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Phase-amplitude formalism for ultranarrow shape resonances
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We apply Milne’s phase-amplitude representation [W. E. Milne, Phys. Rev. 35, 863 (1930)] to a scattering
problem involving disjoint classically allowed regions separated by a barrier. Specifically, we develop a
formalism employing different sets of amplitude and phase functions—each set of solutions optimized for a
separate region—and we use these locally adapted solutions to obtain the true value of the scattering phase shift
and accurate tunneling rates for ultranarrow shape resonances. We show results for an illustrative example of an
attractive potential with a large centrifugal barrier.
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I. INTRODUCTION

An integral representation for scattering phase shifts based
on the phase-amplitude formalism was recently derived by the
present authors [1]. Although the main result of Ref. [1] is
fully general, the computational approach was restricted to a
single (infinite) classically allowed region; thus, in the pres-
ence of a barrier, our previous method can only be employed
for energies above the barrier. We now extend the phase-
amplitude formalism [2] to scattering energies below the top
of the barrier, and we provide a method for characterizing
shape resonances. We pay special attention to the case of a
large barrier delimiting a deep inner well capable of holding
long-lived resonances. A variety of methods [3–8] have been
developed for tunneling resonances; however, the regime of
ultranarrow resonances (� ≪ Eres) still presents computa-
tional difficulties [6–8]. The phase-amplitude approach pre-
sented in this work overcomes this obstacle, as it yields the
scattering phase shift expressed in terms of quantities obeying
a simple energy dependence and allows the extraction of
highly accurate resonance widths.

Milne’s phase-amplitude method [2] has a long history and
has been used extensively in atomic physics [9–23]. However,
its wealth of advantages is still being explored [1,24–26]. In
this study we exploit the relationship between the solutions
of the radial Schrödinger equation and those of the envelope
equation (which is equivalent with Milne’s amplitude equa-
tion). In particular, we develop an approach for extending
the phase function outside its domain of smoothness, which
makes it possible to combine solutions that are locally adapted
in each classically allowed region and thus bridge them across
the barrier. Making use of our results, we can now extend
the applicability of the integral representation in Ref. [1] to
scattering energies below the top of the barrier, which allows
us to analyze ultranarrow shape resonances.

This article is organized as follows. Section II gives the the-
oretical description of our phase-amplitude approach, which
makes it possible to separate the background and resonant
contributions to the scattering phase shift (see Sec. III B). The
resonance widths are obtained in Sec. III C, and results for
an illustrative example are presented in Sec. IV. Concluding
remarks are given in Sec. V.

II. THEORY: ENVELOPE EQUATION APPROACH

We consider the scattering of two structureless, spinless
particles with a spherically symmetric potential V (R). The
radial Schrödinger equation reads

� ′′ = U�, U = 2μ(Veff − E ), (1)

where Veff (R) = V (R) + �(�+1)
2μR2 is the effective potential, μ is

the reduced mass of the two particles undergoing scattering,
and E = k2

2μ
> 0 is the energy in the center-of-mass frame.

Atomic units are used throughout.

A. The envelope equation

As in our previous work [1] (see also Refs. [24,27,28]), the
Schrödinger equation is replaced by the envelope equation,

ρ ′′′ = 4Uρ ′ + 2U ′ρ. (2)

A particular solution ρ(R) and its corresponding phase θ (R)
can be used to parametrize the physical wave function,

ψ (R) =
√

ρ(R) sin[θ (R) − θ (0)], (3)

and to obtain the scattering phase shift,

δ� = �
π

2
− θ (0). (4)

This result relies on the smoothness of ρ(R) and θ (R) in the
asymptotic region, which is ensured using the computational
approach of Ref. [1]. Namely, ρ(R) is initialized at R = ∞
according to the asymptotic boundary condition

ρ(R)
R→∞−−−→ 1,

and is propagated inward. The envelope function ρ(R) is then
used to obtain θ (R) by integrating

θ ′ = k

ρ
. (5)

The phase function will thus obey the asymptotic behavior

θ (R)
R→∞−−−→ kR.

Our main goal is computing the phase θ (R) at R = 0, which
yields the phase shift δ� in Eq. (4). In our previous work [1] we
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FIG. 1. A representative effective potential which has a suffi-
ciently deep well at short range, delimited by a large barrier (indi-
cated by the shaded area). The dashed vertical line at the turning
point Rin separates the inner and outer regions.

presented a method suitable for the case of a single classically
allowed region extending to infinity. However, if the effective
potential Veff(R) has a barrier, and if the scattering energy is
below the top of the barrier, the direct propagation (numerical
integration) of the outer phase θ into the inner potential well
is no longer feasible, as we explain below.

An example of a potential with a large barrier is depicted in
Fig. 1. For energies 0 < E < Etop, where Etop is the height of
the barrier, two classically allowed regions exist, which are
separated by the barrier. We thus divide the radial domain
in two regions, as shown in Fig. 1. The turning point on the
inner side of the barrier, Rin(E ), is the boundary between the
inner and the outer regions. The latter includes the classically
forbidden region under the barrier and the entire asymptotic
domain.

The outer envelope and phase, ρ and θ , are propagated
inward through the asymptotic region and through the barrier,
using the method we presented in Ref. [1]. We remark that
the classically forbidden region under the barrier does not
pose any difficulties. However, the envelope ρ(R) increases
quasiexponentially, as R decreases through the barrier region;
thus, ρ(Rin ) will be very large. This can be easily understood
if we write ρ = f 2 + g2, where f and g are solutions of the
radial equation which obey the asymptotic behavior f (R) ∼
sin(kR) and g(R) ∼ cos(kR). According to their definition,
f and g are linearly independent; hence, one solution (say,
g), or both of them, must increase through the barrier, as R
decreases towards Rin. Thus, the dominant solution (g) will
dictate the behavior of the envelope inside the inner well,
where we have ρ(R) = g2(R) to a very good approximation;
consequently, for R < Rin, the envelope has an oscillatory
behavior with (nearly) vanishing minima at the nodes of g,
and exceedingly large values at the antinodes. This would
cause severe difficulties if θ (R) were propagated inside the
inner well (R < Rin). Indeed, when integrating Eq. (5), the
minima of ρ yield a series of sharp spikes for the integrand

k
ρ(R) , which cannot be handled numerically. Therefore, the
inner region has to be tackled separately (independently of the
outer region), and the two regions need to be bridged together,
in order to obtain θ (0).

B. Linear decomposition of envelope solutions

As is well known, the general solution of Milne’s ampli-
tude equation can be expressed [10,29–32] in terms of solu-
tions of the radial Eq. (1). Equivalently, the general solution
of the envelope Eq. (2) can be written as

ρ = aφ2 + bχ2 + 2cφχ, (6)

where φ and χ are linearly independent solutions of Eq. (1).
The coefficients a, b, and c are free in general, but they can be
chosen to obey the constraint

(ab − c2)W 2 = k2, (7)

with W the Wronskian of φ and χ . The constraint above is
directly related to an invariant of the envelope equation, as
explained in Appendix A. We emphasize that φ2, χ2, and
φχ are particular solutions of the envelope equation (see
Ref. [1]). Moreover, W �= 0 ensures that they do indeed form
a fundamental set of solutions of the envelope equation; a
rigorous proof is given in Appendix A, thereby justifying
that Eq. (6) represents the general solution of Eq. (2). The
linear decomposition (6) together with the constraint (7) play
a pivotal role in our work, as we show next.

C. Matching equations

Inside the inner region (0 < R < Rin) we employ two
linear independent solutions (φ, χ ) of the radial equation
(1), and we ensure φ(R) → 0 when R → 0, such that φ is
the regular solution. We now use Eq. (6) to express the outer
envelope ρ in terms of φ and χ . We emphasize that the
numerical methods employed for φ, χ , and ρ must ensure
their well-defined energy dependence; this will be inherited
by the coefficients a(E ), b(E ), and c(E ), which are obtained
from the matching conditions

aφ2 + bχ2 + 2cφχ = ρ,

φφ′ + bχχ ′ + c(φχ )′ = 1
2ρ ′, (8)

a(φ′)2 + b(χ ′)2 + 2cφ′χ ′ = 1
2ρ ′′ − Uρ.

The coefficients a, b, and c are independent of the matching
point. Thus, in principle, the matching conditions could be
imposed anywhere; however, in practice, the matching point
should be located near Rin. Indeed, the outer phase θ cannot
be propagated inside the inner well, as explained in Sec. II A.
Conversely, if φ and χ were propagated outside the inner well,
they would increase through the barrier and become linearly
dependent. Hence, as depicted in Fig. 1, the most convenient
choice for the matching point is the inner turning point Rin.

The 3 × 3 linear system (8) is solved in an elementary
way; first, we find that the determinant � is given by a
simple expression, � = W 3 �= 0, with W the (nonvanishing)
Wronskian of φ and χ ; then, the coefficients a, b, and c are
obtained as the unique solution

W 2a = ρ

(
χ ′ − χρ ′

2ρ

)2

+ k2χ2

ρ
,

W 2b = ρ

(
φ′ − φρ ′

2ρ

)2

+ k2φ2

ρ
, (9)

W 2c = −ρ

(
φ′ − φρ ′

2ρ

)(
χ ′ − χρ ′

2ρ

)
− k2φχ

ρ
,
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with φ, χ , and ρ evaluated at the matching point. The coeffi-
cients a, b, and c can now be used to obtain the phase shift.

D. Extracting the scattering phase shift

According to Eq. (4), in order to find the phase shift, we
need to extend the outer phase into the inner region; this can
be accomplished using Eqs. (5)–(7), as shown in Appendix B.
The key result is Eq. (B2), which yields the outer phase at
R = 0. For the sake of clarity, we set W = k in Eq. (B2) to
simplify the expression of the outer phase,

θ (0) = θ∗ − πN∗ − α∗ + arctan(c),

where θ∗ ≡ θ (Rin) stems from the outer-region propagation,
N∗ is the number of nodes of χ in the inner region, and

α∗ = arctan(c + az∗), (10)

with z∗ = φ(Rin )
χ (Rin ) . Finally, we substitute θ (0) in Eq. (4) to find

δ� = �
π

2
− θ∗ + πN∗ + α∗ + arctan(−c). (11)

The phase shift is thus expressed in terms of the coefficients
a and c that we obtained in the previous section. The last
term in the equation above, namely, arctan[−c(E )], yields the
width � for ultranarrow resonances, as we see in Sec. III C.
However, in preparation for extracting �, we first employ a
phase-amplitude parametrization for the inner solutions φ and
χ in the next section, which yields simpler expressions for the
coefficients a, b, and c.

E. Locally adapted solutions in the inner region

Although φ and χ can be obtained as numerical solutions
of the radial equation, we prefer instead to employ the phase-
amplitude method in the inner region (similar to the outer
region). This will make it possible to express the coefficients
a, b, and c in terms of an inner-region phase which has a
smooth energy dependence.

Let � denote the envelope inside the inner region, and β

the corresponding phase function,

β(R) ≡
∫ R

0

q

�(r)
dr, (12)

where the parameter q > 0 can be chosen conveniently. We
emphasize that the inner and outer envelope functions (�
and ρ, respectively) are different solutions on the envelope
equation; consequently, the phase functions β and θ differ
nontrivially. A simple optimization procedure [33] is em-
ployed in the inner region to ensure the smoothness of � and
β, which we now use to construct φ and χ :

φ = √
� sin β, χ = √

� cos β. (13)

We remark that Eq. (12) ensures β = 0 at R = 0. Thus, φ is
the regular solution, as desired; moreover, Eqs. (12) and (13)
yield the Wronskian W = φ′χ − φχ ′ = q. We now substitute
Eqs. (12) and (13) in Eq. (9) to rewrite the coefficients a, b,
and c in terms of the inner phase β:

a = u cos2(β + η) + ε cos2 β,

b = u sin2(β + η) + ε sin2 β,

c = −u sin(β + η) cos(β + η) − ε sin β cos β. (14)

In the equations above and hereafter, β = β(Rin ). The inner
and outer envelopes (and their derivatives) at the matching
point also appear in Eq. (14) via the quantities η, u, and ε:

cot η = �

2q

(
�′

�
− ρ ′

ρ

)
, (15)

u = ρ

�
csc2 η, ε = �

ρ

(
k

q

)2

. (16)

The three parameters above are interrelated, as they obey the

relationship uε = ( k
q csc η)

2
.

The equations above render the phase shift δ� in Eq. (11)
expressed exclusively in terms of quantities obtained from
the phase-amplitude formalism; indeed, N∗ = nint[β(Rin)/π ],
where nint[· · · ] stands for nearest integer, while making use
of z∗ = φ(Rin )

χ (Rin ) = tan β(Rin), α∗ in Eq. (10) reads

α∗ = arctan(c + a tan β )

= arctan [−u sin(η) cos(β + η) sec(β )]

= − arctan

(
ρ cos(β + η)

� sin η cos β

)
. (17)

Finally, we remark that the equations in this section remain
valid if the inner envelope � has residual oscillations; thus,
strictly speaking, the inner envelope � need not be smooth.
However, the optimization method [33] that we devised for
honing in on the smooth envelope is advantageous in practice,
provided that a well-defined E dependence for � is ensured;
indeed, attention must be paid when employing optimization,
as the inner envelope will be initialized with values which are
numerical functions of energy.

III. THEORY: ENVELOPE RESCALING
AND RESONANCE WIDTHS

A. Envelope rescaling

As explained in Sec. II A, the outer envelope follows a
quasiexponential behavior under the barrier when E < Etop,
which yields ρ(Rin ) ≫ 1. Hence, the coefficients a, b, and c
can reach exceedingly large values and have to be rescaled;
indeed, ρ(R) is rescaled during its propagation through the
barrier, in order to avoid numerical overflow. Therefore, at the
end of the propagation, the value of ρ(Rin ), and thus u and ε,
will be represented logarithmically.

We remark that, although a, b, and c are independent of the
matching point, the parameters η, u, and ε do depend on its
location. Hence, if u (or ρ itself) were used as a scaling factor,
the rescaled coefficients would depend on the matching point.
Although this would not entail any difficulty, it is possible
to rescale the coefficients such that they do remain formally
independent of the matching point. Namely, we choose the
quantity υ ≡ u + ε as the scaling factor; from Eq. (14) we
find

υ = u + ε = a + b, (18)

which is independent of the matching point, and we define the
scaled coefficients according to

ã ≡ a

υ
, b̃ ≡ b

υ
, c̃ ≡ c

υ
. (19)
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Equation (14) can now be recast as

ã = ũ cos2(β + η) + ε̃ cos2 β,

b̃ = ũ sin2(β + η) + ε̃ sin2 β,

c̃ = −ũ sin(β + η) cos(β + η) − ε̃ sin β cos β, (20)

where the scaled parameters

ũ ≡ u

υ
, ε̃ ≡ ε

υ

obey the simple relationship

ũ + ε̃ = 1,

which render the scaled coefficients of the order of unity.

B. Ultranarrow resonances

For scattering energies E sufficiently lower than Etop, we
enter the regime of ultranarrow resonances, characterized by
ε̃ ∼ ρ−2(Rin) ≪ ũ ≈ 1. This simplifies greatly the expres-
sions of the scaled coefficients; indeed, Eqs. (20) become

ã(E ) ≈ cos2 βfull(E ),

b̃(E ) ≈ sin2 βfull(E ), (21)

c̃(E ) ≈ − sin βfull(E ) cos βfull(E ),

where the phase

βfull ≡ β + η (22)

represents the full contribution from the inner region and the
barrier (see Appendix C).

Ultranarrow resonances correspond to metastable (quasi-
bound) states, and their positions (Eres) can be obtained as
the roots of βfull(E ) = Nπ with N a positive integer. Hence,
the resonance positions are the minima of b̃(E ), i.e., the roots
of sin βfull = 0. Note that we also have c̃(E ) = 0 at E = Eres.
We remark that methods which are suitable for bound states
can be used to find the positions Eres of quasibound states.
On the other hand, the vanishingly small widths (�) of such
resonances are difficult to obtain.

In preparation for the next section, where the resonance
width � is extracted, we first rewrite δ� in Eq. (11) as a sum
of background and resonant contributions, and we analyze
the resonant phase shift in detail. For scattering energies
sufficiently lower than Etop, the large barrier plays the role
of a repulsive wall. Therefore, the inner region is inaccessible
(unless E ≈ Eres) and we identify the background term,

δ
bg
� (E ) ≡ �

π

2
− θ∗(E ), (23)

which is given by the outer phase θ∗(E ) = θ (E ; Rin ), with Rin

playing the same role as R = 0 in Eq. (4). The remaining
terms in Eq. (11) give the contribution of the inner region,
which we interpret as the resonant part of the phase shift,

δres
� (E ) ≡ πN∗(E ) + α∗(E ) arctan[−c(E )]. (24)

To simplify our notation, we omit the subscript � for the
remainder of this article, and we rewrite Eq. (11) as

δ(E ) = δbg(E ) + δres(E ).

As we explain next, the resonant phase shift is very nearly
constant between resonances, δres(E ) ≈ Nπ . Thus, we have

δ(E )
mod π= δbg(E ), E �= Eres, (25)

which confirms the interpretation of δbg in Eq. (23) as the
background phase shift.

In order to understand the energy dependence of δres(E ),
we first recall that N∗(E ) is an integer-valued step function;
second, in the regime of ultranarrow resonances we have
α∗(E ) ≈ arctan(±∞) = ±π

2 , due to u ∼ ρ → ∞ in Eq. (17).
Similarly, arctan[c(E )] ≈ arctan(±∞) = ±π

2 , and thus the
last two terms in Eq. (24) yield α∗ − arctan(c) ≈ ±π or
zero. Consequently, δres(E ) is to an excellent approximation
a piecewise constant function, whose values are integer multi-
ples of π . More precisely, δres(E ) follows a stepwise behavior,
increasing sharply by π at each resonance, as we explain next.

The behavior of δres(E ) can be fully elucidated by a
more detailed analysis of the terms in Eq. (24). First, the
discontinuous steps of N∗(E ) = nint[β/π ] when β

mod π= π
2 are

irrelevant, as each step (+π ) due to πN∗(E ) is canceled by
an opposite (−π ) step given by α∗(E ) = arctan(c + a tan β ),
due to tan β jumping from +∞ to −∞. Second, we observe
that both ã(E ) and c̃(E ) will vanish when cos βfull = 0 [see
Eq. (21)]. The roots of cos βfull = 0 are interspersed between
the roots of sin βfull = 0, i.e, the zeros of b(E ). The latter
give the resonance positions Eres, while the common zeros of
a(E ) and c(E ) are completely unremarkable despite the fact
that both α∗(E ) and arctan[c(E )] in Eq. (24) vary rapidly in
their vicinity; indeed, using the definition (10) of α∗ and the
constraint 1 + c2 = ab [see Eq. (7) with W = k], we find that
the last two terms in Eq. (24) cancel nearly perfectly:

α∗ − arctan(c) = arctan(c + az∗) − arctan(c)

= arctan

(
az∗

1 + c2 + acz∗

)

= arctan

(
z∗

b + cz∗

)
≈ 0.

This expression vanishes because b ≈ ∞ when sin βfull �≈ 0.
Finally, one is left with the only possible explanation for the
stepwise behavior of δres(E ). Namely, it stems solely from the
last term in Eq. (24),

arctan[−c(E )] = − arctan[υ(E )c̃(E )].

Indeed, at Eres we have c = 0 (and b ≈ 0) due to sin βfull = 0.
Moreover, the derivative ċ ≡ dc

dE is very large at E = Eres,

ċ(Eres) = υ(Eres)˙̃c(Eres) = −υ(Eres )β̇full(Eres). (26)

Hence, as E increases within a narrow window around Eres,
c(E ) decreases rapidly (practically from +∞ to −∞), which
yields a rapid increase of arctan[−c(E )] from −π

2 to +π
2 . This

is in agreement with the well-known signature of scattering
resonances, namely, the increase by π of the phase shift at
each resonance, as depicted in Fig. 2(a).

C. Resonance widths

We now extract the widths of ultranarrow resonances,
while the case of broad resonances (e.g., above-barrier res-
onances) is discussed in Sec. IV A. As is well known, the
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FIG. 2. (a) Energy dependence of the resonance phase shift δres

(thick red line) and βfull = β + η (thin blue line) and (b) background
phase shift δbg. The full phase shift δ = δbg + δres is shown in
Fig. 3(c), where the resonance positions are indicated. The results
were obtained using the potential energy (32).

scattering phase shift δ(E ) increases rapidly when E ≈ Eres,
and its derivative δ̇(E ) ≡ dδ

dE has a sharp maximum at Eres.
We thus analyze δ̇ to extract the resonance width �. For
ultranarrow resonances, the phase shift can be easily separated
into background and resonant contributions, as shown in the
previous section. Moreover, in the immediate vicinity of a
narrow resonance, the background term is nearly constant and
we neglect it. Therefore, we need only consider the resonant
phase shift in Eq. (24). Specifically, its derivative reads

δ̇res ≡ dδres

dE
≈ d

dE
[−arctan c(E )] = − ċ(E )

1 + c2(E )
, (27)

where we used Ṅ∗ = 0 and α̇∗ ≈ 0. In order to extract the
resonance width �, we employ the linear approximation

c(E ) ≈ ċres(E − Eres), (28)

with ċres ≡ ċ(Eres). The linearization (28) is essentially exact
within a sufficiently narrow window �E ; at the same time, the

strong inequality �E ≫ � also holds. Thus, the line shapes
of ultranarrow resonances are accurately given by

δ̇res(E ) ≈ − ċres

1 + (ċres)2(E − Eres )2
. (29)

Comparing this result to the familiar Breit-Wigner expression,

δ̇BW(E ) =
�
2

(E − Eres)2 + (
�
2

)2 , (30)

we identify the resonance width,

2

�
= −ċres. (31)

Making use of Eq. (26), we can express the resonance width
in terms of the scaled coefficients,

2

�
= −υres ˙̃cres = υresβ̇

full
res ,

with ˙̃cres ≡ ˙̃c(Eres ) and υres ≡ υ(Eres). We emphasize that the
vanishingly small value of � for ultranarrow resonances stems
from the huge value of the scaling factor υ ≈ u, which in turn
is due to the exponential increase of the envelope through the
barrier. Finally, we remark that the linearization (28) was used
only within a very narrow window �E around Eres to facilitate
the formal comparison of the Breit-Wigner formula (30) with
Eq. (29). However, we evaluate the energy derivative ˙̃c(Eres )
using a high-order method for numerical differentiation based
on Chebyshev polynomials covering a wide energy interval.
Thus, in order to attain high accuracy, we account fully for
the nonlinear behavior of c̃(E ) and βfull(E ).

IV. RESULTS AND DISCUSSION

As an illustrative example, we consider the potential en-
ergy employed in our previous work [1],

V (R) = Cwall e− R
Rwall − C3

R3 + R3
core

, (32)

with Cwall = 10, Rwall = 1, Rcore = 5, and C3 = 18 (all in
atomic units), and the reduced mass μ = m

2 , where m is
the mass of 88Sr. Although V (R) is barrierless, the effective
potential, Veff = V + �(�+1)

2μR2 , will have a centrifugal barrier for
0 < � � 557. We are interested in the case of a large barrier,
and thus a sufficiently high value for � will be used; namely,
� = 500. As depicted in Fig. 1, the effective potential has a
large centrifugal barrier and a sufficiently deep well at short
range holding a large number of shape resonances. Hence,
our example is a suitable representative for potentials which
possess ultranarrow shape resonances.

Figure 2 shows the energy dependence of δbg(E ) and
δres(E ), as well as βfull(E ). It is readily apparent in Fig. 2(a)
that the resonant phase shift is constant between resonances,
δres(E ) ≈ Nπ , with the integer N increasing by unity for each
resonance, as we discussed in Sec. III B.

The phase βfull(E ) has a smooth energy dependence, as
shown in Fig. 2(a), which explains the simple oscillatory
behavior of the scaled coefficients in Fig. 3(a). The un-
scaled coefficients follow the same oscillatory behavior, albeit
modulated by the strongly varying amplitude υ(E ) ≈ u(E ),
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FIG. 3. Energy dependence of the (a) scaled coefficients, (b) semilogarithmic plot of b̃, (c) phase shift δ�, and (d) resonance widths. The
vertical lines mark the positions of the resonances.

which is dominated by the quasiexponential behavior of the
outer envelope ρ(E ; Rin ). However, the scaling (19) was not
introduced to merely simplify the plot in Fig. 3(a). Indeed,
the scaling factor υ(E ) and the scaled coefficient c̃(E ) proved
instrumental in extracting the resonance width �, as discussed
in Sec. III C.

A semilogarithmic plot of b̃(E ) is shown in Fig. 3(b),
while the phase shift is depicted in Fig. 3(c). As dis-
cussed in Sec. III B, the nearly vanishing minima of b̃(E )
and hence of b(E ) signify resonances, whose positions are
marked by the vertical lines; the widths � are plotted in
Fig. 3(d).

A. Above-barrier resonances

For scattering energies just above the barrier, the situation
is similar to the case E < Etop; namely, a globally smooth en-
velope does not exist (� �= ρ). Hence, it is again advantageous

to combine locally adapted solutions for the inner and outer
regions. However, global smoothness will be recovered very
quickly when the energy increases above the barrier; this is
apparent in Fig. 4, which shows the behavior of the unscaled
coefficients (a, b, c) for energies below and above Etop. The
limits a(E ) ≈ b(E ) → 1 and c(E ) → 0, which correspond to
the globally smooth envelope � = ρ, are eventually attained at
high energies. We remark that the nonexistence of a globally
smooth envelope (� �= ρ) for energies just above the barrier
is closely related to quantum reflection [34–37], which only
vanishes at energies sufficiently high above the barrier (when
a globally smooth envelope does exist).

As is well known, shape resonances may occur for energies
just above the barrier. Such resonances are rather broad, and
are in stark contrast with the ultranarrow resonances described
in the previous section. We now discuss briefly an example of
a broad above-barrier resonance, which will shed more light
on ultranarrow resonances.
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FIG. 4. Energy dependence of the coefficients a(E ), b(E ), and
c(E ) in the vicinity of Etop, which is marked by the vertical dashed
line. As the energy E increases above the barrier, the coefficients
a(E ) and b(E ) converge to unity, while c(E ) converges to zero; these
limits are marked by horizontal dashed lines.

For E > Etop, a convenient choice for the matching point
is Rtop (the location of the barrier top). However, as the energy
increases above the barrier, the boundary between the inner
and outer regions becomes arbitrary; hence, the interpretation
of the outer-region contribution (23) as the background phase
shift loses its meaning. Thus, although our method is still
useful for computing the phase shift, the extraction of the
resonance width (and position) must be performed by fitting
the resonance line shape using the Breit-Wigner formula.
The fitting procedure must also include an energy-dependent
background, as it cannot be neglected in this case; indeed,
for broad resonances, δbg(E ) may vary significantly within
�E ∼ �.

Figure 5 shows the behavior of the phase shift δ(E ) and its
derivative δ̇(E ) for energies E near the top of the barrier. Two
resonances are readily apparent, namely, the first resonance
under the barrier, which is sufficiently narrow to be analyzed
as explained in Sec. III C, and a broad resonance above the
barrier. The latter is resolved by fitting its line shape, as
mentioned above. Specifically, we employ

δ̇fit(E ) = δ̇BW(E ) + δ̇
bg
fit (E ),

with δ̇BW(E ) given in Eq. (30) and a low-degree polynomial
for the background term δ̇

bg
fit (E ) to extract the resonance

position Eres = 1.84362 × 10−3 a.u. and width � = 5.628 ×
10−6 a.u.

We emphasize that the fitting procedure can only be used
when resonances are sufficiently broad for their line shapes
to be resolved via a numerical scan of E within �E ∼ �.
Although this is a trivial observation, we need to bring it to
the fore, because the direct fitting method cannot be used
when � is vanishingly small. Indeed, scanning through a
narrow energy window �E ∼ � in the vicinity of E = Eres

cannot be done if log10(Eres/�) > Ndigits, where Ndigits is the
number of digits available in machine arithmetic. This simple
limitation of computer arithmetic is a severe obstacle for
directly resolving ultranarrow resonances but is almost never
mentioned in the literature; a notable exception is Ref. [6].
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10
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dδ
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E

E
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FIG. 5. Energy dependence of the phase shift δ and its derivative
δ̇ for scattering energies near the top of the barrier, Etop (marked by
a vertical dashed line). The sharp feature is the first resonance below
the top of the barrier. The broad resonance above the barrier is also
visible (especially in the lower panel).

B. Accuracy test

In order to explore the numerical accuracy of our method,
we use the following result from Breit and Wigner [38]:

kres

∫ Rout

0
|ψres(R)|2dR ≈ 2

Eres

�
, (33)

which was employed in similar work on resonances [5,39–41].
In the equation above, Rout is the outermost turning point and
ψres(R) ≡ ψ (Eres; R) is the physical wave function normalized
to unit amplitude asymptotically, i.e., ψ ∼ sin (kR − �π

2 + δ),
which we now express in terms of the regular solution φ and
the Jost function F [42,43],

ψ (E ; R) = φ(E ; R)

F (E )
. (34)

The regular solution has the asymptotic behavior

φ(R)
R→∞−−−→ A sin

(
kR − �

π

2

)
+ B cos

(
kR − �

π

2

)
,

with B
A = tan δ and A − iB = F the Jost function. We recall

that the regular solution φ was employed in the linear decom-
position (6) of the outer envelope; the coefficients a, b, and c in
Eq. (6) obey the constraint ab = c2 + 1 [see Eq. (7), with W =
k]. Due to the constraint, only a and c appear in the phase shift
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expression (11), while b does not. However, the coefficient b
is directly related to the Jost function; specifically, it can be
shown that

b = A2 + B2 = |F |2.
We now make use of the constraint (7) yet again to write

1

|F |2 = 1

b
= a

1 + c2
,

which we substitute in Eq. (34) to obtain

|ψ (E ; R)|2 = a(E )

1 + c2(E )
φ2(E ; R).

For energies within a narrow window centered on Eres, we
use the approximations

a(E ) ≈ ares,

c(E ) ≈ ċres(E − Eres),

φ(E ; R) ≈ φ(Eres; R).

The latter holds for R throughout the inner region and most
of the barrier, and thus the probability density inside the inner
potential well reads

|ψ (E ; R)|2 ≈ ares

1 + ċ2
res(E − Eres )2

φ2
res(R),

where φres(R) ≡ φ(Eres; R). We now substitute |ċres| = 2
�

from
Eq. (31) and make use of the scaling (19) to recast the expres-
sion above such that the familiar Breit-Wigner expression, i.e.,
the Lorentzian energy dependence sharply peaked at E = Eres,
is made explicit for the wave function itself:

|ψ (E ; R)|2 ≈
�
2

(E − Eres )2 + (
�
2

)2 | ˙̃cres|−1φ2
res(R).

For E = Eres the equation above reads

|ψres(R)|2 ≈ 2

�
| ˙̃cres|−1φ2

res(R),

which we now use to rewrite Eq. (33),∫ Rout

0
φ2

res(R) dR ≈ | ˙̃cres|Eres

kres
. (35)

We emphasize that the approximations used above, as well
as in deriving the Breit-Wigner result (33), are excellent for
ultranarrow resonances. Indeed, Fig. 6 shows that Eq. (35)
is valid to high accuracy for the resonances located deep
below the top of the barrier, which demonstrates that our
numerical approach can reach a high level of precision. The
approximate nature of Eq. (35) is only visible for the highest
two resonances located just under the top of the barrier.
Finally, we remark that although Eq. (33) yields essentially
exact results for the widths of ultranarrow resonances, the res-
onantly enhanced amplitude of ψres(R) at short range cannot
be pinned down by scanning the energy directly when � ≪
Eres (see discussion at the end of Sec. IV A). Nevertheless,
even if the phase-amplitude approach is not employed, it does
suggest a simple remedy for finding the correct physical wave
function ψres when solving the radial Eq. (1) directly; namely,
the resonance position Eres is first found, and subsequently

0.0009 0.0012 0.0015 0.0018
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FIG. 6. The relative error |S − S̃|/S , where S is the integral on
the left-hand side of Eq. (35) and S̃ ≡ | ˙̃cres|Eres/kres is the right-hand
side. S̃ was obtained using the value of ˙̃c evaluated as described in
Sec. III C, while S = ∫

φ2 was computed by numerical quadrature.

the (unknown) phase shift δ is varied instead of the energy
(which is kept fixed). Thus, for E = Eres, the solution ψE

is initialized asymptotically using ψE (δ; R) = cos(δ) j�(kR) +
sin(δ)n�(kR) ≈ sin(kR − �π

2 + δ), and is propagated inward.
The phase shift δ is then adjusted to maximize the short-range
amplitude of ψE (δ; R).

V. SUMMARY AND OUTLOOK

The appeal of Milne’s phase-amplitude representation [2]
stems from the fact that it only requires the computation
of slowly varying phase and amplitude functions instead of
highly oscillatory wave functions. However, this advantage
cannot be fully exploited unless special algorithms are devised
for honing in on the smooth solution. For scattering problems,
an efficient method was developed by the present authors [1]
for computing the smooth amplitude in the asymptotic region.
On the other hand, for classically allowed regions of finite
extent, an optimization procedure is needed to find the smooth
amplitude; we have developed such an optimization algorithm
[33] for locally adapted solutions, which we employed in this
work.

We recently formulated an integral representation for phase
shifts [1] based on a phase-amplitude approach [2]; however,
our computational method was only applicable to the case
of a single (infinite) classically allowed region. In order to
generalize our previous work [1], we have now developed a
phase-amplitude approach for tackling scattering potentials
with a barrier. As shown in this article, our method is espe-
cially useful for energies below the top of the barrier, when
two disjoint classically allowed regions exist. In particular,
accurate values of resonance widths in the extreme regime
of ultranarrow resonances (� ≪ Eres) can be easily obtained.
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Numerical results are presented for a representative example
of an interaction potential. We also perform an accuracy test
which shows that our method is robust for very large barriers.

The approach presented here could be adapted to shape res-
onances in low energy scattering [44] and to ultralong-range
Rydberg molecular potentials [45,46], and may also prove
useful for analyzing threshold behavior [47,48] relevant to
ultracold molecules [49,50], especially when near-threshold
resonances exist [51–54]. Moreover, we are currently in-
vestigating the possibility of extending the phase-amplitude
formalism to coupled-channel problems which would allow
studies of Feshbach resonances [55,56].
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APPENDIX A: PROOF OF THE LINEAR INDEPENDENCE
OF THE FUNDAMENTAL SET OF SOLUTIONS {φ2, χ2, φχ}

In our previous work [1] it was shown that if φ and χ are
any two solutions of the radial Schrödinger Eq. (1), then φ2,
χ2, and φχ are particular solutions of the envelope equation.
Here we prove that the triplet {φ2, χ2, φχ} is a basis in the
three-dimensional space of solutions of Eq. (2), if φ and χ

are linearly independent; specifically, we show that the linear
combination

ρ = aφ2 + bχ2 + 2cφχ (A1)

vanishes if and only if a = b = c = 0. We first use the fact
that any solution of the envelope equation yields an invariant
[1],

Q = 1
2ρρ ′′ − Uρ2 − 1

4 (ρ ′)2, (A2)

and we employ Eq. (A1) to substitute ρ, ρ ′, and ρ ′′ in terms of
φ and χ in the equation above; a straightforward but tedious
manipulation yields

Q = (ab − c2)W 2, (A3)

where W is the Wronskian of φ and χ . If ρ = 0 in Eq. (A1),
we obtain Q = 0 trivially from Eq. (A2), while the linear
independence of φ and χ ensures W �= 0, and consequently
Eq. (A3) yields

ab = c2.

We now consider the two possible cases: c = 0 and c �=
0. In the first case we have c2 = ab = 0, which implies a =
0 or b = 0; the vanishing of the remaining coefficient (b or
a, respectively) follows from our assumption, i.e., ρ = 0 in
Eq. (A1). For the second case (c �= 0, and hence ab �= 0), we
substitute c = sgn(c)

√
ab in Eq. (6), and we obtain

ρ = ±�2,

where � is the linear combination

� = φ
√

|a| ± χ sgn(c)
√

|b|.
In the two expressions above, the algebraic sign (±) is
sgn(a) = sgn(b). Finally, ρ = 0 in Eq. (A1) yields � = 0, and

the equation above implies a = b = 0, because φ and χ are
linearly independent. This contradicts the assumption ab �= 0
in the second case, which completes our proof. Thus, Eq. (A1)
with arbitrary constants a, b, and c can indeed be regarded as
the general solution of the envelope equation.

APPENDIX B: EXTENDING MILNE’S PHASE OUTSIDE
ITS DOMAIN OF SMOOTHNESS

In this Appendix we derive a formula for extending the
outer phase θ into the inner region. First, the inward propa-
gation of θ through the outer region (including the barrier) is
accomplished using the numerical method developed in our
previous work [1]. Next, we use Eqs. (5) and (6) to obtain
θ (R) inside the inner region (0 < R < Rin),

θ∗ − θ (R) =
∫ Rin

R

k

ρ(r)
dr = k

∫ Rin

R

dr

aφ2 + bχ2 + 2cφχ
,

where θ∗ ≡ θ (Rin) is known. As explained in Sec. II A, the
integral cannot be handled numerically inside the inner region;
instead, we tackle it formally. Making use of the Wronskian
W = φ′χ − φχ ′ �= 0, which is independent of r, we rewrite
the integral above,

θ∗ − θ (R) = k

W

∫ Rin

R

φ′χ − φχ ′

aφ2 + bχ2 + 2cφχ
dr.

Next, we define z(r) ≡ φ(r)
χ (r) and we change the integration

variable from r to z, but we do so only after the inner region
is partitioned in subintervals delimited by the nodes of χ (r),
such that z(r) is a one-to-one mapping inside each interval.
The change of variable yields

θ∗ − θ (R) = k
∫ Rn

R

dr

ρ(r)
+ k

N∗∑
j=n

∫ Rj+1

Rj

dr

ρ(r)

= k

W

( ∫ ∞

z(R)

dz

az2 + 2cz + b

+ (N∗ − n)
∫ +∞

−∞

dz

az2 + 2cz + b

+
∫ z∗

−∞

dz

az2 + 2cz + b

)
, (B1)

where R1, R2, . . . , RN∗ are the nodes of χ inside the inner
region, while R0 = 0 and RN∗+1 = Rin are its boundaries. The
node Rn > R is the node closest to R inside the integration
domain [R, Rin]. The upper limit of the last integral is z∗ ≡
φ(Rin )
χ (Rin ) . The new integration variable z in Eq. (B1) makes it clear
that, except for the first and last interval, all other (N∗ − n)
intervals give identical contributions.

Making use of the constraint (7), the integral appearing
repeatedly in Eq. (B1) takes a simple form,

k

W

∫
dz

az2 + 2cz + b
= arctan

(
W

k
(az + c)

)
,

which we now evaluate for each interval. The contribution of
the first interval is

k

W

∫ ∞

z(R)

dz

az2 + b + 2cz
= π

2
− arctan

(
W

k
[a z(R) + c]

)
,
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while the last interval yields

k

W

∫ z∗

−∞

dz

az2 + b + 2cz
= arctan

(
W

k
(az∗ + c)

)
+ π

2
.

As mentioned above, the (N∗ − n) remaining intervals give
identical contributions; namely, for n � j � N∗ − 1, we have

k
∫ Rj+1

Rj

dr

ρ(r)
= k

W

∫ +∞

−∞

dz

az2 + b + 2cz
= π.

Finally, we add the contributions from all intervals to
obtain the outer phase θ inside the inner region,

θ (R) = arctan

(
W

k
[a z(R) + c]

)
,

− arctan

(
W

k
(c + az∗)

)
+ θ∗ − π (N∗ − n + 1).

(B2)

This result is of key importance, as it yields the scattering
phase shift (see Sec. II D).

APPENDIX C: CHOOSING THE LOCATION OF THE
MATCHING POINT

For energies above the barrier, Rtop is a convenient location
for the matching point, while for scattering energies below
the top of the barrier the matching conditions are imposed at
Rin. However, for E < Etop, the matching point can be placed
anywhere within the classically forbidden region under the
barrier, despite the fact that in Sec. II C we argued that the
matching point be located at the turning point Rin (see Fig. 1).
Rin is a necessary choice for the matching point only if the
phase-amplitude approach is restricted to the outer region (see
Sec. II C). Indeed, if the phase-amplitude method is also used
in the inner region, the matching point need no longer be
kept at (or near) Rin. The freedom to relax the location of the
matching point stems from the fact that the inner solutions φ

and χ can be parametrized in terms of the inner envelope �

and phase β, as shown in Sec. II E. Accordingly, the solutions
(14) of the the matching Eq. (8) are expressed entirely in terms
of phase-amplitude quantities and remain highly accurate if
the matching point (which we now denote R∗) is moved
between Rin and Rout (the outermost turning point).

Although the scaled coefficients introduced in Eq. (20) are
formally independent of the matching point, their simplified
expressions (21) are no longer independent of R∗. To clar-
ify this aspect, we now analyze the R∗ dependence of the
inner-region phase βfull in Eq. (22) to show that for energies
sufficiently lower than Etop the phase βfull(R∗) is practically
independent of the matching point. Specifically, we make use
of the definition (15) to evaluate the derivative η′ = dη/dR∗,
while from Eq. (12) we have β ′ = q/�. Taking advantage
of the invariant (A2) with Q = q2 and Q = k2 for � and ρ,
respectively, we obtain

β ′
full = β ′ + η′ = k2�

ρ2q
sin2 η,

which is vanishingly small for E sufficiently lower than Etop.
Indeed, if R∗ = Rin, we have ρ(R∗) ≫ 1, which ensures β ′ +
η′ ≈ 0. If R∗ is shifted away from Rin, then � increases while
η and ρ decrease; from Eq. (15) we have η ∼ 1

�
when � ≫ 1,

and we find

β ′
full = β ′ + η′ ∼ k

ρ2�
≈ 0.

Therefore, we have

βfull(R∗) = β(R∗) + η(R∗) ≈ const,

which justifies our interpretation of β + η = βfull as the full
phase accumulated at short range, including the contribution
from the barrier region; indeed, when R∗ is near Rout, we have
η ≈ 0, and thus

βfull(R∗) ≈ β(Rout), for Rin � R∗ � Rout.

Finally, we remark that R∗ = Rtop is a convenient choice
for the matching point for all energies (below and above
the barrier). In general, the matching point can be energy
dependent, e.g., the turning point Rin(E ). Therefore, in order
to ensure the quantities β, η, u, and ε introduced in Sec. II E
have a well-defined energy dependence, the matching point
R∗(E ) must be chosen such that it is a well-behaved function
of energy.
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