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Applying artificial neural networks to coherent control experiments: A theoretical proof of concept
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We propose a method of experimental coherent control that exploits partial and/or prior knowledge of a
molecular system to efficiently arrive at a solution by using an artificial neural network (ANN) to generate a
control field in consecutive temporal steps based on dynamic experimental feedback. Using a one-dimensional
double-well potential model corresponding to the torsional motion of 3,5-difluoro-3′,5′-dibromobiphenyl
(F2H3C6 − C6H3Br2) to outline and verify our approach, we theoretically demonstrate that an optimized ANN
can achieve robust quantum control of nuclear wave-packet transfer between wells despite the addition of
random perturbations to the simulated molecular potential energy and polarizability surfaces. We suggest that
under certain conditions this will also allow the ANN to achieve the stated control objective in an experimental
situation. We show that the number of measurements our method requires to generate an optimized field is equal
to the dimensionality of the optimization problem, which is significantly less than a naive closed-loop approach
would generally need to achieve the same results.
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I. INTRODUCTION

The concept of applying ultrashort laser pulses to con-
trol the dynamics of molecular systems has been a topic
of interest for some time. A large body of theoretical (see,
e.g., Refs. [1–6]) and experimental (see, e.g., Refs. [7–13])
work has been produced in which the feasibility of applying
custom-tailored laser pulses to drive various molecular sys-
tems into specific target states has been demonstrated.

For simple molecules, where it is possible to make accu-
rate theoretical predictions, a so-called “open-loop” scheme
may be employed, where the driving pulse shapes are de-
signed based on knowledge of the system Hamiltonian. How-
ever, molecular systems are generally too complicated for
this approach to be of much use. Alternatively, a so-called
“closed-loop” scheme may be employed [1,14]. Essentially,
the closed-loop approach is based on the application of a
gradient-free optimization algorithm [15] to the inputs of a
pulse shaper [14,16] in a feedback loop where the pulse shaper
inputs are updated and optimized “on the fly” based on ex-
perimental data generated by the interaction of the molecular
system with preceding pulses.

The efficacy of the closed-loop optimization scheme has
been proven in a number of experiments, including ionization
of gas phase diatomic sodium [10], photoisomerization of
organic molecules [11], probing of chemical mechanisms via
optimized pulse analysis [12], and manipulation of biological
proteins [13]. One reason the closed-loop approach works
well in experiments is that it requires little or no prior knowl-
edge of the system it operates on; it is essentially a “black-
box” approach to coherent control since the relationship be-
tween the problem inputs and outputs is unknown or does not
need to be known.

The reality is, of course, that we generally have partial (but
not complete) prior knowledge of any given molecular system
and/or process that we wish to control. This naturally leads to

the question of whether or not it is possible to devise a control
scheme that makes use of this partial information in some way
to arrive at a solution more quickly and/or efficiently. Such a
scheme would be useful in situations where, e.g., it takes a
long time to gather the experimental feedback data, since it
would allow us to reduce the total number of measurements
required to achieve a desired result.

There are numerous ways to implement this idea. One
popular approach is to use a closed-loop scheme where the
inputs to the optimization problem are parametrized based
on prior knowledge of the system. For example, in Ref. [12]
it is demonstrated that optimizing the phase of a transform-
limited laser pulse with an evolutionary algorithm (EA) can
lead to selective control over the branching ratio between
two competing energy flow pathways in a bioinspired dyad
molecule. The authors use two different strategies to achieve
this; initially they perform a “blind” or “naive” optimization,
i.e., they allow the EA to search for a solution without placing
any restrictions on the way the phase function is constructed,
leading to a search space containing 208 parameters. In the
second strategy, they parametrize the phase function based on
a qualitative analysis of the optimized pulse features from the
initial (unconstrained) approach, resulting in a reduced search
space containing 40 parameters. It is shown that parametrizing
the phase function in this manner leads to significantly faster
convergence; however, the optimized pulse doesn’t perform as
well as the pulse found using the unrestricted approach. This
indicates that properly parametrizing the search space of the
optimization algorithm can be a challenge, in particular for
complicated systems or processes where it may be difficult
to gain an intuitive understanding of the underlying control
mechanism(s).

Our approach to implementing a control scheme that makes
use of previously known information about a given system is
based on the primary ansatz that any discrepancies between
the theoretical description of an experiment and what happens
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in reality can, in principle, be rectified by adding some kind
of perturbative term(s) to the theoretical model (in Sec. III
we will show that this is loosely analogous to assuming that
the quantum molecular dynamics can be described using the
time-dependent self-consistent field (TDSCF) approximation
[17]).

Based on this premise, we demonstrate theoretically how
an artificial neural network [18] (ANN) can be trained to
achieve a desired control objective when applied to a the-
oretical molecular model with randomly perturbed potential
and laser-molecule interaction functions. Furthermore, we
suggest that an ANN that has been trained in this man-
ner may be able to achieve the same control objective in
a real experimental situation. Note that while ANNs have
been used in the past to generate predictive models of ul-
trafast laser-molecule interactions [19,20], to our knowledge
they have not been applied to coherent control experiments
before.

While the results in this paper are theoretical, we substan-
tiate the general experimental feasibility of our approach by
demonstrating that the ANN only requires the measurements
of experimentally observable quantities to be able to generate
an optimized field that achieves the desired control objective.
This is accomplished by allowing the ANN to construct the
field directly in the temporal domain in consecutive steps,
where the amplitude at each time step is based on mea-
surements of the system at previous time steps. We also
demonstrate that the number of required measurements is
equal to the dimensionality of the optimization problem (i.e.,
the number of discrete temporal components that characterize
the shape of the field), which is far fewer measurements than
would typically be needed if we naively applied a closed-loop
optimization scheme to the same problem.

At this point it is relevant to mention local control theory
(LCT) [21,22], a qualitatively similar approach that allows
for on-the-fly calculation of an electric field based on the
dynamics of a theoretical model system at each time step in a
way that leads to a monotonic increase (or decrease) in some
predefined expectation value. A key difference between our
method and LCT is that ours is intended for use on experi-
mental, real-world systems as an alternative to the standard
closed-loop approach, whereas LCT is generally used as a
more efficient alternative to optimal control theory [23] (OCT)
when working, e.g., with theoretical models that are very
computationally expensive to simulate.

We would like to underline that the work presented in
this paper is intended as a preliminary proof of concept
for a general idea: that ANNs or other machine learning
techniques can be used to increase the speed and efficiency of
determining optimal pulse shapes in coherent control experi-
ments. Consequently, we are not suggesting that the procedure
presented here is the best, or only, way to implement this
concept. Similarly, the model that we use to outline and
theoretically verify our approach is only intended to provide
a reasonably plausible example of how our idea might work
in a real experiment. For this reason, although we attempt to
demonstrate experimental feasibility when possible by citing
relevant work, we do not exhaustively consider all of the tech-
nical challenges that might be associated with this particular
setup.

FIG. 1. (a) Molecular structure of the F2H3C6 − C6H3Br2

molecule. The most polarizable axis is also shown (dashed black
line). In the simulations performed throughout this article, the MPA
is always oriented along the laboratory frame ẑ axis (b) potential-
energy surface as a function of the torsional angle φd between the Br
and F substituted rings. The minimum-energy nuclear wave packet
localized in the left well is shown in light blue, and the right-
facing red arrow illustrates the desired control objective: wave-packet
transfer from the left to the right well using a shaped laser pulse.

II. MODEL SYSTEM

The model we use is based on the torsional potential-
energy surface of 3,5-difluoro-3′,5′-dibromobiphenyl (which
we will henceforth refer to as F2H3C6 − C6H3Br2) in the
electronic ground state (see Fig. 1). In Ref. [24] it is shown
that the lowest vibrational mode of this molecule corresponds
primarily to the torsional motion of the phenyl rings. Fur-
thermore, it is shown that by aligning the most polarizable
axis (MPA) of the molecule along the laboratory-frame ẑ axis
(see Fig. 1) and neglecting all higher frequency modes, the
Hamiltonian of the system interacting with a nonresonant
laser pulse polarized in the x̂ŷ plane can be approximated by
(using atomic units)

Ĥ�,φd = − 1

2I

∂2

∂�2
− 1

2Irel

∂2

∂φ2
d

+ Vtor(φd ) − 1

4
ε2(t )α(�,φd ),

(1)

where � = (φBrIBr + φFIF)/(IBr + IF) is the weighted az-
imuthal angle, φBr (φF) and IBr (IF) are, respectively, the
rotational angle and inertial moment of the Br (F) substituted
ring, I = IBr + IF is the total moment of inertia for rotation
around the stereogenic axis, Irel = IBrIF/(IBr + IF) is the rela-
tive moment of inertia, φd = φBr − φF is the relative torsional
angle between the rings, Vtor(φd ) is the torsional potential
energy, ε(t ) is the time-dependent electric field of the laser,
and α(�,φd ) is the molecular polarizability function (the
exact forms of the Vtor (φd ) and α(�,φd ) functions we use,
as well as other model details, can be found in Ref. [25]).

Note that the first term on the right side of Eq. (1) describes
the overall rotational kinetic energy of the molecule, and the
second term describes the “internal” energy of the torsional
oscillations. In addition to inducing torsional vibrations in
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FIG. 2. (a) Theoretical torsional potential-energy function Vtor (φd ). (b) Example of the perturbing ηV (φd , t ) function displaying the
characteristic size scale of the perturbations in the temporal and spatial domains. (c) When ηV (φd , t ) is added to Vtor (φd ), the torsional potential
is perturbed in time and space. ηα (φd , t ) perturbs α(φd ) in a similar fashion (not shown).

the φd coordinate, driving the system with a time-dependent
field will generally lead to rotation in the � coordinate as
the second most polarizable axis (SMPA; see, e.g., Fig. 2 in
Ref. [24]) rotates to align with the field polarization axis.
However, if we assume that the SMPA of the molecule is
prealigned with the polarization direction of the driving field,
there will be very little induced rotation in the � coordi-
nate. This type of three-dimensional (3D) orientation and/or
alignment of the MPA and SMPA molecular axes can be
achieved using an elliptically polarized adiabatic alignment
pulse [26,27]. In such a case, the Hamiltonian can be reduced
to 1D by considering the dihedral motion at a fixed � coordi-
nate, i.e.,

Ĥφd = − 1

2Irel

∂2

∂φ2
d

+ Vtor(φd ) − 1

4
ε2(t )α(�; φd ), (2)

where the �; φd notation in α(�; φd ) indicates that � is held
fixed over the duration of the pulse. Note that we will hence-
forth always assume that � = −4.25◦ (which corresponds to
alignment of the SMPA with the field polarization direction),
and for clarity of notation � will therefore be dropped from
subsequent equations.

Having defined our model, the control task will be to
generate a field that can transfer the minimum-energy wave
packet localized in the left well of the system over the energy
barrier located at φd = 0, and into the right well (see the right
side of Fig. 1).

In Ref. [24] it is demonstrated that the description of
the F2H3C6 − C6H3Br2 system given by Eq. (2) will yield
provisionally accurate results based on comparisons with
experimental data. However, it is clear that such a drastic sim-
plification will generally not be able to accurately reproduce
the real behavior of the system, particularly if the torsional
oscillations become very large.

III. CORRECTING FOR DISCREPANCIES

The potential energy Vtor(φd ) and polarizability α(φd )
functions used in Eq. (2) are derived from a series of quantum-

chemical calculations performed in Ref. [24], where the
torsional angle of the central C − C bond was held fixed at
various angles and the remaining structure was allowed to re-
lax into the minimum-energy configuration before calculating
the energy and polarizability.

We can identify at least two sources of error that are
likely to cause discrepancies in the dynamic behavior of the
experimental system compared to the simulated system: the
first is simply due to unavoidable inaccuracies associated with
any chosen method of quantum-chemical calculation and the
second is due to the fact that other modes will undoubtedly
become activated as the amplitude of the torsional oscillations
become large, which will in turn lead to time-dependent
distortions in the potential energy and polarizability surfaces
that the simplified Hamiltonian in Eq. (2) does not account for.
We will now briefly outline how the TDSCF approximation
provides a framework allowing us to formally represent the
influence of these other activated modes in the 1D Hamilto-
nian from Eq. (2).

Assuming a generalized molecular system is evolving
on a single electronic potential surface within the Born-
Oppenheimer approximation (in our case, this is the ground
state), the TDSCF approximation assumes that the total sys-
tem wave function containing N nuclear degrees of freedom
can be written as a single Hartree product:

�(x1, x2, . . . , xN , t ) =
N∏

i=1

ψi(xi, t ). (3)

In Ref. [17], it is shown that this allows us to express the
Hamiltonian of the ith mode as follows:

ĤTDSCF
i = T̂i + Vi(xi ) + V i(xi, t ), (4)

where T̂i and Vi(xi ) represent the kinetic and potential en-
ergy, respectively, and where V i(xi, t ) represents the time-
dependent influence (i.e., energy exchange) from all other
activated modes. Inspired by this formal treatment, we now
modify the Hamiltonian from Eq. (2) by respectively adding
time-dependent perturbing functions ηV (φd , t ) and ηα (φd , t )
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to the torsional energy function Vtor(φd ) and the polarizability
function α(φd ):

ĤTDSCF
φd

= − 1

2Irel

∂2

∂φ2
d

+ [Vtor(φd ) + ηV (φd , t )]

− 1

4
ε2(t )[α(φd ) + ηα (φd , t )]. (5)

Now, the ηV (φd , t ) term in Eq. (5) is equivalent to V i(xi, t )
in Eq. (4); however, the addition of ηα (φd , t ) to the polar-
izability function requires further justification. First of all,
the form of Eq. (5) implicitly assumes that the experimental
field-molecule interaction is still dominated by the molec-
ular polarizability term, which is reasonable provided the
experimental laser pulse remains in the nonresonant regime
and does not become too intense. Furthermore, it can be
shown that the energy shifts caused by the polarizability
interaction can be expressed as an expansion of the molec-
ular dipole moment onto the unperturbed (i.e., field-free)
electronic eigenfunctions [28,29]. It is reasonable to assume
that these electronic eigenfunctions will be modified when
other molecular modes become activated, and this will in turn
lead to time-dependent discrepancies between the calculated
polarizability term α(φd ) and the “real” polarizability of the
system that evolve in a way that is qualitatively similar to the
perturbations described by ηV (φd , t ). While this somewhat ad
hoc rationalization for adding the ηα (φd , t ) term to Eq. (5)
may require further analysis, we feel that it is sufficient for
our immediate purposes.

Note that in a sense ηV (φd , t ) and ηα (φd , t ) represent the
“difference” between the simulated and experimental systems.
The implicit assumption is, therefore, that for a given field
ε(t ), some set of ηV (φd , t ) and ηα (φd , t ) functions exist that
will reproduce the behavior of the experimental wave packet
with perfect accuracy if we insert them into the Hamiltonian
in Eq. (5) and simulate the dynamics.

The problem is still, of course, that we do not know the
“correct” form of ηV (φd , t ) and ηα (φd , t ). However, provided
that all our aforementioned assumptions are valid, there is
a nonzero probability that any randomly generated set of
ηV (φd , t ) and ηα (φd , t ) functions will reproduce the behavior
of the experimental wave packet. Furthermore, if we can teach
a computer to generate a field that accomplishes the simulated
control task on the Hamiltonian in Eq. (5) given any set of
ηV (φd , t ) and ηα (φd , t ) functions, then it should in principle
be able to accomplish the same control task in an experimental
situation with no further optimization required. While this
may seem like a tall order, if we assume that the method(s)
used to calculate Vtor(φd ) and α(φd ) are moderately accurate
we can simplify the task by making a few assumptions as
follows.

(i) Structural distortions that occur as the dihedral oscilla-
tions become large will primarily be caused by the activation
of the other low-frequency modes present in the system. As a
result, the temporal variation of the features in ηV (φd , t ) and
ηα (φd , t ) will occur on a time scale that is comparable to the
time scales of these modes.

(ii) As the system interacts with the driving pulse the
configuration of the structural distortions will not dramatically
fluctuate as the dihedral angle between the rings changes by

a small amount. Consequently, the features in ηV (φd , t ) and
ηα (φd , t ) will vary relatively smoothly as a function of φd .

(iii) The amplitudes of the features appearing in ηV (φd , t )
and ηα (φd , t ) are relatively small compared to the character-
istic energies (e.g., the potential barrier heights) and polariz-
abilities of the calculated Vtor(φd ) and α(φd ) surfaces.

Based on these assumptions and/or simplifications, we will
now outline how we generated random ηV (φd , t ) and ηα (φd , t )
perturbing functions. While there are countless ways we can
attempt to model these functions depending on how realistic
and/or plausible we want them to be, an in-depth analysis of
this topic is beyond the scope of this paper. For this reason,
we have chosen a relatively simple approach based around the
application of a Gaussian lowpass filter to a 2D white-noise
signal, the details of which can be found in Appendix A.

Applying this method allows us to generate random
ηV (φd , t ) perturbing functions consisting of features with an
amplitude variance of 11.9 meV, a mean angular coherence
length of 12.2◦ in the φd dimension, and a mean temporal
coherence length of 0.27 ps in the temporal dimension (see
Appendix A for an explanation of how the coherence lengths
are defined). Figure 2 shows 2D plots of V (φd ) combined
with an example of a randomly generated ηV (φd , t ) func-
tion to demonstrate how these perturbations will modify the
potential-energy surface. The φd and t coherence length pa-
rameters we use to generate the random ηα (φd , t ) perturbing
functions are identical to the ones used for ηV (φd , t ), and the
amplitude variance parameter for ηα (φd , t ) has been chosen
such that the amplitude variance of the ε2(t )ηα (φd , t )/4 term
in Eq. (5) is equal to 11.9 meV when the amplitude of ε(t ) is
at its maximum allowed value.

The choice of mean coherence lengths for the temporal fea-
tures in ηV (φd , t ) and ηα (φd , t ) is roughly based on a normal
mode analysis performed in Ref. [24], and the corresponding
mean coherence lengths in the angular dimension are roughly
based on a potential-energy surface calculation performed
in Ref. [30]. Furthermore, we tuned the amplitude variance
parameters of ηV (φd , t ) and ηα (φd , t ) to be as large as possible
while still allowing our approach to yield good results, and in
Sec. V we will demonstrate that this resulted in perturbation
amplitudes that are a nontrivial task for the ANN to deal with.

IV. IMPLEMENTING AND OPTIMIZING THE ANN

As outlined in Sec. III, the goal is to teach a computer to
achieve the control task described in Sec. II on the system rep-
resented by Eq. (5) for any random set of perturbing ηV (φd , t )
and ηα (φd , t ) functions. In this section we will demonstrate
how this can be accomplished using an ANN combined with
a genetic algorithm (GA) [15] using a technique called neu-
roevolution [31].

ANNs and similar machine learning techniques are cur-
rently a hot topic in a variety of fields. Because the liter-
ature related to this topic is already quite extensive (see,
e.g., Refs. [18–20,31–33]), we will here only provide a brief
general description of ANNs and their operating principles.

An ANN is essentially a mathematical function that can
be characterized by a network of directionally linked nodes
connected to a set of network input and output vectors. Each
node in the ANN consists of a so-called “activation function”
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FIG. 3. Sketch of the optimized feedforward network with four
inputs and a single hidden layer with 20 nodes. The blue (dark gray)
and red (light gray) lines respectively indicate positive and negative
connection weights, and the line thicknesses correspond to the ab-
solute weight magnitude (for reference, the mean absolute weight
magnitude is 3.6, and the maximum absolute weight magnitude is
11.1). All hidden and output nodes contain tanh activation functions,
and the black nodes at the top of the structure are bias nodes set to
constant output 1. The bottom input, labeled n, inputs the current
time step. All inputs are preprocessed by scaling them to a range
between approximately −1 and 1, and the network output is scaled
to a value between zero and the (user-defined) laser intensity cutoff
limit.

that receives a series of node inputs and generates a node
output based on their weighted sum, i.e.,

f = K

(∑
i

wi pi + wb

)
, (6)

where pi represents the “raw” value from the ith incoming
connection, wi is the corresponding connection weight, wb

represents the contribution from a constant “bias” input (see,
e.g., Fig. 3), and K is the activation function that maps∑

i wi pi to scalar node output f . Each node input pi comes
either from other nodes within the network, or from “outside”
the network as part of the network input vector. Likewise, each
node output can connect to other nodes within the network
and/or to the network output vector. Evaluation of a given
network input by the ANN is achieved by propagating the
“signal” from the network input vector through the network
nodes until it reaches the network output vector.

An ANN can “learn” generalized relationships between the
inputs and outputs associated with a given problem or task.
This is accomplished by optimizing all the internal connection
weights until the ANN consistently produces the “correct”
output for any relevant input. In many cases, the connection
weights can be optimized by gradient descent using back-
propagation [33]; however, this method requires access to a
training set of valid input-output pairs. Neuroevolution avoids
this issue by using a GA to optimize the network connection
weights instead, where each candidate network receives a
fitness score based on how successful it is at performing a

desired behavior or task. This makes neuroevolution partic-
ularly useful for reinforcement learning problems where the
correct network outputs for any given set of network inputs
may not be known. Note that more advanced neuroevolution
algorithms will evolve both the topology of the network and
its weights [34]; however, we will not be making use of this
approach.

We will now describe our operational approach to using
an ANN to generate a field based on dynamic feedback from
an arbitrarily perturbed F2H3C6 − C6H3Br2 system, and we
will demonstrate how we used neuroevolution to optimize
the ANN connection weights. The temporal pulse envelope
is characterized by a series of N discrete, equally spaced
regions or “bins” with width δt and total length N × δt = T .
The ANN assigns the amplitude of the bin at time step n + 1
with a constant value based on information about the system
behavior from time steps zero to n. In practice, the pulse
time window was set to T = 7.25 ps, and the number of field
components was set to N = 300, i.e., each field component
had a width of ∼24 fs, significantly shorter than the ∼1200 fs
vibrational period of the system. As we will demonstrate in
Sec. V, this step size is small enough to allow the network to
tailor fields that perform well on specific sets of perturbations.

We now outline the general procedure. First, let εn and
〈φd〉n denote the respective field amplitude and position ex-
pectation value at the nth time step, and let Mn denote the list
of positions between time step zero and n, i.e.,

Mn = {〈φd〉0, 〈φd〉1, . . . , 〈φd〉n−1, 〈φd〉n}. (7)

Now, let F (⊆ Mn) denote the evaluation of the ANN when
it receives a subset of the information in Mn as input(s). At
each general time step n, the amplitude of the subsequent field
component (εn+1) is constructed as follows:

εn+1 = F (⊆ Mn). (8)

Next, εn+1 is appended to the total field shape, the system
wave packet is propagated forward from time step n to time
step n + 1 using split-operator propagation [35], and the
expectation value of the new wave-packet position 〈φd〉n+1
is calculated. To further clarify, an illustration demonstrating
how the ANN uses the measurements from previous time
steps as inputs to determine the amplitude of the next portion
of the field is shown in Fig. 4. Note that in the correspond-
ing experimental situation the overall pulse shape would be
updated to include the appended component, the new pulse
would be applied to the molecules, and a new measurement of
the system would be performed at the appropriately updated
time step, as shown in Fig. 5.

The new positional information is added to Mn (which now
becomes Mn+1), and the ANN is reapplied to determine the
field amplitude at time step n + 2, i.e.,

εn+2 = F (⊆ Mn+1). (9)

Iterating this procedure N times allows the ANN to con-
struct the entire field envelope in consecutive steps based
on dynamic feedback from the system. Note that in practice
we “seeded” the dynamics by uniformly setting the field
amplitude at the first 10 time steps to the maximum value,
as it was found that this led to improved performance.
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FIG. 4. Schematic showing how information about the system
from time steps zero to n is used by the ANN to determine the field
amplitude at time step n + 1. The left and right panels respectively
show the wave-packet position 〈φd〉 and the field amplitude ε at
an (arbitrary) interval between time steps n − 15 and n + 1. As
stated in the article text, once the ANN determines the amplitude of
εn+1, the new component is added to the total field and the system
is propagated forward from time step n to n + 1. Finally, a new
measurement of the wave-packet position at time step n + 1 is made,
and the process is repeated.

The choice of network topology (i.e., the number of nodes
in the network and their connectivity) and the type of ac-
tivation function(s) used in the network nodes [see, e.g.,
Eq. (6)] can significantly impact the quality of the results.
We found that a simple feedforward configuration [32] with
a single hidden layer with 20 nodes containing tanh activation
functions yielded good results. A sketch of the topology and
connection weights of an optimized network is shown in Fig. 3
(note that since the ANN uses information from previous time
steps it might formally be classified as a recurrent neural
network [36]; however, for our purposes this distinction is
moot).

In an attempt to minimize the number of network inputs
(and thereby limit the number of connection weights that need
to be optimized), we assume that only recent information
about the position of the wave packet is relevant for informing
the ANN what to do next at any given time step. For this
reason, inputs from Mn were specifically chosen as a series
of P data points going “back in time” from the most recent
measurement, equally spaced at interval K , i.e.,

⊆ Mn = {〈φd〉n, 〈φd〉n−K , 〈φd〉n−2K , . . . , 〈φd〉n−(P−1)K }.
(10)

Based on this general approach, we tuned the input parameters
by systematically optimizing the ANN with different types
of input configurations (specifically, we tested combinations
of P = 1, 2, 3, 4 and K = 1, 6, 12, 18). We found that the
ANN performed best when P = 3 and K = 12, i.e., when the
network inputs are given by 〈φd〉n, 〈φd〉n−12, and 〈φd〉n−24, as
shown in Fig. 3.

We will now explain how we used a GA to optimize the
network connection weights in order to achieve the stated

control objective. Note that the feedforward network we wish
to train contains a total of 121 connection weights (see Fig. 3).
This means that we will essentially be using the GA to solve
a 121 parameter optimization problem, i.e., each candidate
GA solution is represented by a “genome” consisting of 121
double-precision floating point numbers. Each number in a
given genome defines a unique network connection weight
within the predefined network topology. For this reason, a
given genome can be used to generate its corresponding “phe-
notype” by mapping its values to the weights of a network,
and conversely the “genotype” of a given network can be
extracted by mapping its connection weights to the corre-
sponding genome positions. In the following outlined steps it
should therefore be understood that the terms “genome” and
“network” essentially mean the same thing, and will be used
interchangeably depending on context.

(1) Generate S random “training” systems consisting of
perturbed potential functions Vs(φd , t ) = Vtor (φd ) + ηV (φd , t )
and the corresponding perturbed polarizabilities αs(φd , t ) =
α(φd ) + ηα (φd , t ).

(2) Define the initial wave-packet configuration of each
training system, �s(φd , t = 0), by calculating the minimum
energy state localized in the left well of Vs(φd , t = 0) using
the Fourier grid Hamiltonian [37] (FGH) method.

(3) For each training system, define a set of 10 target
states, χs = [χs,0, χs,1, . . . , χs,9], by using the FGH method
to calculate the 10 lowest-energy states localized in the right
well of Vs(φd , t = T ).

(4) Create a random initial “population” of M networks
where, as stated, the genome of each network is characterized
by a list of values that each define a unique connection weight
in the network.

(5) Apply the mth network to all S training sets in the
manner outlined previously in this section, resulting in S
different wave packets propagated to time T by the network
generated fields, �m,s(φd , t = T ).

(6) Assign the mth network a fitness score Fm, defined as
the mean overlap of all �m,s(φd , t = T ) from step (5) with the
target states in χs, i.e.,

Fm = 1

S

S∑
s=1

9∑
k=0

|〈�m,s(φd , t = T )|χs,k〉|2. (11)

(7) Repeat steps (5) and (6) for all M networks, and use
the GA to create a population of new genomes by mutating
and cross breeding genomes from the current generation with
higher fitness scores (see Appendix B for details about our GA
implementation).

(8) Repeat steps (5)–(7) until the maximum fitness level
of the population converges and/or ceases to significantly
improve.

By evaluating the performance of the networks on the
same training systems in every generation, we ensure that
the convergence is monotonic (this would not be the case
if we, e.g., created a new set of training systems for each
new generation). The caveat of this approach is that we must
include a set of training systems that is large enough to prevent
overfitting; i.e., if we use too few training systems, then it is
unlikely that a network will be able to learn the general rules
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FIG. 5. Illustration of how the trained ANN can be implemented to construct an optimized field in an experimental situation. Note that this
figure is meant to show a single intermediate iteration at the nth step of a process that has already been repeated n − 1 times beforehand. (1)
At time step n the measurement acquisition time is set to tn (where tn = n × δt), as represented by the dotted green line on the clock. (2) The
current form of the shaped pulse is applied to the experimental system, a measurement of the system is performed when t = tn, and the new
measurement data is added to the full set of information about the system from time steps zero to n. (3) The measurement acquisition time is
updated to tn+1, and a subset of the list of measurement data is used as inputs to the ANN, which in turn informs the pulse shaper what the field
amplitude at time step n + 1 should be. (4) The pulse shaper generates a new pulse identical to the former albeit with the newly appended field
component appearing between tn and tn+1 (shown in red), and a new measurement is performed when t = tn+1. At this point the value of the
current time step is increased by 1 and steps (3) and (4) are repeated until N time steps have passed.

it needs to know to be able to successfully tackle a system that
isn’t part of the training set.

In practice, the appropriate number of training systems
was estimated through trial and error by cross-validating the
performance of the converged network on a series of 105

random new systems generated using the same noise param-
eters as the training set (i.e., the same mean temporal and/or
angular coherence lengths and amplitude variances as outlined
in Sec. III). We found that using a training set containing
S = 100 different systems yielded very similar training and
cross-validation scores, indicating that this is a reasonable
size (another common strategy for avoiding overfitting is to
monitor the cross-validation error at every iteration and halt
the optimization once this value begins to increase; however,
as our initial approach seems to work well enough we did not
find it necessary to try other methods).

As a final aside, it is important that the range of the initial
guesses provided by the GA, as well as the size of the GA
mutations, are scaled to reflect the range where the tanh
activation function changes from −1 to 1. In our optimization,
the range of the initial weights was between −6 and 6, and
the weights were mutated by adding a random Gaussian
variable with zero mean and a standard deviation that did not
exceed 0.6.

V. RESULTS AND DISCUSSION

Using the methodology outlined in Sec. IV we optimized
a network using a GA population of M = 300. The network
outputs were scaled to a value between zero and a peak pulse
intensity of 20 TW/cm2 (note that experimental evidence sug-
gests that this intensity will not ionize the molecules [27,38];
nevertheless eventual ionization issues may be remedied by
increasing the length of the pulse and decreasing the allowable
peak intensity).

Figure 3 shows a sketch of this optimized ANN. As stated
at the end of Sec. IV, we cross-validated the performance
of this network by applying it to 105 new random systems
generated using the same noise parameters as the training sets,
and calculated the resulting overlap of the propagated wave
packets with the target wave functions. The red histogram
in Fig. 6 shows the distribution of the target occupation
levels for all 105 cross-validation measurements. It is clear
that the network is quite effective at achieving the control
objective when dealing with perturbed systems that it hasn’t
encountered before, as the distribution is strongly peaked with
a mean value of 0.95.

Now, it is possible that we have created a network that sim-
ply produces generalized pulse shapes that work well across
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FIG. 6. Strongly peaked red histogram shows the distribution of
target state occupations when the optimized network is applied to
105 random test systems (note that these systems are not included in
the set that was used to train the network). The flatter blue histogram
shows the corresponding distribution when the 105 pulses generated
by the network in the aforementioned analysis are used to drive
different systems than the ones they were intended for. (Note that
the red and blue histograms have been visually overlaid, i.e., the
darker area in the lower right corner is where the shapes of the two
distributions overlap.)

all perturbed systems, i.e., the ANN may not actually be mak-
ing “intelligent” decisions based on the immediate behavior
of the wave packet in any given system (in particular, this
would be true if the perturbation amplitudes were too small to
have a significant impact on the wave-packet dynamics). To
test this hypothesis, the 105 pulses that the network generated
in the previous cross-validation analysis were again applied
to the 105 randomly generated test systems, except this time
each pulse was applied to a different system than the one it
was originally intended to work on. It is reasonable to assume
that if the shapes of the pulses generated by the network are
indeed not contingent on the specific perturbed system, then a
given pulse should work more or less equally well on any test
system that we apply it to. The blue histogram in Fig. 6 shows
the distribution of target occupation levels when we tested the
pulses in this manner; this means that in a sense the difference
between the red and blue distributions illustrates the degree
to which the network is creating pulses that are specifically
tailored to the unique set of random perturbing functions
associated with any given test system. The fact that this
distribution is relatively flat compared to the red distribution
shows that there is a significant loss in performance when the
network is not allowed to react to system specific feedback,
i.e., the pulse shapes are not “trivial.”

To further analyze the behavior of the optimized ANN,
we applied it to a system where the perturbations had been
switched off, leading to a target state occupation of 0.995. We
also tried applying the original 105 pulses to the unperturbed
potential, yielding a mean target state occupation of 0.87.
Finally, we used the network to generate 105 new pulses on
a series of systems where the perturbation amplitude had been
decreased by 50%. This led to a mean target state occupation

FIG. 7. (a) Overlaid time-dependent position expectation values
of wave-packet trajectories generated by applying the optimized
ANN from Fig. 3 to 40 different test systems being perturbed by
different ηV (φd , t ) and ηα (φd , t ) functions created using the parame-
ters outlined in Sec. III. (b) Top-down view of the corresponding 40
optimized pulse envelopes generated by the ANN.

of 0.99. These results indicate that the network has learned
something about the “general” unperturbed case even though
this was not included in the original training set.

Figure 7 shows a comparison of 40 pulse envelopes created
by the network when it was applied to a series of systems
perturbed by different ηV (φd , t ) and ηα (φd , t ) functions, again
generated using the same noise parameters as before. By
comparing the similarities and differences between various
pulses, we can gain further insight into the general principles
of network operation. The right side of Fig. 7 shows a “top-
down” view of the pulses, and the left side shows the 40 over-
laid trajectories of the corresponding wave-packet expectation
values. Here it can be seen that each optimized field broadly
consists of a number of pulses appearing at similar times,
and the wave-packet trajectories all follow similar paths. In
general, the initial “seed” pulse at t = 0 and the following
pulse are responsible for pumping the amplitude of the di-
hedral oscillations for two periods in the left well, the large
third pulse is responsible for transferring the wave packet
over the central energy barrier at φd = 0, and the last 2–3
pulses are used to dampen the amplitude of the oscillations
in the right well. Despite these overarching similarities, Fig. 7
also illustrates that there are differences between the separate
systems. Specifically, there are noticeable variations in the
temporal and spatial locations of the turning points of the
oscillations, as well as the temporal locations of the rising and
falling edges of the pulses.

Note that the average pulse duration consists of multiple
discrete field components, suggesting that it might be possible
to further reduce the required number of measurements by
increasing the time step size. However, doing this is likely to
be detrimental to overall performance since the network will
lose the ability to precisely control the position of the rising
and falling edge of each pulse. Conversely, we could increase
the number of time points, e.g., by using 600 time points

023422-8



APPLYING ARTIFICIAL NEURAL NETWORKS TO … PHYSICAL REVIEW A 99, 023422 (2019)

instead of 300 (provided we appropriately adjust the spacing
of the network inputs). However, close inspection of the pulse
structures in Fig. 7(b) (or on the right side of Fig. 4) indicate
that the rising and falling edges of the pulses are generally
“smooth,” i.e., each edge consists of multiple intermediate
time steps. This indicates that increasing the “sampling rate”
in the aforementioned manner will probably not significantly
improve the quality of the results, i.e., the current number of
time steps appears to be large enough to capture the variations
that allow a generated field to perform well on the perturbed
system it is tailored to.

Note also that these results are achieved after performing a
total of 300 measurements on each system, which, as stated
in Sec. I, is equal to the number of free parameters used
to characterize the shape of the field. A naive closed-loop
approach to the same problem would be, e.g., to use a GA
to individually optimize the temporal components of the field
instead, leading to a search space containing 300 parameters.
As a rule of thumb, the population of a GA (and therefore the
number of measurements performed per generation) should
be proportional to the dimensionality of the search space.
Furthermore, the GA will generally require multiple iterations
before finding a good solution (e.g., a 400 parameter optimiza-
tion performed in Ref. [29] required 346 iterations of a popu-
lation containing 2000 individuals, meaning a total of 692000
theoretical “measurements” had to be performed before a con-
verged solution was found). Therefore, optimizing the field
shape using a naive closed-loop scheme in the aforementioned
manner will likely require a number of measurements that is
multiple orders of magnitude larger than our method requires.
As a final comment on this topic, the intuitive simplicity of the
pulse shapes in Fig. 7 suggest that it would be relatively easy
to reparametrize the search space and significantly reduce the
dimensionality of the optimization problem, e.g., as discussed
in Sec. I. For this reason, a properly parametrized closed-loop
optimization of this particular system would probably require
far fewer measurements than the blind approach we have
just outlined. However, as also discussed in Sec. I, manually
determining a suitable parametrization for any given system
is not always trivial. In this respect the methodology outlined
in this paper has a distinct advantage, since in a sense training
the ANN automatically parametrizes the problem for us.

While the complexity of the connections in Fig. 3 makes it
difficult to ascertain exactly how the network uses the inputs
to make decisions, we can make a few educated guesses based
on the input data characteristics. As stated in Sec. IV, it was
discovered through trial and error that the ANN performs best
when it receives the wave-packet positions at 〈φd〉n, 〈φd〉n−12,
and 〈φd〉n−24. The shape of the wave-packet trajectory on the
left side of Fig. 4 shows that the temporal spacing between
these three measurements is similar to the time scale of
changes in the wave-packet trajectory. This indicates that the
chosen input spacing works well because it makes it easier
for the network to capture “higher-order” information about
the dynamics (i.e., is the wave packet currently decelerating
or accelerating, has it reached a turning point, etc.). The fact
that removing 〈φd〉n−12 or 〈φd〉n−24 from the inputs results in
a marked decrease in performance further corroborates this
statement by indicating that the wave-packet acceleration is a
significant factor in the decision making process (conversely,

it was found that increasing the number of inputs by including
measurements from earlier time steps did not improve the
results).

Another aspect worth considering is how well the ANN
performs when noise is added to its inputs and outputs. This
is important because these types of effects are essentially
unavoidable in a laboratory situation where, e.g., experimental
measurements of the wave-packet position will generally not
reflect the actual position with 100% accuracy. To investigate,
we modified the process outlined in Sec. IV by adding a
random uniformly distributed variable within a range of ±6◦
to each 〈φd〉n “measurement,” and a similar random variable
within a range of ±10% of the peak field amplitude to each
εn being output by the ANN. This modified model was then
applied to 105 randomly perturbed test systems exactly as
before, which yielded a mean target state occupation of 0.87.
This suggests that the ANN is able to robustly contend with
moderate experimental noise.

We also tested the performance of our optimized ANN
when encountering systems where the noise features in the
perturbing functions had increased amplitudes compared to
the original training data. We did this by applying the network
to 105 new test systems, where the amplitude of the random
features in ηV (φd , t ) and ηα (φd , t ) had been increased by an
average of 50%. This yielded a mean target state occupation
of 0.82. Next, we tried to improve on this result by retraining
the network on systems containing the larger amplitude per-
turbations. Despite repeated attempts using modified network
topologies, GA parameters, and pulse time window lengths,
we were not able to create a new network that could exceed
the performance of the original network when faced with the
new test sets.

It is encouraging to see that the original ANN is able to
“handle” the larger amplitude perturbations moderately well,
as this suggests a degree of flexibility with respect to how re-
alistically the perturbations need to be constructed. However,
the fact that an increase in perturbation amplitude leads to
a seemingly uncorrectable decrease in performance suggests
that there are some fundamental limitations associated with
our current approach. Inspection of the systems where the
network fails to perform well indicate that the problem arises
when the wave packet does not make it over the central
barrier in one piece, i.e., part of it is transferred and part
remains in the left well. The resulting delocalization means
that the position expectation value 〈φd〉 is no longer a good
indicator of the actual position of the wave packet, which has
a deleterious effect on the ANNs ability to move it into the
right well.

VI. FUTURE PERSPECTIVES

As stated, our motivation for suggesting this scheme is the
possibility of developing a more efficient approach to coherent
control. While the preliminary results outlined here indicate
that our approach may be feasible, there are a number of
issues and/or limitations that may need to be addressed before
an experimental implementation is possible. For example,
for our current method to work properly it is a requirement
that we have access to some kind of information about the
intermediate states of the system before the end of the pulse
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(whereas in a typical closed-loop approach the algorithm
only “cares” about the terminal state). Depending on the
experimental setup, these type of intermediate measurements
may be difficult or impossible to obtain.

Another concern is how to properly implement the tempo-
ral step-by-step construction of the field in an experimental
situation; ultrafast pulse shapers generally operate in the
Fourier domain by manipulating the frequency components
of the pulse spectrum, so constructing a field by precisely
controlling the amplitude of the temporal features as outlined
in this paper may pose a challenge. Nevertheless, arbitrary
pulse shape generation in the temporal domain has been
demonstrated using pulse shapers that combine phase and
amplitude manipulation in the spectral domain [39]. Another
way around this problem could be to characterize the field
as a train of Gaussian pulses generated with a beam splitter
[40], where the ANN could be used to determine the optimal
intensity of each pulse.

A linchpin of this work in its present form is the assump-
tion that discrepancies between the simulated quantum model
and the real experimental dynamics can be rectified via the
addition of one or more perturbing functions to the model
Hamiltonian. While it is very unlikely that this assumption
is always true, it is probably sometimes true. Short of a
full experimental implementation, one could test when this
assumption breaks down by increasing the number of degrees
of freedom in the simulated model and checking whether or
not the ANN is still able to effectively achieve the control
objective. Finally, it would be interesting to see how well the
approach outlined in this paper works for more challenging
objectives such as, e.g., laser induced deracemization [25].

Note that there are many other ways an ANN could be
used to generate an optimized field based on feedback from
a given molecular system. For example, the problem with
delocalization might be mitigated by including information
about the wave packet variance in the ANN inputs, or by
modifying the procedure in a way that allows the ANN to also
look “ahead” a few time steps as it constructs the field.

Another interesting possibility is related to the way an
ANN might be used to “autoparametrize” an optimization
problem; as outlined in Sec. I, properly parametrizing the
search space for a coherent control experiment is not neces-
sarily trivial. The results in this paper indicate that training the
ANN allows it to automatically identify which pulse features
are important (for example, in our model it appears that the
critical parameters are related to the location of the rising and
falling edges of the pulses, as exemplified by Fig. 7). In a
sense this can be interpreted as a “hands-free” reduction of
the search space dimensionality, which might be a worthwhile
concept to further explore.

VII. CONCLUDING REMARKS

We have proposed a method of experimental coherent
control that is designed to make use of partial prior knowledge
of a molecular system to arrive at a solution more quickly
and/or efficiently than a standard closed-loop approach by
reducing the required number of measurements. Our method
is based on the application of a trained ANN in a manner
that allows it to generate a controlling field in consecutive

temporal steps based on dynamic experimental feedback from
the molecular system.

Using a 1D model of the torsional motion in
F2H3C6 − C6H3Br2, we have outlined an approach to
modeling discrepancies between simulation and experiment
by adding perturbing functions to the theoretical model
Hamiltonian. We rationalized this treatment using the TDSCF
approximation, and discussed the likely sources of error
that will cause differences between the simulated and
experimental dynamics. We suggested a method of generating
random perturbing functions and argue that they will have a
finite probability of reproducing the experimental dynamics
when included in the model Hamiltonian.

Using neuroevolution, we optimized an ANN in a way that
allows it to achieve robust quantum control of a simulated
molecular system, despite the addition of the aforementioned
random perturbations to the molecular potential energy and
polarizability surfaces. We argued that this robustness will
potentially allow the optimized ANN to achieve the same
control objective in an experimental situation. We also demon-
strated that the ANN can achieve the control objective using a
number of measurements that is potentially multiple orders of
magnitude smaller than a naive closed-loop approach would
typically require to produce the same results.

In closing, the purpose of this paper is not to provide
a definitive answer regarding the best way to implement a
coherent control algorithm based on an ANN. Instead, it is to
provide a tentative proof of concept for this idea that hopefully
leads to lines of further inquiry.

APPENDIX A: MODELING REALISTIC PERTURBATIONS

For clarity we will use a 1D example in the following
description; however, the results can easily be generalized to
two or more dimensions. The goal is to generate a “noisy”
signal where it is possible to control the amplitude of the
noise fluctuations as well as the “smoothness” of the noise
features (i.e., how correlated a given part of the signal is with
its adjacent values).

We start by creating a discrete ordered sequence ν(x)
(where x = N), with statistically independent random values.
Each value in the sequence is selected from a Gaussian
probability distribution function (PDF):

P{ν(x) = z} = 1√
2πσ 2

ν

exp

(
− z2

2σ 2
ν

)
, (A1)

i.e., for long sequences the mean value of ν(x) will be ∼0.
This type of uncorrelated sequence or signal is often called
“white” Gaussian noise because its power spectral density is
constant at all frequencies. Next, ν(x) is convoluted with a
Gaussian low pass filter and multiplied by constant β to create
the filtered and scaled sequence η(x), i.e.,

η(x) = β√
2πσ 2

G

∞∑
m=−∞

exp

(
− m2

2σ 2
G

)
ν(x − m). (A2)

Varying the width of the Gaussian kernel σG allows us to
control the smoothness of η(x). The autocorrelation func-
tion can be used to obtain a quantifiable measure of this
smoothness in terms of the characteristic size of the features
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in η(x). For a signal generated using Eqs. (A1) and (A2), it
can be shown that the mean autocorrelation function of η(x)
can be approximated by the following analytical expression:

Rη(l ) ≈ exp

(
− l2

4σ 2
G

)
. (A3)

Using Eq. (A3), we can borrow a measure of the mean signal
coherence length from turbulence theory in the form of the
Eulerian integral macrotime scale, which is given by

Lη =
∫ ∞

0
Rη(l )dl = σG

√
π. (A4)

Furthermore, it can be shown that the variance of the values
in η(x) can be approximated by

σ 2
η ≈ β2σ 2

ν

2σG
√

π
. (A5)

Using Eqs. (A5) and (A4), we can control the mean coherence
length and/or amplitude of the features in η(x) by modifying
σG and/or β.

APPENDIX B: GENETIC ALGORITHM DETAILS

We wrote our own custom GA implementation, although
the selection and cross breeding functions are identical to
those used in the MATLAB [41] GA. As stated, we used a pop-
ulation of 300 individuals where the genomes were initialized
with uniformly distributed values between −6 and 6.

When constructing a new generation, the two best perform-
ing individuals in the previous generation were included in the
new generation unchanged. Of the remaining new individuals
to be constructed, 80% were “children” created by selecting
two “parents” from the current generation and cross breeding
their genomes, and the remaining 20% were “mutants” created
by selecting an individual from the current generation and
mutating its genome.

Selection of P parents or mutants from a population con-
taining N individuals is accomplished as follows.

(1) Rank all N individuals according to their raw fitness
scores.

(2) Assign each individual a scaled fitness value propor-
tional to its rank. The scaled fitness function employed here is
F (Rn) = 1/

√
Rn, where Rn is the rank of the nth individual.

(3) Create a line of length L with N segments, where the
length of the nth segment is proportional to the scaled fitness
of the nth individual.

(4) Starting from the beginning of the line, take a step of
random length l0 along the line, where 0 � l0 � L/P. Select
the individual that corresponds to this position on the line as
the first selection of the P individuals that are to be selected.

(5) Select the remaining P − 1 individuals by moving
along the line with equally spaced steps of length l , where
l = L/P.

Cross breeding between parent A and B is accomplished
by generating random binary vectors with lengths equal to the
number of genes in the genome. The nth gene in the child is
then assigned the nth gene from parent A (B) when the nth
value in the vector is zero (1).

Mutation is accomplished by adding a random Gaussian
variable with a mean value of zero and a standard deviation of
σ to each gene. The size of σ used to construct the mutants
in the nth generation is adaptable (albeit with a maximum
value of 0.6), and determined by the maximum fitness at
generation n − 1 and n − 2. If the maximum fitness has not
improved between generation n − 2 and n − 1, the current
value of σ is updated by multiplying the previous value by
20. If the fitness between generation n − 2 and n − 1 has
increased, the current value of σ is updated by dividing the
previous value by 20. Finally, there is also a 1% chance that
any gene in a genome that has been selected for mutation
will be completely replaced with a new uniformly distributed
random value between −6 and 6.
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