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We theoretically investigate the two-color above-threshold ionization of atoms and ions by twisted XUV
Bessel and Laguerre-Gaussian (LG) beams in the presence of a strong circularly polarized near-infrared (NIR)
laser field. The presence of the NIR field modifies the continuum states accessible to the photoelectron. Based
on the strong-field approximation, we explore the resulting energy and angular distributions of photoelectron
as a function of the beam parameters. In particular, we analyze dichroism signals that arise due to the twisted
nature of the XUV beam and the helicity of the NIR field. We focus on the comparison between LG beams
and Bessel beams in the paraxial approximation. Here, we find that both beams yield similar results when the
paraxial regime is valid. For localized targets, the dichroism signals strongly depend on the size and position of
the atoms relative to the beam axis. Moreover, the dichroism signal tends to zero when the XUV LG beam is
linear polarized. Detailed computations of the dichroism are performed and discussed for the 4s valence-shell
photoionization of Ca+ ions.
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I. INTRODUCTION

The invention of the laser has made the detailed analysis of
atomic and molecular ionization processes possible. In recent
years, the ability to control laser fields of high intensity and
short duration have lead to the discovery of various phenom-
ena. A particular example is the above-threshold ionization
(ATI) where a larger number of photons is absorbed than
needed in order to overcome the ionization threshold [1].
Experimental and theoretical studies have investigated the
influence of distinct laser parameters on ATI spectra, which
has, in turn, lead to advances in laser technologies [2,3].

Moreover, the discovery of high harmonic generation
(HHG) [4,5] and the invention of free-electron lasers (FELs)
[6,7] enables one today the study of two-color multiphoton
processes where one laser pulse is an extreme ultraviolet
(XUV) field [8]. In such a process, a weak XUV pulse ionizes
the atomic target. The photoelectron is subsequently released
into a strong near-infrared (NIR) laser field. Such a two-color
setup provides an experimental tool to analyze various aspects
of light-matter interaction and dynamic processes within the
atom. They have recently attracted much attention [7,9]. Es-
pecially, two-color multiphoton ionization of atomic helium
was investigated using FEL-generated XUV radiation [6].

If the XUV pulse is long compared to the cycle length
of the NIR field, the presence of the NIR field leads to the
formation of sidebands around the main photoline [10,11].
These sidebands arise due to the emission or absorption
of photons during the propagation of the photoelectron in
the intense NIR field. Dichroism signals were used for the
analysis of two-color ionization processes [12].
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Apart from incident plane wave, the photoionization with
so-called twisted light has been investigated in the past. In
addition to spin angular momentum (SAM), twisted light also
carries a nonvanishing orbital angular momentum (OAM).
Experimental and theoretical studies have shown that the
presence of this OAM strongly affects the photoionization
of atoms [13,14]. Twisted light beams can now experimen-
tally be generated using phase plates [15], axicons [16], or
computer-generated holograms [17]. Moreover, XUV pulses
carrying OAM can be generated also by using HHG and
or even FEL facilities [18,19]. Experimentally, it was al-
ready demonstrated that the transfer of optical orbital angu-
lar momentum to the valence electron of a single trapped
ion is possible with a vortex laser beam [20]. On the
theoretical side, the twisted nature of the beam has been
found to have a significant influence also on strong-field
processes [21–23].

In this paper, we investigate the two-color ATI process
where the usual plane-wave XUV field is replaced by a twisted
light beam, which will be either a LG or a Bessel beam. For
such a two-color process, we explore the dependence of the
energy spectra and angular distribution of photoelectrons on
the size and location of the atomic targets with regard to the
common axis of the beams. Furthermore, we analyze effects
that occur if the paraxial approximation is violated and show
that the LG and Bessel beams yield quite similar results when
the paraxial approximation is valid. Our analysis focuses on
dichroism signals which occur due to a flip of the helicity of
the NIR field or the OAM or helicity of the twisted beam.
As was previously shown, this leads to a total of up to seven
different dichroism signals [24]. On the experimental side,
dichroism signals were used to measure the polarization state
of a free-electron laser beam [25].
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This paper is structured as follows. In Sec. II A, we evalu-
ate the transition amplitude for the two-color ATI of atoms
with a weak XUV and a strong NIR field on the basis of
the strong-field approximation (SFA). LG and Bessel beams
as well as their characteristic parameters are introduced in
detail in Sec. II B. The transition amplitude for the two-color
ATI is then evaluated further in Sec. II D, and the dichroism
signals are defined in Sec. II E. These dichroism signals and
their dependence on the beam parameters are then discussed
in detail in Sec. III. Finally, we conclude and give an outlook
in Sec. IV.

Note that atomic units (me = e = h̄ = 4πε0 = 1) are used
throughout the paper unless stated otherwise.

II. THEORETICAL METHODS

The setup of the two-color photoionization process is shown
in Fig. 1. The twisted XUV beam (blue) and the NIR beam
(orange) propagate in the z direction. The single atomic tar-
get is localized at impact parameter b = (b, ϕb = 0, zb = 0)
relative to the beam axis. Later, we will also consider targets
that are extended over the cross section of the XUV beam.
The emitted photoelectrons are measured at the detector with
asymptotic momentum p = (p, θp, ϕp). In the two-color ATI,
moreover, we assume that the XUV beam is energetic enough
to ionize the atomic target via single-photon absorption
ωX � EB, where EB is the binding energy and ωX is the XUV
laser frequency. On the other hand, the NIR field is of rather
high intensity so that it has to be considered in the dynamics of
the photoelectron in the continuum. The NIR field is circularly
polarized with helicity �L. It is described by a vector potential
AL(t ) that will be specified in Sec. II C. We assume that both
fields are monochromatic and that the NIR field consists of
many optical cycles.

A. Transition amplitude for two-color ATI

With the assumptions above, we can employ the SFA in
order to investigate the two-color ATI. Within the SFA, it is
assumed that the initial bound state of the atom is not affected
by the NIR laser field. Moreover, the Coulomb potential of

FIG. 1. Setup for the two-color ATI of an atom by a short
twisted XUV beam (blue) and in the presence of a strong NIR field
(orange). The vector b denotes the impact parameter of the target
with regard to the common beam axis. The photoelectron is emitted
with asymptotic momentum p under the polar emission angle θp.

the parent ion is neglected in the final (continuum) state of
the photoelectron. The continuum is then described by Volkov
wave functions 〈�(V )

q(t )(t )| = 〈q(t )| e−iSV (t ), where q(t ) = p −
AL(t ) is the electron’s kinetic momentum and the Volkov
phase is given by [26]

SV (t ) = 1

2

∫ ∞

t
dt ′ q(t )2

2
.

The transition amplitude for the two-color ATI can then be
written as [24]

T = −i
∫ ∞

−∞
dt

〈
�(V )

p (t )
∣∣p̂ · AC

X (r)
∣∣φo(t )

〉
ei(EB−ωX )t , (1)

where 〈φ0| is the initial bound state of the electron and AC
X (r)

is the vector potential of the XUV beam. Here the superscript
C indicates that this vector potential is given in the Coulomb
gauge, whereas the length gauge is applied for the NIR laser
field in order to ensure that p is the conserved canonical
momentum [27].

Below, we will analyze the transition amplitude (1) if the
vector potential AC

X (r) describes an LG or Bessel beam and
discuss how the amplitude can be simplified for different
beam parameters, such as the polarization, OAM, and the
impact parameter of the atomic target. Before doing so, we
will introduce LG and Bessel beams in detail in the next
section.

B. Characterization of twisted light beams

Twisted light beams are characterized by helical wave-
fronts that lead to vanishing intensity on the beam axis. In
cylindrical coordinates, the electric field of a twisted beam
close to the beam axis has the form E ∝ r|m|eimϕ . Here, m
is the so-called topological charge, which is defined as the
number of twists around the axis that the phase experiences in
one wavelength of propagation. A twisted beam of topological
charge m carries an orbital angular momentum of mh̄.

1. Bessel beams

The vector potential of any monochromatic light satisfies
the Helmholtz equation [28],

(
 + k2)A(r) = 0, (2)

where k = ω/c is the wave number of the electromagnetic
field. Bessel beams represent a nonparaxial solution of the
Helmholtz equation (2), which is also an eigenfunction of the
projection of total angular momentum,

ĴzAX (r) = mγ AX (r).

Following Ref. [29], the Bessel vector potential can be
written as

AC
X (r) =

∫
d2k⊥
(2π )2

aκm(k⊥)eik·rεC
c , (3)

where the Fourier coefficients are given by

aκm(k⊥) =
√

2π

κ

(−i)meimϕk δ(k⊥ − κ).

These Fourier coefficients depend not only on the modulus of
the transverse momentum κ = |k⊥|, but also on the projection
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FIG. 2. Intensity profiles of LG and Bessel beams: (a) the intensity profile of the LG beam on the x-y plane at z = 0 for the radial index
pr = 2 and the OAM m = 4. (b) and (c) show the comparison of the transverse intensity profile for the LG and Bessel beams with different
radial indices, opening angles, and OAM.

m of the OAM onto the beam axis. The polarization vector
εC

c describes a circularly polarized plane wave with helicity
�X = ±1 and depends on orientation of k in momentum
space,

εC
c = −�X√

2

⎛
⎜⎝

cos θk cos ϕk − i�X sin ϕk

cos θk sin ϕk + i�X cos ϕk

− sin θk

⎞
⎟⎠, (4)

where θk is the so-called opening angle in momentum space.
We note that, in the paraxial limit of small θk , we can write

ĴzAX (r) = (m + �X )AX (r).

In order to make the intensity distribution in such a
Bessel beam clearer, we consider its intensity profile given by
the time-averaged Poynting vector. The z component of the
Poynting vector of the Bessel beam (3) is given by [29]

PB
z (r) = gp�X

κk

2π

[
c2
+1Jm+�X −1(κr⊥) − c2

−1Jm+�X +1(κr⊥)
]
,

where gp is a proportionality constant and the expansion
coefficients are given by

c±1 = 1
2 (1 ± �X cos θk ).

The transverse intensity profile is now given by I⊥(r) =
|PB

z (r)|. Its dependence on the OAM m and the opening angle
θk is shown in Fig. 2 where the typical ringlike structure can
be observed.

As a final remark, we note that monochromatic Bessel
beams do not diffract, that is, the values of the transversal
κ and longitudinal kz components of the linear momentum
are fixed. As a consequence, all wave-vectors k of the Bessel
beam lie on a cone with an opening angle of θk [29]. Moreover,
for monochromatic beams, only two of these four parameters
k, θk, κ, and kz are independent, and the following relations
apply:

θk = arctan(κ/kz ), κ =
√

k2 − k2
z .

Therefore, a Bessel beam is fully defined by the four quantum
numbers k, θk, �X , and m.

2. LG beams

Another complete set of twisted beams are LG beams.
Unlike Bessel beams, however, they do not represent exact

solutions of the Helmholtz equation (2) but solve this in the
paraxial limit. This limit follows from the Helmholtz equation
(2) if we assume that the ray inclination to the optical axis
is small. As before, we consider a beam propagating in the z
direction,

AL(r) = εLu(r) exp(ikz), (5)

where u(r) is an amplitude distribution and εL is the po-
larization vector. In contrast to Bessel beams, we here use
the Lorentz gauge, indicated by the superscript L since the
Coulomb gauge requires the vanishing of the divergence of the
vector potential, which leads to complications in the paraxial
approximation. The beam is supposed to be transverse, i.e.,
the polarization vector εL lies on the x-y plane [30]. Note that,
since the polarization vector appears as a factor in Eq. (5), LG
beams can be circularly, linearly, or elliptically polarized. This
is in contrast to Bessel beams, that are always characterized by
a well-defined helicity �.

Substitution of the vector potential (5) into the Helmholtz
equation (2) yields

∇2
⊥u + 2ik

∂u

∂z
+ ∂2u

∂2z
= 0. (6)

If we assume a well-collimated beam, the profile u(r)
changes slowly with z compared to the phase factor exp(ikz).
Furthermore, if this z dependence is slow compared to the
transverse variation of the profile u(r), the paraxial approxi-
mation is valid [31]∣∣∣∣∂2u

∂z2

∣∣∣∣ 

∣∣∣∣2k

∂u

∂z

∣∣∣∣,
∣∣∣∣∂2u

∂z2

∣∣∣∣ 
 |∇2
⊥u|.

The wave Eq. (6) can then be approximately written as

∇2
⊥u + 2ik

∂u

∂z
= 0. (7)

The solution of the paraxial wave equation (7) representing
LG beams is given in cylindrical coordinates by [32]

u(r⊥, ϕ, z) = 1

ω(z)

(√
2r⊥

ω(z)

)|m|
exp

[
− r2

⊥
ω2(z)

]
L|m|

pr

[
2r2

⊥
ω2(z)

]

× exp

[
imϕ + ikr2

⊥z

2(z2 + z2
R)

− i(2pr + m + 1)

× arctan

(
z

zR

)]
.
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Here, L|m|
p ’s are the associated Laguerre polynomials, and

ω(z) = ω0

√
1 + z2/z2

R is the radius of the beam with the

beam-waist ω0 and the Rayleigh range zR = kω2
0/2. The radial

quantum index pr defines the number of rings in the intensity
profile of the LG beam. Moreover, LG modes satisfy an
orthogonality relation with respect to the beam waist, i.e.,
the scalar product between two LG modes with beam-waist
parameters ω0 and ω′

0 vanishes unless ω0 = ω′
0 [33].

To end this section, let us consider the intensity profile
of the LG beams. The z component of the Poynting vector
for both linearly and circularly polarized LG beams is given
by [32]

PLG
z (r⊥, ϕ) = 1

ω(z)2

(√
2r⊥

ω(z)

)2|m|
exp

[
− 2r2

⊥
ω2(z)

]

×
(

L|m|
pr

[
2r2

⊥
ω2(z)

])2

.

The intensity profiles are shown in Fig. 2. As can be seen, the
intensity profile of a LG beam is also radially symmetric.

Finally, we note that the LG beams are completely defined
by the five parameters pr, m, λ, ε, and ω0. Unlike in the case
of Bessel beams, the opening angle of the LG beam,

θk (κ) = arctan

[
κ√

ω2
x/c2 − κ

2

]

is not constant, which implies that the beam is diffracting.

C. Evaluation of the transition amplitude

We now turn to the evaluation of the transition amplitude
(1) if the ionizing XUV beam either describes a Bessel or a LG
beam. For a Bessel beam, this transition has been discussed in
detail in Ref. [24]. Therefore, we will here restrict ourselves
to the derivation in the latter case. In order to evaluate the
transition amplitude (1) for a LG beam, we represent its vector
potential (5) as a superposition of plane waves [34],

AL
X (r) =

∫
d2k⊥εLυpr m(k⊥)eik·r,

where the Fourier coefficients are given by

υpm(k⊥) = (−i)mω0

4π
e−k2

⊥ω2
0/4eimϕk

(
k⊥ω0

2

)|m|

×
pr∑

β=0

(−1)β2β+|m/2|
(

pr + |m|
pr − β

)
L|m|

β

(
k2
⊥ω2

0

4

)
.

As mentioned before, the XUV vector potential in the
transition amplitude (1) is given in the Coulomb gauge. We,
therefore, perform a gauge transformation of the LG vector
potential [31],

AC = ∇(∇AL )

k2
+ AL. (8)

Below, we focus on either a linear polarization along the x
direction or a circular polarization with helicity �X . In both

cases, the gauge transformation Eq. (8) yields

AC
X (r) =

∫
d2k⊥εC

l,cvpm(k⊥)eik·r, (9)

where the subscripts l and c denote linear and circular polar-
izations, respectively.

The polarization vector εC
l for the case of linear polariza-

tion is given by

εC
l = 1

2

⎛
⎜⎝

2 − 2 sin2 θk cos2 ϕk

− sin2 θk sin(2ϕk )

− sin(2θk ) cos ϕk

⎞
⎟⎠.

The polarization vector εC
c for circular polarization is iden-

tical to the one given for Bessel beams in Eq. (4).
As long as the photoelectron propagates in the NIR laser

field, the kinetic momentum q(t ) = p − AL(t ) and the con-
served canonical momentum p are different. The vector po-
tential of the NIR field is given by

AL(t ) = AL[cos(ωLt )ex + �L sin(ωLt )ey],

with the helicity �L.
We can evaluate the scalar product of the kinetic mo-

mentum and polarization vector q(t ) · εC
l,c, which arises after

substitution of the vector potential (9) into the transition
amplitude (1). This scalar product characterizes the angular
distribution of the emitted photoelectrons and the strength of
the sideband amplitudes. For circular polarization, we find

q(t ) · εC
c = −�X

p√
2

[
sin θpei�X (ϕp−ϕk ) − 2 sin θp sin2 θk

2

× cos(ϕp − ϕk ) − cos θp sin θk

]

+�X
AL√

2

[
ei�X (�LωLt−ϕk ) − sin2 θk

2
(eiωLt e−i�Lϕk

+ e−iωLt ei�Lϕk )

]
. (10)

We note that this scalar product and, hence, the sideband
amplitudes depend on the particular direction of the wave-
vector k.

In the case of linear polarization, the scalar product can be
written as

q(t ) · εC
l = F (θk, ϕk ) + C(θk, ϕk )e−iωL�Lt

+C(θk,−ϕk )eiωL�Lt , (11)

where

F (θk, ϕk ) = p{sin θp cos ϕp + sin θk cos ϕk[cos θp cos θk

+ cos(ϕk − ϕp) sin θp sin θk]},
and

C(θk, ϕk ) = AL

2
[sin2 θk cos ϕkeiϕk − 1].

The first term in Eq. (11) arises from the interaction with
the XUV field. This can be seen from AL → 0. The product
becomes maximal when q(t ) and the polarization vector are
parallel.
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The transition amplitude (1) can be analytically expressed
if we consider a sufficiently weak NIR laser field, compared
to the asymptotic momentum p � AL. Furthermore, since the
laser intensity is not high enough to cause relativistic effects
and the wavelength of the laser field is larger than the size of
an atomic system, we may employ the dipole approximation.
Based on these assumptions, the transition amplitude (1) was
already calculated for the case of an XUV Bessel beam in
Ref. [24]. We find an analogous expression if the vortex XUV
beam is an LG beam with vector potential (9),

Tb(p) = 2π
∑

l

δ(p2/2 + Up + EB − ωχ − lωL )T l ,

where the partial amplitudes,

T l =
∫

d2k⊥υpm(k⊥)eibkBl (k⊥, ϕk,�L ) (12)

describe the individual sidebands in the photoelectron spec-
trum. Similar to the case of an XUV Bessel beam, the Fourier
coefficients of the XUV beam, υpm, and the modified sideband
amplitudes Bl (k⊥, ϕk,�L ) appear in Eq. (12). We replace r →
b + r since r denotes the electronic coordinate with respect to
the atomic nucleus, which is located at the impact parameter
b and represents the center of the atomic potential. Therefore,
the phase factor eibk arises in Eq. (12). It can be seen that the
sideband amplitudes depend only on the scalar products (10)
and (11). For the special case of a linearly polarized LG beam,
we find

Bl (k⊥, ϕk,�L ) = N (l )F (θk, ϕk ) + N (l − �L )C(θk, ϕk )

+ N (l + �L )C(θk,−ϕk ),

with

N (l ) = −i2πJl (αL )eil�Lϕp〈pl |φo(t )〉. (13)

We note that the modulus of the photoelectron momentum
depends on sidebands number l and is given by |p| = pl =√

2(ωX + lωL − EB − Up).

D. Photoionization probability for localized
and macroscopically extended targets

We can apply the the partial amplitudes (12) to compute
the photoionization probability for individual sidebands,

P(l )
b (p) = |T (l )|2. (14)

This expression describes the photoionization probability
of a single atom located at some impact parameter b and for a
particular sideband number l . If we consider the extended tar-
get that consists of an atomic cloud with density distribution
ρ(b), we have to sum the photoionization probabilities P(l )

b (p)
over all impact parameters b,

P(l )(p) =
∫

d2bρ(b)P(l )
b (p). (15)

In the following, we consider the cases of an infinitely
extended homogeneous target and a Gaussian distribution of
atoms, respectively, given by

ρ(b) = 1,

and

ρ(b) = 1√
2πσb

exp

(
− (b − b0)2

2σ 2
b

)
.

The size of the target plays an important role in the inter-
pretation of experimental results. Especially, the influence of
the SAM and the OAM of the XUV beam on the photoioniza-
tion becomes less pronounced as the target size σb increases.
For an infinitely extended homogeneous target (ρ = 1), the
partial ionization probabilities become

P(l )(p) =
∫

d2k⊥d2k′
⊥d2bυpm(k⊥)υ∗

pm(k′
⊥)eib(k−k′ )

×Bl (k⊥, ϕk,�L )B∗
l (k′

⊥, ϕ′
k,�L ).

The integration over the impact parameter b yields a Dirac
δ distribution in k space,∫

d2b eib(k−k′ ) = 2πδ(k − k′).

Therefore, the partial ionization probability for an infinitely
extended homogeneous target can be simplified to give

P(l )(p) = 2π

∫
d2k⊥|υpm(k⊥)|2|Bl (k⊥, ϕk,�L )|2. (16)

FIG. 3. Photoionization probabilities P(l )(p) for a macroscopic
atomic target as a function of the sideband number l and the emission
angle θp. The calculation was performed for (a) an XUV Bessel
beam with opening angle θk = 0.2 rad and frequency ωX = 3 a.u. =
81.6 eV, (b) a circularly polarized XUV LG beam, and (c) a linearly
polarized XUV LG beam with frequency ωX = 3 a.u. and beam-
waist ω0 = 100 nm. The chosen parameters for the NIR field are
AL = 0.1 a.u. and ωX = 0.05 a.u. = 1.36 eV.
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FIG. 4. Dichroism signals for the two-color photoionization of the 4s valence shell of Ca+ as a function of the emission angle θp and
the sideband number l . Results are shown for Bessel beams with opening angles θk = 0.2 and θk = 0.6 rad, respectively, photon energy
ωX = 3 a.u. = 81.6 eV, and with the OAM m = 4. The atomic target is placed on two different impact parameters b0, namely, on the first
maximum of transverse intensity on the x-y plane and on the half of this impact parameter. The target size is σb = 10 nm. The photoelectrons
are observed at the azimuthal angle ϕp = π/2. The black dotted curves indicate the sideband cutoffs.

In the following, the integrals in Eqs. (15) and (16) are
evaluated numerically.

E. Dichroism in two-color fields

The photoionization probability (15) for a given sideband
number l depends not only on the emission angles θp and
ϕp, but also on the quantum numbers of the ionizing beam
that were discussed in Sec. II B. In order to analyze the
dependencies on the helicities �L, �X , and the OAM m, we
now introduce dichroism signals.

From two-color experiments with plane XUV and NIR
fields, the circular dichroism is well known [35] and defined
as the ratio of the difference in photoionization probability for
the right and left circularly polarized beams and the sum of
these probabilities,

D(circ.) = P(right) − P(left)

P(right) + P(left)
. (17)

If the incident beam is twisted and circularly polarized, we
can define seven dichroism signals by changing the sign of
quantum numbers �L, �X , and m and their combinations,
analogous to Eq. (17). For instance, the dichroism associated
with a flip of the projection of OAM m and helicity of the NIR
laser field can be presented as

D(m�L ) = P(p, m,�X ,�L ) − P(p,−m,�X ,−�L )

P(p, m,�X ,�L ) + P( p,−m,�X ,−�L )
.

The definitions of such dichroism signals were discussed in
detail in Ref. [24]. However, if the XUV field is linearly po-
larized, we can just define three dichroism signals associated
with a flip of the signs of m, �L, and m�L.

III. RESULTS AND DISCUSSION

In the previous sections, we derived an expression for
the two-color photoionization probabilities (14) and (15) for
two types of twisted light combined with an intense NIR
plane-wave laser field. Our emphasis in the discussion will
be placed on the dependence of the dichroism signals on the
characteristic quantum numbers defining the twisted beams.
In more detail, we consider the ionization of the 4s valence
electron of Ca+ with a binding energy of EB = 0.49 a.u =
11.7 eV. For the LG beam, we choose the following parame-
ters: the beam-waist ω0 = 100 nm, the radial index pr = 6,
the projection of the OAM m = 4, and frequency ωX = 3
a.u. = 81.6 eV. For the Bessel beam, we choose the same
OAM and frequency as for the LG beam and opening angles
of θk = 0.2 and θk = 0.6 rad, respectively. For the NIR field,
we choose an amplitude of AL = 0.1 a.u. and the frequency
ωL = 0.05 a.u. = 1.36 eV.

Figure 3 displays the photoionization probabilities of the
two-color ATI as a function of the sideband number l and
emission angle θp. The calculation was performed for an
infinitely extended macroscopic target. The photoionization
probabilities were evaluated for a Bessel beam (upper panel),
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FIG. 5. The same as in Fig. 4 but for a Bessel beam with opening angle θk = 0.2 rad and a LG beam with beam-waist ω0 = 65 nm,
respectively. The photon energy of both beams is ωX = 3 a.u. = 81.6 eV and the OAM m = 4. The atomic target is placed at impact parameter
b0 = 65 nm. As target sizes are chosen, σb = 1 nm (first and second columns) and σb = 100 nm (third and fourth columns). The photoelectrons
are observed at the azimuthal angle ϕp = π/2. The black dotted curves indicate the sideband cutoffs.

circularly polarized LG beam (middle panel), and linearly
polarized LG beam (lower panel).

The black dotted curves indicate the cutoff values ±lmax

of the number of sidebands that were calculated using the
properties of Bessel functions [36]. For l > |lmax|, the pho-
toionization probability decreases exponentially with l . In
other words, a meaningful measurement of dichroism signals
in this area is not possible. The maximal number of sidebands
occurs at θp = π/2 where the emission direction is on the
polarization plane of the NIR laser field. The probability to
emit a NIR photon (l < 0) is higher than to absorb it (l > 0)
in all three cases. The reason for this behavior is the matrix
element in Eq. (13), which also decreases with increasing pl .
In other words, the density of the initial state increases with
decreasing momentum.

In order to analyze the dependence of the photoionization
probability on the beam parameters of the XUV vortex beams,
we consider the dichroism signals defined in Sec. II E. We
here first consider a localized atomic cloud centered around
impact parameter b0. Let us start with the Bessel beam and
discuss effects that occur when the impact parameter b0 or
the opening angle θk , respectively, are varied (see Fig. 4).
Dichroism signals were evaluated for the opening angles
θk = 0.2 and θk = 0.6 rad. The atomic target was placed at
the first intensity maximum b0 = b1 max and at half of this
value b0 = b1 max/2, respectively (see Fig. 2). The dichroism
associated with the product �X �L decreases in the region of
the intensity maximum and vanishes if the target is placed
on the first intensity maximum for small opening angle θk ,
Fig. 4. Obviously, the dichroism signals associated with flips
of �L and �X are identical in this case. The reason for this
behavior is that the XUV Bessel beam for small atomic targets
can be approximated in a region near to the first maximum

as a plane wave. The dichroism is the same independent of
which helicity is reversed (IR or XUV). The full width at half
maximum of the first intensity maximum in Fig. 2 decreases
when the opening angle θk is increased. Here, the deviation of
the Bessel beam from the plane wave becomes noticeable. The
dichroism signal that is associated with a flip of the sign of
�X �L increases with increasing θk . Another effect associated
with the increase in opening angle θk is the coupling of the
OAM and helicity �L. The quantum number m of the Bessel
beam is well defined only in the paraxial approximation. If
the sign of �X is changed while keeping the OAM, the beam
remains unchanged in the paraxial approximation, except for
the polarization direction. In general, however, the OAM m
and the helicity �X couples outside of the paraxial regime,
and hence, a change in �X affects the global beam character-
istics. In other words, the flip of helicity �X for large opening
angles of the Bessel beam has more influence on the OAM
m than in paraxial approximation and leads, therefore, to a
stronger dichroism signal for large θk .

Figure 5 compares the dichroism signals for Bessel and
LG beams. The first and second columns in this represent
the dichroism for a small atomic target with σb = 1 nm for
circularly polarized Bessel and Laguerre beams, respectively.
Similarly, the third and fourth columns represent the same
but for a target size of σb = 100 nm, which is larger in
comparison to the width of an intensity maximum of the cor-
responding beams. The dichroism is presented as a function
of the number of individual sidebands l and the emission
angle θp. The target of atoms is located on impact parameter
b0 = 65 nm [indicated in Fig. 2(b)].

Similar as for a LG XUV beam, the orbital and spin an-
gular momenta of Bessel beams decouple within the paraxial
approximation. We, therefore, expect that these two beams
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behave similarly since the paraxial regime is valid. As a
consequence, dichroism signals for the Bessel beam and LG
beam are identical (see Fig. 5). For a small target, the dichro-
ism signals are sensitive to the particular localization of the
target. This dependence becomes less pronounced if the size
of the target increases. The dichroism signals corresponding
to a flip of �X �L even vanish for macroscopically extended
targets. It was already shown analytically in Ref. [24] that the
photoionization probability (14) of macroscopically extended
targets, evaluated for the case of an ionizing Bessel beam,
does not depend on m. Already a target size of 100 nm can,
therefore, be described as a macroscopic target. The vanishing
dichroism signals for the case of an XUV LG beam are
explained by the argument of the similarity of two beams
raised before. These signals also change sign abruptly at the
angle θp = π/2 and vanish on the plane perpendicular to the
beam (θp = π/2). In contrast, however, the signals associated
with a flip of �L (the circular dichroism) does not show a
significant dependence on the target size.

Let us finally discuss the linearly polarized LG beam.
Dichroism in plane-wave two-color experiments was inves-
tigated in the work of Kazansky et al. [37]. There, an un-
polarized atomic target was considered that is irradiated by
an XUV and a NIR pulse. It was analytically shown that the
circular IR dichroism with linearly polarized XUV pulse tends
to zero if the IR pulse is long. Although we replace their
plane-wave XUV pulse with a twisted LG beam, all possible
dichroism signals vanish or are too small compared to the
case of circularly polarization. In Ref. [37], it was also shown
that the dichroism increases if the long IR pulse is replaced
with a short pulse. We can, therefore, summarize that the
dichroism signals do not depend on characteristic parameters

of beams if the NIR field is long and the XUV field is linearly
polarized.

IV. CONCLUSIONS

In this paper, we investigated two-color ATI processes
when a weak XUV vortex beam is assisted with a strong NIR
field. As a vortex beam, we considered LG as well as Bessel
beams. In the continuum, the photoelectron can absorb or emit
one or several photons from the NIR laser field. Thus, side-
bands appear next to the main XUV line in the photoelectron
spectrum. Our investigations showed that the magnitude of
these sidebands is affected by the location of the atomic target
and the quantum numbers characterizing the vortex beam.
Furthermore, we found that the circularly polarized LG and
Bessel beams behave similarly in the paraxial approximation.
In other words, calculated dichroism signals for these two
cases are identical. The dichroism vanishes if the (infinitely
long) LG pulse is linearly polarized. Our investigations open
up ways for two-color experiments with twisted light beams
in the paraxial and nonparaxial regimes. An interesting future
work concern the extension of our paper to short XUV and
NIR pulses where it has been shown for the plane wave that a
nonvanishing linear-circular dichroism exists [37].
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