation [30–32] are needed. These approximations
neglect part of the electron correlation effects in the ion-
ization process. The present study on diatomic molecules
addresses the effects of electron correlation in EI using
the time-dependent generalized-active-space (TD-GASCI)
method [33] in a prolate spheroidal coordinate system
[34]. Over the past years, various time-dependent many-
electron methods have been developed to address elec-
tron correlation in strong-field ionization of atoms and
molecules. Among those, the time-dependent R-matrix ap-
proach [35–38], the time-dependent Feshbach close-coupling
(TDFCC) method [39], the multiconfigurational time-
dependent Hartree-Fock (MCTDHF) method [40–45], and
the time-dependent restricted-active-space self-consistent-
field (TD-RAS-SCF) theory [46–53] have been used to under-
stand dynamics. The time-dependent restricted-active-space
configuration-interaction (TD-RASCI) method [54], and
the time-dependent generalized-active-space configuration-
interaction (TD-GASCI) method [33,34,55] take electron cor-
relation into account through a configuration-interaction (CI)
expansion by selectively choosing important Slater determi-
nants relevant to the physical process of interest. In this
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method, localized Hartree-Fock and pseudo-orbitals are used
to represent the bound states and grid-based orbitals to obtain
an accurate description of the continuum states. Depending on
the construction of the generalized-active-space (GAS) one
can reproduce the SAE and CIS approximations as limiting
cases of the TD-GASCI method.

So far the TD-GASCI method has been used to calcu-
late photoelectron spectra, ionization yields, structure factors
for tunneling ionization, and angle-dependent ionization of
one- and three-dimensional two- and four-electron atoms and
molecules [33,34,55,56]. In the present study we employ
the method to illustrate electron correlation effects in EI of
diatomic molecules. First, we consider the simplest possible
two-electron molecule H2. This molecule has been studied
extensively and we use it to check the convergence of the TD-
GASCI method by comparing with exact TDSE calculations
obtained from Ref. [25]. To obtain the ionization probability
we use linearly polarized laser fields with polarization parallel
to the internuclear axis within the fixed-nuclei approximation.
The role of low-lying electronic excited states in EI is studied
in detail. Furthermore, we consider LiH and HF molecules
to highlight electron correlation effects in EI of multielectron
systems. Similarly to the H2 case, we investigate the impor-
tance of low-lying electronic excited states in EI.

The paper is organized as follows. In Sec. II we present the
TD-GASCI method. We elaborate on the construction of the
GAS partitions, define the laser pulses, discuss the calculation
of the ionization probability, and give some remarks on the
numerical simulations, the Appendix includes more details.
In Sec. III we use the TD-GASCI method to elucidate the role
of active orbitals in a given GAS partition on EI by calculat-
ing the ionization probabilities as a function of internuclear
distance. We consider different GAS partitions which account
for electron correlation at different levels of approximation. In
Sec. IV we summarize and conclude.

II. THEORY AND METHODOLOGY

In this section we briefly present the TD-GASCI method
and its implementation in prolate spheroidal coordinates,
which is discussed in details in Refs. [33,34]. Furthermore, the
pulses used will be given as well as the form of the complex
absorbing potential.

A. TD-GASCI method

The TDSE for Nel electrons with fixed nuclei reads (we use
atomic units throughout)

i
∂

∂t
|�(t )〉 = H (t )|�(t )〉. (1)

The time-dependent Hamiltonian consists of one- and two-
body operators and is given by

H (t ) =
Nel∑
i=1

hi(t ) +
Nel∑
i< j

wi j, (2)

with the one-body part of electron i given by

hi(t ) = −1

2
∇2

i − Z1

|ri − R1| − Z2

|ri + R2| + ri · F(t ), (3)

where F(t ) is the laser field and Zi(i = 1, 2) are the charges of
the two nuclei. In Eq. (2) the two-body Coulomb interaction
is given by

wi j = 1

|ri − r j | . (4)

The many-electron wave function is expanded into a basis of
time-independent Slater determinants |�I〉,

|�(t )〉 =
∑

I∈VExc

CI (t )|�I〉, (5)

where CI (t ) are time-dependent expansion coefficients and I is
a multi-index, which specifies the configurations from the full
Hilbert space VExc. The Slater determinants are constructed
from Nb time-independent single-particle spatial orbitals. In
terms of spin orbitals we have 2Nb orbitals ϕi(r, σ ), where a
given spatial orbital with different spin-quantum number has
the same energy. After substituting the CI wave function from
Eq. (5) into Eq. (1), the TDSE can be expressed as

i
∂

∂t
CI (t ) =

∑
J∈VExc

HIJ (t )CJ (t ), (6)

with the Hamiltonian matrix element HIJ (t ) = 〈�I |H (t )|�J〉.
These matrix elements are constructed by first evaluating the
one- and two-electron integrals and then rotating the orbitals
as described in Ref. [33]. In the full CI (FCI) method [57,58]
one takes into account all possible excitations VExc, so that the
time-dependent wave function reads

|�FCI(t )〉 = C0(t )|�0〉 +
∑

ia

Ca
i (t )

∣∣�a
i

〉

+
∑

i< j,a<b

Cab
i j (t )

∣∣�ab
i j

〉 + · · · . (7)

Here i, j, . . . refer to occupied orbitals and a, b, . . . refer
to unoccupied orbitals. For example, in Eq. (7) the Slater
determinants in the third term |�ab

i j 〉 denote doubly excited
Slater determinants where electrons from orbitals i, j are
excited into orbitals a, b. The FCI expansion is, however,
numerically unfeasible even for bound state calculations for
many-electron systems. In the present case we need to extract
the ionization probability and it is impractical to treat all
electrons with the FCI approach. This is due to the exponential
scaling in the number of configurations with the number of
basis functions. The GAS concept, which was introduced in
quantum chemistry [59], aims to choose the most relevant
configurations from the full Hilbert space and thus to some
extent circumvents the problem of computational scaling. In
the GAS method, the basis set of Slater determinants is a sub-
set of the FCI many-particle basis set VExc = VGAS in Eq. (5).
As we shall see below, by increasing the number of active
orbitals, we observe a convergence of the ground state and
excited state potential energy curves. This GAS approach not
only reduces the computational complexity, it also allows an
identification of the most important configurations for a given
process and hence helps in identifying important physics.

In Fig. 1 we show the GAS partitions used in this work.
The energies of the single-particle orbitals are denoted by Ei.
The two spin configurations |↑〉 and |↓〉 are degenerate in this
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FIG. 1. Schematic of GAS partitions used in this work for
a two-active electron molecule. The left panel shows the SAE
approximation. The right panel shows the complete-active space
(CAS∗) situation, where all single excitations out of the CAS are
included. Ei represents the orbital energy of the ith orbital. The
SAE approximation consists of three GAS partitions, GAS-1 defines
the frozen electrons, GAS-2 defines the single-active electron, and
GAS-3 defines the single excitations from GAS-2. The CAS∗(2, K )
notation refers to two-active electrons with K spatial orbitals and the
asterisk denotes that all single excitations out of the active space are
included. In the CAS∗(2, K ) model we have two GAS partitions.
GAS-1 contains all possible excitations within this space. GAS-2
defines single excitation from GAS-1 to GAS-2.

representation. The red arrows imply that only single
ionization is allowed. One can obtain a SAE approximation
from the GAS concept as shown in the left panel of Fig. 1.
In this illustration, one of the electrons in a two-electron
molecule is frozen in the GAS-1 space and the other electron
is allowed to be excited within the GAS-2 space. Here we
emphasize that only single excitations are allowed in the
GAS-2 space, i.e., for the ionization process we allow only
one electron to be excited from GAS-2 to the GAS-3 space.
Note that the SAE model considered here generates the
SAE potential automatically from the frozen core. In the
strong-field community, the wording ‘SAE model’ is often
used to denote the application of an empirically optimized
potential. The time-dependent wave function in the present
SAE approximation can be written as

|�SAE(t )〉 = C0(t )|�0〉 +
∑
a∈vir

Ca
i (t )

∣∣�a
i

〉
, (8)

where we note that the sum runs over all virtual orbitals. Here
|�0〉 is the Hartree-Fock reference determinant, and |�a

i 〉 is a
singly excited determinant. Since the sum in Eq. (8) runs over
all virtual orbitals a with a fixed core i, it represents an effec-
tive interaction felt by the single electron, which is created by
all the other electrons similar to the Hartree-Fock potential.
Similarly, the explicit time-dependent wave function in the
CIS approximation is described within the GAS method as

|�CIS(t )〉 = C0(t )|�0〉 +
∑
i∈occ

∑
a∈vir

Ca
i (t )

∣∣�a
i

〉
. (9)

Here the sum includes all the core and virtual orbitals and
all the single-excited Slater determinants are constructed
with time-dependent coefficient Ca

i (t ). Note that although we

use the same notation for these time-dependent coefficients
in Eqs. (8) and (9), they are in general different for the
different approximation schemes. In the right panel of Fig. 1
we show the complete-active-space (CAS) concept [33,59],
which corresponds to a FCI description of the system with
a spatial orbital index K . CAS∗(2, K ) refers to two active
electrons with K (2K ) spatial orbitals (spin orbitals) within
the given CAS. In this case, all possible excitations are
treated within the GAS-1 space. The asterisk denotes that all
single excitations out of the CAS are included. Therefore the
time-dependent wave function in the GAS method reads

|�CAS(t )〉 = C0(t )|�0〉 +
∑
i∈occ

∑
a∈vir

Ca
i (t )

∣∣�a
i

〉

+
∑

i< j∈occ

∑
a<b∈vir

Cab
i j (t )

∣∣�ab
i j

〉 + · · · . (10)

In the frozen-electron approximation, one can freeze the
inner core electrons, which may have an insignificant role on
the dynamics. Within the TD-GASCI method we can create
such different models to describe the ionization process in
a many-electron system. In this method, the restriction is
created on the active space under consideration by choosing K
spatial orbitals and thus limiting the number of determinants
within the corresponding GAS partition. We emphasize that
the CAS notation throughout this work is accompanied by
additional single excitations to the final GAS and indicated
in our notation by CAS∗(Nel, K ), where Nel denotes the active
electrons and K is the number of spatial orbitals within the
CAS under consideration.

B. Single-particle basis

The single-particle basis is constructed in the prolate
spheroidal coordinate system. For a detailed description of
the implementation see Refs. [34,42,60]. The coordinates are
denoted by (ξ, η, φ), and they are related to the Cartesian
coordinates by the following relations:

ξ = r1 + r2

R
, ξ ∈ (1,∞),

η = r1 − r2

R
, η ∈ (−1, 1),

φ = arctan(r2/r1), φ ∈ (0, 2π ). (11)

Here r1 and r2 are the electron coordinates and R is the bond
length of the diatomic molecule as shown in Fig. 2. In the
prolate spheroidal coordinate system, the time-independent
wave function is expressed as

�(ξ, η, φ)= 1√
2π

∑
m

�m(ξ, η)eimφ, m=0,±1,±2, . . . .

(12)

Both the ξ and η coordinates are described by a finite-element
discrete-variable-representation (FE-DVR) basis [61]. The to-
tal simulation box is partitioned into a central and an outer
region and we use the partially rotated single-particle basis
for the whole simulation box as discussed in Refs. [33,44].
The ξ coordinate is partitioned into two regions such that for
ξ < ξs the single-particle basis is constructed from localized

023424-3



CHATTOPADHYAY AND MADSEN PHYSICAL REVIEW A 99, 023424 (2019)

z

x

y

Z1

Z2

e−

r1

r2r

R1 R2

R

FIG. 2. Schematic of the coordinate system for a diatomic
molecule. The molecule with binding length R has the origin in the
geometric center.

occupied Hartree-Fock and pseudo-orbitals. For ξ > ξs, FE-
DVR functions represent the continua. The domains of these
coordinates are such that ionization is mainly described by
the ξ coordinate, while the η coordinate describes bound-state
motion.

C. Laser pulse parameters

To study EI we expose diatomic molecules to 800 nm
strong laser fields, which are described using the length gauge
and the dipole approximation. It was found in previous one-
dimensional calculations [55] that the length gauge converges
faster than the velocity gauge for extracting the ionization
probability in the enhanced-ionization process. The diatomic
molecules are aligned collinearly with the polarization axis
of the laser field. The vector potential has a sine-square
envelope [62],

A(t ) = F0

ω
sin2

(
πt

T

)
sin (ωt )(0 � t � T ), (13)

where T = N 2π
ω

is the pulse duration with N the number of
cycles and ω the angular frequency. The electric field is ob-
tained as F (t ) = − ∂A(t )

∂t and is shown in Fig. 3 for the single-
(N = 1) and four-cycle (N = 4) pulses used in the present
calculations. F0 is the maximum amplitude of the laser pulse.
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FIG. 3. Normalized electric field with (a) a single cycle and (b)
four cycles.

The use of a vector potential to generate the electric field
ensures that the time integral over the electric field vanishes
once the laser pulse is over [63]. We note that one needs a
pump-probe setup to experimentally probe EI in molecules as
shown in Ref. [11] because the laser pulse is so short that a
molecule will not have enough time to dissociate to the critical
internuclear distance with EI during the duration of the pulse.

D. Ionization probability

To extract the total ionization probability we add a complex
absorbing potential (CAP) to the full Hamiltonian,

HCAP(t ) = H (t ) − iVCAP. (14)

We tested various types of CAPs and found that the following
CAP [64] produces a converged ionization probability for all
the molecules under consideration:

VCAP(r) = η̃(r − rCAP)bθ (r − rCAP). (15)

Here θ is the Heaviside step function, which ensures that the
CAP is switched on once the wave packet reaches rCAP and
the exponent is set to b = 2 as in Ref. [64]. In Eq. (15) η̃ is the
CAP strength and in the present study we found converged
results with η̃ = 0.5. Note that for the prolate-spheroidal
coordinate, we apply the CAP along the ξ coordinate and
in all cases ξCAP = 50. The total ionization probability [65]
reads as

P (t f ) = 1 − N (t f ), (16)

with N (t f ) = 〈�(t f )|�(t f )〉. To extract the ionization proba-
bility after the end of the pulse, we propagate the equations of
motion to a final time t f = 241 fs. We found that this time
is sufficient to obtain converged results, also for correlated
situations.

E. Remarks on the simulations

For the numerical simulations, first we prepare the di-
atomic molecule in its ground state by imaginary-time prop-
agation (ITP). For the ITP we use the short-iterative Arnoldi-
Lanczos algorithm [64]. Once the ground state is converged
we apply the laser pulse and propagate in real time. We
follow the adaptive time step for the propagation of the time-
dependent wave packet as discussed in Ref. [34]. The EI
process involves a large number of TD-GASCI simulations
for different internuclear separations. Therefore, we choose a
relatively large inner region of the simulation box such that
it retains the converged Hartree-Fock orbitals for the time-
dependent calculations. For all the diatomic molecules that we
treated, first we check the convergence of the Hartree-Fock
orbitals and energies. In the time-dependent simulations we
expose the diatomic molecules to 800 nm (ω = 0.057) laser
pulses (Fig. 3). Both the η and ξ coordinates are described by
FE-DVR functions. A description of the discretization used
for these variables and the computational demands is given in
the Appendix.

III. RESULTS AND DISCUSSION

In this section we present results on EI for H2, LiF, and HF
molecules.
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FIG. 4. Ground state energy of H2 from imaginary time propa-
gation. CAS∗(2, K ) (K = 3, 5, 8, 12) represents TD-GASCI with K
active spatial orbitals in the CAS. In the figure, the Hartree-Fock
result is denoted by HF.

A. Two-electron H2 molecule

In order to study correlation effects in diatomic molecules
in connection with EI, the two-electron H2 molecule is a
preferred choice as it is the simplest system with more than
a single electron where the EI has been studied extensively
by solving numerically the TDSE. First we prepare H2 in its
ground state by ITP for a range of internuclear separations
R. In Fig. 4 we present the results with Hartree-Fock and
different GAS partitions. It is seen that the CAS∗(2, 3) cal-
culations with three active orbitals improve the ground-state
energy significantly compared to the Hartree-Fock energy.
The ground-state energies from SAE and CIS approximations
equal the ground-state energy of the Hartree-Fock approach
due to Brillouin’s theorem [57], which states

〈
�a

i

∣∣H0|�0〉 = 0, (17)

with H0 the time-independent field-free Hamiltonian.
The CAS∗(2, 5) scheme with five active orbitals improves the
ground-state energy further. To check the convergence of the
ground-state energy with the number of active orbitals, we
increase the number of active orbitals in the GAS from five to
eight and up to 12 for the CAS∗(2, 12) model and one can see
from the figure that the CAS∗(2, 5) model is fully converged
for the ground state and we also obtain the correct equilibrium
bond length of R = 1.4 by the ITP method.

For a systematic investigation of the correlation effects
in EI of H2, we use the 800 nm single-cycle laser pulse as
shown in Fig. 3(a) with a peak field strength of F0 = 0.053
(1014 W/cm2). For an accurate description of the correlation
effects we take orbitals with higher m-quantum numbers as
described in Eq. (12) and in the present calculations we have
considered up to m = ±1 which produces a converged EI
results. In Ref. [34] it was shown that m = 0,±1 is sufficient
to obtain a correlated ionization spectra and further increase
in m does not change the ionization probability significantly.
In Fig. 5 we present the ionization probability as a function of
the internuclear separation. Here we scaled down the results

FIG. 5. Ionization probability vs internuclear distance R for H2

with F0 = 0.053 and SAE, CIS, and different GAS approximations.
CAS∗(2, K ) (K = 3, 5, 8, 12) represents K active spatial orbitals in
the CAS partition.

obtained from the SAE and CIS approximations. It is evident
that the SAE and CIS approximations do not produce the
correct EI peak position and magnitude compared to the
other correlated calculations. Also in these approximations,
we observe spurious resonances as the internuclear separation
is increased from R = 3.8. In all the CAS∗(2, K ) models in the
figure, the ionization probability increases with the increase
of internuclear separation and after a critical internuclear
distance of R = 4.4, it decreases and eventually at large
internuclear distances equals the sum of atomic ionization
probabilities. The CAS∗(2, 3) model is the simplest model
in the current description of H2 and it produces the EI peak
at the correct position, i.e., R = 4.4. As we increase the
number of active orbitals, the probability converges. Most of
the correlation contributions are captured in the CAS∗(2, 8)
model. An earlier TDSE calculation produces the EI peak
at a similar internuclear distance [25]. The same set of laser
parameters produced the converged EI peak at R = 4.7 in our
previous one-dimensional (1D) calculations [55]. A difference
between the 1D and the present calculations is the way the
Coulomb interaction between the electrons is treated. The
regularized Coulomb potential in the 1D calculation may
overestimate the correlation compared to the exact Coulomb
interaction. We note that the SAE and CIS approximations
are inaccurate in describing EI both in terms of magnitude
and peak position. Similar conclusions were obtained from
1D calculations [55]. As mentioned earlier, the TD-GASCI
method systematically incorporates the electron correlation
in a given GAS partition. The main difference between the
SAE and CIS and the GAS calculations is the inclusion
of the doubly excited Slater determinants in the latter case.
The SAE and CIS approximations are unable to describe
EI because they do not include effects of double excitations
in the many-electron wave function, i.e., the doubly excited
determinants (|�ab

i j 〉) contribute significantly in the dynamic
electron correlation which further underlines the need for
correlated many-electron calculations in modeling molecular
strong-field ionization processes.

To further test the efficiency of the TD-GASCI method
we consider the laser parameters from Ref. [25]. The pulse
durations are both single and four cycle and the peak field
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FIG. 6. Comparison of the converged CAS ∗(2, 8) TD-GASCI
calculation for the ionization probability vs internuclear distance R
for H2 with results from full 3D TDSE calculations [25].

strength is F0 = 0.053 (1014 W/cm2) and ω = 0.057 (Fig. 3).
In Fig. 6 we compare the ionization probability of H2 as a
function of the internuclear separation using the TDSE results
provided in Ref. [25] and the converged CAS∗(2, 8) model
of the TD-GASCI method. There is qualitative agreement
between both results which further illustrates the capability
of the TD-GASCI method.

The electron correlation effect in the EI of H2 is prominent
from the above description. Different CAS approximations
produce the correct EI behavior but one can observe that at
least eight active orbitals are required to properly describe
the EI process. On the other hand, one needs only five active
orbitals to have a good description of the ground state. We
found that the electronically excited states play an important
role in the EI mechanism. This was discussed in our previous
work with a 1D-H2-model molecule, and we observed a sim-
ilar trend in the three-dimensional (3D) calculations. The K
active orbitals in the GAS partition allow the convergence of
the electronic excited states for the corresponding CAS∗(2, K )
model and the same K active orbitals are required for a con-
verged EI calculation in the TD-GASCI method. In Fig. 7(a)
we compare energies of the lowest four field-free states from
CAS∗(2, 3) and CAS∗(2, 5) calculations. These four states are
obtained by directly diagonalizing the CI Hamiltonian in a
small simulation box which also provides accurate energies.
As we further increase the number of active orbitals in a GAS
partition, we can see that the lowest four states converge as
shown in Fig. 7(b). Thus we can see that at least eight active
orbitals are required to obtain a converged result for these low-
lying excited states which equals the number of states needed
for the convergence of the EI process. This equality illustrates
the role of electronically excited states in the EI mechanism.
One can intuitively interpret that when the strong laser field
is applied, the low-lying excited states can be involved in a
strong coupling with the ground state at some intermediate
internuclear separation and this leads to EI.

B. Four-electron LiH molecule

In this section we present an analysis of EI in the four-
electron LiH molecule. It is one of smallest heteronuclear

FIG. 7. Field-free ground state (GS) and the three lowest-
lying excited states of H2 for (a) CAS∗(2, 3) and CAS∗(2, 5) and
(b) CAS∗(2, 8) and CAS∗(2, 12). The notation CAS∗(2, K )-i labels
the states starting with i = 1 for the first excited state.

systems which has been studied for electron correlation ef-
fects in both 1D and 3D calculations [33,34,55]. Like in
the case of H2, orbitals with higher m-quantum numbers are
needed for an accurate description of the electronic corre-
lation and we chose up to m = ±1 for the time-dependent
calculations.

We use ITP to prepare LiH in its ground state and then
the laser pulse with a peak field strength of F0 = 0.025
(2.18 × 1013 W/cm2) is applied to ionize the molecule. We
compare the results of EI with CIS and different GAS ap-
proximations in Fig. 8. Similar to H2, for LiH the CIS and
all GAS approximations predict an EI peak. However, the
CIS approximation predicts an incorrect EI peak position as
well as magnitude compared to the other more accurate GAS
approximations. These results further reflect that electron cor-
relation effects should be taken into account to explain EI in
diatomic molecules. For the CAS∗(2, 5) scheme, the EI peak
is observed at R = 5.9. As we further increase the number of
active orbitals, the peak remains at the same position but the
magnitude of the ionization probability increases further until
convergence is obtained with the CAS∗(2, 8) scheme. Increas-
ing the number of active orbitals in the GAS partitions shows
the trend of convergence. Here we would also like to point
out that the converged peak is shifted from R = 6.1 in the
1D calculation [55] to R = 5.9 in the present 3D case for the
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FIG. 8. Ionization probability vs internuclear distance R for LiH
with F0 = 0.025 with CIS and different GAS approximations.

same set of laser parameters. This highlights the necessity of
using the Coulomb potential instead of regularized-Coulomb
potential for an accurate description of the EI process.

To further study the role of electronic excited states in
the EI mechanism of the LiH molecule we perform a diag-
onalization of the time-independent CI Hamiltonian to obtain
low-lying excited states. In Fig. 9(a) we show the field-free
ground state and the three lowest-lying excited states of LiH in
CAS∗(2, 5) and CAS∗(2, 8) approximations. It is discernible
that the CAS∗(2, 5) model does not produce correct field-free
excited states and as we increase the number of active orbitals
the ground and excited states converge as shown in Fig. 9(b).
Here one can see again that we need eight active orbitals in
the GAS space to obtain a converged result. Note that all the
energy curves are obtained with two-active electrons, i.e., with
the CAS∗(2, K ) approximations with K the number of active
spatial orbitals. In the ITP method we obtain an equilibrium
bond length of R = 3.0 for LiH, which is very close to the
value obtained by quantum chemistry calculations [58]. One
can in principle use four-active electrons to obtain accurate
energy curves in the TD-GASCI method. However, as shown
in 1D calculations [55], the four-active electrons situation
provide the EI peak at the same position as for two-active elec-
trons. Also due to higher computational cost with FE-DVR
basis in both ξ and η coordinate, we perform the imaginary
and real time propagation with two-active electrons.

C. Ten-electron HF molecule

One of the significant advantages of the TD-GASCI
method over TDSE is the capability of a treatment of atoms
and molecules with more than two electrons. To verify the
universality of the EI process and electron correlation effects
in strong-field ionization of multielectron molecules, we con-
sider the HF molecule.

Similar to the previous cases, we prepare the HF molecule
in its ground state with ITP method. The laser field as shown
in Fig. 3(a) is applied with a field strength of F0 = 0.05
(8.75 × 1014 W/cm2) to ionize the molecule. In Fig. 10 we
show the ionization probability against the internuclear
separation calculations for HF. We compare the CIS

FIG. 9. Field-free ground state (GS) and the three lowest-lying
excited states of LiH for (a) CAS∗(2, 5) and CAS∗(2, 8) and
(b) CAS∗(2, 8) and CAS∗(2, 12). The notation CAS∗(2, N )-i labels
the states starting with i = 1 for the first excited state.

approximation and different GAS methods. It is clear,
like in the previous cases, that the CIS approximation fails
to produce the correct EI peak position and magnitude. The
present result also indicates that as the number of electrons
in a system increases, the correlation effect may become

FIG. 10. Ionization probability vs internuclear distance R for the
HF molecule with F0 = 0.05 with CIS and different CAS∗(2, K )
approximations.
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FIG. 11. Field-free ground state (GS) and the three lowest-lying
excited states of the HF molecule for (a) CAS∗(2, 5) and CAS∗(2, 8)
and (b) CAS∗(2, 8) and CAS∗(2, 12). The notation CAS∗(2, N )-i
labels the states starting with i = 1 for the first excited state.

more prominent. Since the CIS approximation does not take
into account the doubly excited Slater determinants, it fails
to incorporate a major part of the electron correlation. The
present calculation further emphasizes the need of correlated
time-dependent calculations for this kind of process. In the
GAS schemes, we found that all the methods produce the
EI peak at R = 4.6. The lowest GAS calculation with the
CAS∗(2, 5) model predicts the correct EI peak position.
As we increase the number of active orbitals, the EI peak
converge with the CAS∗(2, 8) model as in the previous cases.
To check the convergence, we increase the number of active
orbitals up to 12 as shown in Fig. 10 and find no significant
changes in EI peak. Therefore we need eight active orbitals in
this case to obtain converged results for EI.

To study the role of electronic excited states in the EI
of the HF molecule, we diagonalize the time-independent
CI Hamiltonian. We find the ground state and three lowest-
lying excited state energies shown in Fig. 11. We note that
in this case the excited states obtained from the CAS∗(2, 5)
model almost overlap with the CAS∗(2, 8) model. We find
a complete convergence of the excited states as shown in
Fig. 11(b). Therefore, in this case also the number of active
orbitals required to produce converged excited states produce

the converged EI. So we can conclude that in the near infrared
region, along with the ground state, one needs an accurate rep-
resentation of the low-lying excited states to obtain converged
results for the EI process.

IV. SUMMARY AND CONCLUSION

The present work highlights the role of electron correlation
effects in EI of diatomic molecules. The TD-GASCI method
based on the generalized-active-space concept build electron
correlation in a systematic way. First we considered H2 and we
found that the SAE and CIS approximations do not accurately
describe EI. These two approximations even produce some
spurious peaks in the EI signal. The more accurate GAS
calculations produce converged ionization probabilities and
we found a very good agreement with previous TDSE calcu-
lations [25]. We demonstrated the importance of considering
the double excitations in the many-electron wave function.
It is remarkable that electron correlation may reduce the EI
probability. We highlighted the usefulness of the TD-GASCI
method which is computationally less expensive than the full
TDSE treatment. The two-active electron approach was also
used to treat LiH and HF molecules. We demonstrated that EI
persists in these multielectron molecules and that electron cor-
relation is necessary to obtain converged EI results. Also for
these two molecules, the CIS approximation fails to predict
correct EI results.

The present work is, to our knowledge, the first that
presents ab initio calculations on EI for system larger than
H2. The results show that the EI process is universal and
that correlated calculations are needed to accurately describe
the process. We found that the EI results strongly depend on
the convergence of the excited states. We conclude that to
obtain a correct description of EI in near-infrared field, one
needs an accurate representation of the ground state as well
as of low-lying electronically excited states. In the future we
expect that the TD-GASCI method can be applied to study
the importance of electron correlation effects in EI in the
mid-infrared regime.
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APPENDIX: NUMERICAL PARAMETERS FOR
DISCRETIZATION

In this Appendix we give details on the discretization of
the prolate spheroidal coordinates and the typical CPU usages
for different GAS schemes. For H2 we found that for ξ

two finite elements with 8 and 7 FE-DVR functions in each
element with a simulation box size with ξmax = 11, 10 FE-
DVR functions in η coordinate and m = 0,±1 is enough to
obtain a converged Hartree-Fock energy and orbitals. Further
increasing the number of FE-DVR functions improves the
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accuracy of the ground-state calculations and in this method
one can reach the accuracy of different quantum chemistry
calculations using a significantly higher number of FE-DVR
functions within the central region. For our study of EI we
are interested in processes involving continuum dynamics
and this limits the number of FE-DVR functions that can
be used to construct the Hartree-Fock orbitals. For the time-
dependent part we define the central region up to 11 and
increase the simulation box size up to 151 in the ξ coordinate.
The outer region in this case consists of 28 finite elements
with seven FE-DVR functions in each element. Therefore the
full simulation box is of size 151 and it contains 181 basis
functions in the ξ coordinate. Furthermore, we use 10 FE-
DVR functions in the η coordinate and consider m = 0,±1
for the final time-dependent simulations. So in total we have
5430 basis functions. We found that this ensures converged
result for H2. We emphasize that the CAS calculations per-
formed in the present study are referred to as correlated CAS
calculations compared to the SAE and CIS approximations as
these two approximations do not include significant contribu-
tions to the dynamic electron correlation arising from double
excitations.

For all EI calculations, a single-cycle pulse has been used.
Only for the comparison in Fig. 6, a four-cycle pulse was
used. With the CAS∗(2, 3) model, which is the smallest CAS
calculation performed in the present work, and using the
feature of the Intel MKL-library for sparse matrix-vector
multiplication in a Intel Ivy-bridge processor with 20 cores
at 2.8 GHz speed, it takes 3 h and 14 min to complete a
simulation. With the CAS∗(2, 12) model it takes 13 h and
3 min to finish. For the four-electron LiH we found that two

finite elements with 14 and 17 FE-DVR functions with a
simulation box size of 14 is sufficient to produce converged
results in the central region. Similar to H2, we use 10 FE-DVR
functions for the η coordinate and we consider m = 0,±1.
For the time-dependent calculations we choose a simulation
box with ξmax = 150. The total simulation box in this case has
182 FE-DVR functions for the ξ coordinate and 10 FE-DVR
functions for the η coordinate and m = 0,±1. For the full
simulation box we thus have 5460 basis functions and observe
converged results for all CAS calculations. For this molecule
a time-dependent calculation with the CAS∗(2, 5) model with
the same computational configuration takes 21 h and 7 min
to finish. The largest CAS∗(2, 15) scheme has taken 11 days,
1 h, and 16 min to obtain a converge result. In case of the
HF molecule we found that two finite elements and 20 and
7 FE-DVR functions in each element for the ξ coordinate
and 12 FE-DVR functions in the η coordinate and m = 0,±1
ensure a converged Hartree-Fock energy and orbitals. For
the time-dependent calculations we use a simulation box of
size 101 and 133 FE-DVR functions in the ξ coordinate and
12 FE-DVR functions in the η coordinate and m = 0,±1.
The total number of basis functions in this case is 4788.
A time-dependent calculation with the smallest CAS∗(2, 5)
model takes 5 days, 10 h, and 58 min to complete. For the
largest CAS∗(2, 12) scheme the time-dependent calculation
take 21 days, 4 h, and 16 min to finish. The computational
cost therefore restricts us to consider the four-active electron
situation, and in Ref. [34] it was found that for LiH, the
CAS∗(2, 8) model produces the same ionization probability
as the CAS∗(4, 4) model. Therefore, all our calculations are
performed with two-active electrons.
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