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We develop a time-dependent perturbation theory (PT) beyond the dipole approximation to analyze the two-
photon ionization dynamics of atoms exposed to short laser pulses with an arbitrary polarization. In a wide range
of laser parameters, the good performance of the PT method is validated by comparing the results of a number
of physical quantities with those calculated by numerically solving the time-dependent Schrödinger equation
beyond the dipole approximation. Subsequent applications of the PT method in the nonresonant regime allow
us to unveil the important role of the interferences between the dipole and nondipole transition pathways to
the photoelectron momentum shift along the laser-propagation direction. In particular, we find that the ratio of
the probability of each dipole transition channel to the total ionization probability oscillates with the increase
of the photon energy. The interferences among different pathways and the oscillatory behavior of the ratios
jointly lead to a series of minima in the linear momentum transfer for the case of the linear polarization.
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I. INTRODUCTION

Rapid advances in free-electron lasers (FELs) [1–3] make
it possible to produce x rays at wavelengths down to 1 Å
with an unprecedented intensity around 1020 W/cm2 (see,
e.g, a recent review in Ref. [4] and references therein). The
availability of these new light sources has provided opportuni-
ties to investigate nonlinear processes in the short-wavelength
regime. To achieve a fundamental understanding of nonlinear
processes, the multiphoton ionization of atoms has garnered
a lot of attention for decades [5–12]. As the simplest mul-
tiphoton process, a number of alternative approaches have
been reported for the cases when at least two photons are
necessary to reach the continuum [13–17] and the cases
of two-photon above-threshold ionization [18–21]. The total
cross sections and angular distributions of electrons emitted in
the two-photon ionization processes have been discussed both
within and beyond the dipole approximation [22–26]. Theo-
ries of two-photon double ionization have also been reported
[27–29]. In the case of few-cycle short XUV laser pulses,
the carrier envelope phase effects [30] originated from the
interference of the first- and second-order transition ampli-
tudes have been treated perturbatively [31,32]. Studies have
also been carried out on the circular or elliptic dichroism in
the two-photon process by an elliptically polarized monochro-
matic laser field [33,34].

In the dipole approximation, the time-dependent Hamil-
tonian has a cylindrical symmetry for a linearly polarized
laser pulse. However, the inclusion of the leading-order cor-
rection beyond the dipole approximation into the Hamiltonian
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[35–37] will break this symmetry and bring about prominent
nondipole effects, which have recently attracted great atten-
tion in the study of high-harmonic generation [38], atomic
stabilization [39,40], double ionization [41,42], and dynamic
interference [43]. A unique nondipole lobe has been theo-
retically predicted [44] along the laser-propagation direction
in the angular distribution of H (1s) in a super-intense and
high-frequency pulse. In some cases, the interferences be-
tween the dipole ionization paths and the nondipole ionization
paths can lead to asymmetrical angular distributions [45,46]
and nondipole contributions to the photoelectron spin po-
larization have been discussed [47]. The retardation effects
in two-photon processes of stimulated Compton scattering
and stimulated Raman scattering have also been discussed
in detail [48,49]. Another hot topic of the nondipole effects
is the photon-momentum transfer and partition in atomic
and molecular ionization [50–57]. In this case, the linear
momentum of the photon is related to the average value of the
photoelectron momentum along the laser propagation direc-
tion, whose nonzero value is a manifestation of the nondipole
effects.

In a previous work, we have provided detailed ab init io
simulations of photon-momentum-transfer rules in the region
of few-photon ionization [56]. In the present work, we develop
a time-dependent perturbation theory (PT) beyond the dipole
approximation to treat the two-photon ionization of atoms.
Specifically, we investigate the two-photon ionization of the
hydrogen atomic system exposed to a laser pulse with a central
frequency ranging from 0.28 to 0.48 a.u. and with a pulse
duration varying from 0.87 to 20 fs. Applied in the region off
a resonance, the accurate perturbative analysis allows us to
reveal the underlying mechanisms of the nondipole effects for
the two-photon ionization of the hydrogen ground state.
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The rest of the paper is organized as follows. In Sec. II,
we present the second-order PT method beyond the dipole
approximation. In Sec. III A, its performance is verified by
comparing the photoelectron energy distributions, ionization
probabilities, and nondipole angular distributions, with those
calculated from the numerical solution to the time-dependent
Schrödinger equation. We show that the PT method works
well even for an ultrashort few-cycle laser pulse in the cases
where resonance frequency components do not play an im-
portant role in the broad bandwidth of the short pulse. In
Sec. III B, we apply the PT method in the nonresonant regime
to analyze one of the most important nondipole effects, i.e.,
the linear-momentum-transfer law in the two-photon ioniza-
tion process. We identify the reasons for the minima in the
momentum shift for the case of a linear polarization, i.e.,
they originate from the interferences among the dipole and
nondipole ionization paths, and the oscillation behavior of
the ratios of the ionization probabilities through different
dipole paths to the total ionization probability. Atomic units
(a.u.) are used throughout this paper unless explicitly specified
otherwise.

II. TIME-DEPENDENT PERTURBATION METHOD

With the inclusion of the lowest-order corrections beyond
the dipole approximation to the Hamiltonian, the dynamics of
a hydrogen atom interacting with a laser pulse is described by
the time-dependent Schrödinger equation (TDSE) [43,56]

i
∂

∂t
�(r, t ) = [H0 + HI (t )]�(r, t ), (1)

where in the velocity gauge,

H0 = p2

2
+ V (r) = p2

2
− 1

r
, (2)

HI (t ) = p · A(t ) + z

c
p · E(t ) + z

c
A(t ) · E(t ), (3)

in which the momentum operator p = −i∇, and A(t ) and E(t )
are the vector potential and electric field for the laser pulse
under the usual dipole approximation.

Due to the spherical symmetry of the Coulomb potential,
the electron wave function can be expanded in terms of the
spherical harmonics. In this work, we consider the two-photon
ionization from the hydrogen ground state

�i(r) = 2e−rY00(r̂), (4)

to a final continuum state [58]

� (−)
p (r) = 1√

2π p

∑
l,m

il e−i(σl+δl)Y ∗
lm(p̂)Rpl (r)Ylm(r̂), (5)

in which p = (p, p̂) = (p, θ, φ).
Without the loss of generality, we consider a short laser

pulse with an arbitrary polarization with an ellipticity η. In
particular, η = 0 for the linear polarization and η = 1 for
the right-handed circular polarization. We assume that an
N-cycle laser with a central frequency ω0 propagates along
the positive z axis, and the component of the vector potential

in the dipole approximation is given by

A(t ) = A0√
1 + η2

cos2

(
ω0t

2N

)
[ cos(ω0t )ex + η sin(ω0t )ey],

and its Fourier transform is defined as Â(ω), i.e.,

Â(ω) =
∫ t f

ti

A(t )eiωt dt . (6)

The corresponding electric field is E(t ) = −∂A(t )/∂t with its
Fourier transform Ê(ω) given by

Ê(ω) =
∫ t f

ti

E(t )eiωt dt . (7)

According to the second-order perturbation theory, by us-
ing similar derivations with those presented in Refs. [31,32]
for the dipole case, it is easy to obtain the expression of
the two-photon transition amplitude from the initial state
�i(r) to the final state � (−)

p (r) for the nondipole interaction
Hamiltonian HI (t ) in Eq. (3). The resultant amplitude is
given by

A2(p) =〈� (−)
p |− 1

2π

∫
dε

[
p·Â(E f −ε) + z

c
p·Ê(E f −ε)

]

× Gε(r, r′)
[

p·Â(ε − Ei ) + z′

c
p·Ê(ε − Ei )

]

+ z

c
F̂ (E f − Ei )|�i〉, (8)

where Ei is the ground-state energy and E f = p2/2 is the final
kinetic energy, and we define F̂ (E f − Ei ) to be

F̂ (E f − Ei ) =
∫ t f

ti

A(t ) · E(t ) ei(E f −Ei )t dt . (9)

In Eq. (8), the Coulomb Green’s function (CGF) for the
electron [59–61]

Gε(r, r′) =
∑
klm

|�klm〉〈�klm|
Ek − ε

+
∫

dp

∣∣� (−)
p

〉〈
� (−)

p

∣∣
p2/2 − ε − i0

(10)

can be expanded through the spherical harmonics, i.e.,

Gε(r, r′) =
∑
lm

gl (ε; r, r′)Ylm(r̂)Y ∗
lm(r̂′), (11)

in which the radial part gl (ε; r, r′) can be expanded into
series in Sturm’s function of the Coulomb problem and the
result rapidly converges for a negative value of the virtual
intermediate state’s energy ε [61].

With the above formulation, the two-photon transition
amplitude A2(p) given by Eq. (8) can now be numerically
evaluated. For the purpose of the present work to investi-
gate the photon momentum transfer along the z axis, one
needs to extract the photoelectron momentum along the laser
propagation direction. For convenience, the three-dimensional
photoelectron momentum distribution

P(p) = P(p, θ, φ) = |A2(p)|2 (12)

is changed from the spherical coordinates (p, θ, φ) to the
cylindrical coordinates (pρ, pz, φ) with a very high accuracy
through the method of Gouraud shading [62]. Then, the
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electron momentum distribution along the laser propagation
direction can be calculated by

f (pz ) =
∫∫

P(pρ, pz, φ)pρ d pρ dφ, (13)

from which one can evaluate the electron average momentum
〈pz〉 as follows:

〈pz〉 =
∫

pz f (pz )d pz∫
f (pz )d pz

. (14)

Apparently 〈pz〉 stands for the photon linear momentum that
has been transferred to the photoelectrons. The nondipole
effect we mainly focus on in the present work is the transfer
law of the photon linear momentum to the electron in the
two-photon ionization process, i.e., the relationship between
〈pz〉 and the photon energy ω0 when ω0 is varied.

III. RESULTS AND DISCUSSIONS

In this section, we will first validate the reliability of our
second-order PT method by comparing its results with those
calculated from the nondipole TDSE method [43,56,63,64].
For the hydrogen atomic system, we carry out calculations for
laser pulses at different central frequencies ω0 ∈ [0.28, 0.48]
a.u. and with different numbers of cycles from N = 5 to N =
100. The laser intensity is fixed at 1 × 1012 W/cm2.

After the verification of the validity for the present PT
beyond the dipole approximation, we then apply it to the long
pulse cases with a nonresonant frequency ω0 varying from
0.39 to 0.42 a.u. In particular, we will investigate the transfer
law of the photon linear momentum in this wavelength region,
where a minimum was identified in our previous work [56]. In
fact, one will see that the minimum lies between two adjacent
resonant peaks in the total ionization probability.

Through a careful analysis of the perturbation theory, we
find that the oscillation behavior comes from the interferences
between the dipole transition paths and the nondipole tran-
sition paths. In the case of linear polarization, two types of
dipole pathways participate in such interferences and jointly
produce the minimum in the transferred momentum, each of
which makes up a different share varying with the incident
photon energy. On the contrary, for the case of the circu-
lar polarization, only one type of dipole transition channel

contributes to the momentum transfer, which shows a mono-
tonic change with the increase of the photon energy and
no dichroism is found in the left- and the right-circularly
polarized light.

A. Performance of the PT method

We first examine the performance of the second-order PT
method by comparing different physical quantities that can be
extracted from the full differential distribution of the ionized
electron P(p), given by Eq. (12). Specifically, we compute the
photoelectron energy distribution

P(E ) =
∫∫

P(p)|p| sin θ dθ dφ, (15)

the angular distribution

P(θ ) =
∫∫

P(p)|p|2 d p dφ, (16)

and the total ionization probability

Pt =
∫∫∫

P(p)|p|2 sin θ d p dθ dφ. (17)

To check the accuracy of the second-order PT method in
accounting for the nondipole effects, one can extract the dif-
ference in the electron angular distribution between the results
from the nondipole and dipole description of the interaction
Hamiltonian, which is denoted by

Pnd (θ ) = Pnd (θ ) − Pd (θ ). (18)

The above-defined quantities from the PT method can be
directly compared with those which can be accurately eval-
uated from the numerical solution [56] to the TDSE, given in
Eq. (1).

In Fig. 1(a), we compare the photoelectron energy distribu-
tions from the PT method and the TDSE for lasers at a fixed
central frequency of 0.28 a.u. with four different numbers
of cycles N . Excellent agreements are achieved for the two-
photon ionization in all cases from an ultrashort few-cycle
laser pulse with a duration about 0.87 fs (N = 5) to a very
long laser pulse with a duration about 20 fs (N = 100), where
a sharp two-photon-ionization peak is clearly seen.

Because the transfer of the photon linear momentum to
the electron results from the nondipole effects, one expects

FIG. 1. (a) Photoelectron energy distribution P(E ) and (b) angular distribution Pnd (θ ) from the hydrogen ground state exposed to a
linearly polarized cos2-shaped pulse with ω0 = 0.28 a.u. at various pulse durations: N = 5 (the red open circles for the PT), N = 10 (the
blue triangles for PT), N = 25 (the black open squares for the PT), N = 100 (the purple solid circles for the PT). In both (a) and (b), solid
lines represent the TDSE results. In (a), results for different pulse durations are normalized for a better visibility. In (b), the results for N = 5,
N = 10, and N = 25 have been multiplied by a factor 3 for clarity.
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FIG. 2. (a) Photoelectron energy distribution P(E ) for the hy-
drogen 1s state exposed to a linearly polarized cos2-shaped pulse
with N = 5 at three different ω0: 0.29 (the green dash-dotted line
for PT), 0.375 a.u. (the light blue dashed line for PT), and 0.48 a.u.
(the orange dotted line for PT). The solid curves are from the TDSE.
(b) Total ionization probabilities at various ω0 for different pulse
durations: N = 5 (the red open circles for PT), N = 25 (the black
open squares for PT), and N = 100 (the purple solid circles for PT).
Solid lines represent the TDSE results.

a significant difference Pnd (θ ) will occur in the direction
of the laser propagation due to the radiation pressure of the
laser. That is to say, the nondipole effects can be observed
in the electron angular distribution. In Fig. 1(b), we compare
Pnd (θ ) calculated by the PT method and the TDSE for
the four different pulse durations. Indeed, we see that the
transfer of the photon linear momentum does increase the
probabilities of photoelectrons along the positive propagation
direction [i.e., Pnd (θ ) > 0], which corresponds to pz > 0 for
photoelectrons ejected at θ ∈ [0◦, 90◦] in Fig. 1(b). On the
other hand, the probabilities of photoelectrons with pz < 0
decrease and so Pnd (θ ) is negative for θ ∈ [90◦, 180◦]. From
Fig. 1(b), one can conclude that the present PT is able to
accurately describe the nondipole effects.

From the above discussions, the results from our PT
method have shown perfect agreements with those from the
TDSE for both short and long pulses. However, it must be
pointed out that inaccuracy may occur for the second-order
PT method when a significant resonant frequency component
is contained in the Fourier spectrum of the incident laser
pulse. To see this shortcoming, we compute the photoelectron
energy distribution P(E ) for N = 5 at three different central
frequencies ω0 = 0.29, 0.375, and 0.48 a.u. The results from
the PT method and the TDSE are shown in Fig. 2(a). For
0.29 a.u., the agreement of the results from both methods is

perfect. For the other two photon energies, obvious differences
are observed between the PT method and the TDSE when the
photon energy is equal to the resonance frequencies of the
hydrogen atomic system.

The deviations can be attributed to the inadequacy of the
present PT model in dealing with the resonant case, e.g.,
ω0 = 0.375 a.u. At the laser intensity of 1 × 1012 W/cm2

and the resonance frequency ω0 = 0.375 a.u., one can esti-
mate the Rabi frequency between the initial 1s state and the
intermediate 2p state to be about 1.75 × 10−3 a.u., which
is much larger than the spontaneous decay width of the 2p
state. In this situation, the Rabi oscillation does occur and the
strong coupling between the 1s state and the 2p state must
be considered. Therefore, if the laser frequency is close to
a resonance frequency, the mixing of the wave function of
the initial state and the intermediate state becomes important
in the PT model. However, due to the absence of the strong
coupling between the two states, the current PT method is in-
adequate in quantitatively treating the case where a resonance
frequency plays an important role in the laser spectrum. One
can also demonstrate this point through the total ionization
probability by varying the central frequency for three different
pulse durations, as shown in Fig. 2(b); the deviations between
the PT and TDSE results become obvious for all cases when
the central frequency ω0 is close to a resonance frequency
such as 0.375 a.u.

Nevertheless, for a domain of the central frequency ω0

between the two adjacent resonance frequencies 0.375 a.u.
and 4/9 (≈0.444) a.u., the results from the second-order PT
method beyond the dipole approximation agree perfectly with
those from the TDSE for the long pulse about 20 fs, as seen
in Fig. 2(b) for N = 100. In the following section, we will
constrain ourselves to this central frequency region for a long
pulse of N = 100 to analyze the dips of the photoelectron
momentum shift 〈pz〉 along the laser-propagation direction
due to the linear-momentum transfer.

B. Dips in the linear momentum transfer

During the one-photon ionization process, the transfer law
of the photon linear momentum is that 〈pz〉 will linearly
increase with the photon energy in the case of a long pulse
[54–56]. It is interesting that for two-photon ionization the
TDSE results indicate a different transfer law for circular and
linear polarization [56].

In this section, we will turn to analyzing the underlying
mechanism of the dips in the electron momentum 〈pz〉 along
the laser propagation, when the photon energy ω0 is increased
for a linearly polarized pulse. In the previous work [56], we
identified a series of minima for the two-photon ionization
process. In fact, we found that the minima are located between
two adjacent resonant peaks of two-photon ionization, as can
be seen from Figs. 3(a) and 3(c) for the hydrogen 1s state.
We emphasize that this phenomenon also exists for other
atomic species, e.g., a series of dips appear in Fig. 3(b) for
He described by a model potential in the single active electron
approximation [30], in which case the atomic potential in
Eq. (2) is given by V (r) = − 1

r [1 + (1 + βr/2)e−βr] with β =
27/8. These minima are also located between the resonance
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FIG. 3. Expectation of the linear momentum transferred to the
photoelectron ionized from (a) the hydrogen and (b) the helium
atomic system. The two-photon ionization probability is shown as
a function of the central frequency ω0 for (c) the hydrogen and (d)
the helium atomic systems. The square symbols in (a) and (c) are
results from the PT method.

peaks of two-photon ionization of He, as can be seen from
Fig. 3(d). The first dip in He is located around ω0 = 0.78 a.u.

To seek the underlying physics, let us focus on ana-
lyzing the first dip for H, i.e., the one located around
ω0 = 0.4 a.u. between the resonant frequencies 0.375 and
0.444 a.u. for the hydrogen atom. In this region, the current
PT method works perfectly and is able to produce iden-
tical results with those from the TDSE for both 〈pz〉 and
the total ionization probability, as clearly seen in Figs. 3(a)
and 3(c).

According to the selection rules under the dipole ap-
proximation, one can classify the transition channels (TC)
into two categories, the TCd

1 and the TCd
2 . One of them,

the TCd
1 , represents the transition pathways from the ground

state first to the intermediate states (p states with the an-
gular quantum number l = 1) and then to the d states (l =
2). The other one, the TCd

2 type of channels, starts from
the ground state to the intermediate states (p states) and
ends up with the s states (l = 0). With the lowest-order
nondipole corrections considered in the interaction Hamilto-
nian, relevant nondipole transition channels will appear and
interfere with the dipole transition channels TCd

1 and TCd
2 .

We use TCnd to represent the transition paths involved with
the nondipole correction z

c p · E(t ) + z
c A(t ) · E(t ) in Eq. (3).

Please note that although the lowest-order nondipole cor-
rection in Eq. (3) and the expression of Eq. (8) depend on
the choice of the particular gauge [57], we find that the ob-
servable quantities calculated by different gauges agree with
each other. For example, a different gauge has been recently
adopted in discussing the nondipole effects in molecular
ionization [57].

The amplitudes of the nondipole transition channels, ATCnd ,
are on the order of O(1/c) compared to the amplitudes ATCd

1
and ATCd

2
of the dipole channels. According to the nondipole

FIG. 4. (a) Photoelectron momentum shift 〈pz〉 varies with the
photon energy of a pulse with the linear polarization (LP) or the right-
handed circular polarization (RCP). The red solid (blue dashed) lines
are for the TDSE results of the LP (RCP). The red open squares (blue
open circles) represent 〈pz〉 of the LP (RCP) obtained by Eq. (20) in
the PT method. (b) 〈pz〉1,2 of the LP from PT. (c) Purple solid (black
dashed) line indicates the TDSE results of P1/Pt (P2/Pt ) with the
symbols from the PT results.

corrections to the Hamiltonian in Eqs. (3) and (8), the proba-
bility of a photoelectron ionized with a final momentum p can
be expressed as

|A2|2 = ∣∣ATCd
1
+ ATCd

2

∣∣2

+ 2Re
(
ATCd

1
A∗

TCnd + ATCd
2
A∗

TCnd

)
. (19)

Therefore, the nondipole parts in the electron spectrum come
from the interference between the dipole pathways and the
nondipole ones, such as ATCd

1
A∗

TCnd in Eq. (19). These inter-
ference terms are on the order of O(1/c) and higher-order
terms can be neglected under the laser parameters considered
in the present work. Thus the nondipole effect, which induces
the nonzero photoelectron momentum shift 〈pz〉 along the
laser-propagation direction, can be attributed to the interfer-
ences between the dipole transition paths and the nondipole
transition paths.

Through the current second-order PT method beyond the
dipole approximation, one can further explore the origin of the
difference in the transfer law for the photon linear momentum
for the two-photon ionization by a linearly and a circularly
polarized pulse. As can be seen from Fig. 4(a), there is
an obvious minimum in the 〈pz〉 for the case of the linear
polarization, compared against the purely linear relationship
for the right-handed circular polarization case. From Eqs. (14)
and (19), one can deduce that each interference term in
Eq. (19) will contribute a part of the nonzero momentum
shift (marked as 〈pz〉1,2 in sequence) and 〈pz〉 is a summation
of these contributions with its own proportion, as can be
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expressed as

〈pz〉 =
(

P1

Pt

)
〈pz〉1 +

(
P2

Pt

)
〈pz〉2, (20)

where 〈pz〉1,2 is obtained by assuming only one type of the
dipole transition channels and the nondipole ones are involved
in the PT method. For instance, 〈pz〉1 is obtained by supposing
|A2|2 to be |ATCd

1
|2 + 2Re(ATCd

1
A∗

TCnd ), with a corresponding
ionization probability P1. In Fig. 4(b), it is interesting to notice
that 〈pz〉1 behaves in the manner of a Fano profile by scanning
the laser central frequency ω0 while 〈pz〉2 increases almost
linearly with the increase of ω0.

Actually under this hypothesis, it is a good approximation
that P1 ≈ |ATCd

1
|2 and P2 ≈ |ATCd

2
|2, so P1 + P2 ≈ Pt due to

the relatively small contributions from the nondipole terms.
The two dipole transition paths compete with each other
and the oscillation patterns of their ratios in Fig. 4(c) lead to
the series of minima observed in Fig. 3(a). The momentum
shift caused by each interference in Fig. 4(b) and the oscilla-
tory ratio of each dipole pathway in Fig. 4(c) jointly determine
the position of the minimum. In the circular polarization
case, there will be P1/Pt ≈ 1 and P2/Pt = 0 according to
the selection rule, thus leading to 〈pz〉 ≈ 〈pz〉1. Meanwhile,
the behavior of 〈pz〉1 by a circularly polarized pulse changes
to be a linear relationship with the increase of ω0, not the
Fano profile. Besides, we have discovered no dichroism in
the left- and right-circularly polarized light in terms of the
linear-momentum-transfer law. In Fig. 4(a), the 〈pz〉 of the
circular and linear polarization calculated by Eq. (20) through
the PT method agree exactly with the TDSE results, which
supports our speculation above.

In the case of two-photon single ionization of helium,
similar dips of the photoelectron momentum shift 〈pz〉 also
appear in the case of the linear polarization, as have been seen

in Fig. 3(b). One can deduce that the 〈pz〉 minima for helium
are also determined by the same reasons as for hydrogen
discussed above. We notice that the oscillatory pattern of the
ratio of each dipole transition pathway in helium has been
recently observed from a different perspective [34].

IV. CONCLUSIONS

We have analyzed the nondipole effects in the two-photon
ionization process through the second-order time-dependent
perturbation theory beyond the dipole approximation. The
general good performance of the PT method has been dis-
cussed in a number of physical quantities and excellent agree-
ments with the accurate TDSE results have been achieved.
However, deviations do appear when the laser spectra have
significant components resonant with an intermediate state.
The limitation comes from the inadequacy of the present PT
model in dealing with the resonant case where the strong cou-
pling between the two states must be properly accounted for.

By using the PT method in the nonresonant regime of
two-photon ionization, we identified the physical origins in
the different transfer law of photon linear momentum for
the case of linearly and circularly polarized pulses. The dips
observed in the linear polarization case are jointly caused
by interferences between the dipole and nondipole transition
pathways and by the oscillation behavior of the proportion of
each dipole pathway.
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