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Low-energy elastic scattering of positrons by O2
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We employed the method of continued fractions in conjunction with the positron correlation polarization
potential model with different levels of polarization to calculate the elastic integral and differential cross sections
for positron scattering by O2 molecules. We show how the addition of higher-order terms in the polarization
interaction is necessary in order to achieve convergence of the scattering potential. Also, we present the effect that
such terms have over the integral cross sections, comparing with results of previous studies. When convergence
of the scattering potential is attained, the resulting cross sections fairly agree with the most recent total cross
section measurements up to the positronium formation threshold and moreover exhibit good agreement with the
available experimental quasielastic differential cross sections.
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I. INTRODUCTION AND MOTIVATION

The study of positron collisions with atoms and molecules
constitutes a major step towards the construction of a solid
understanding of how matter and antimatter species interact
in the energy range associated to chemical reactions [1].

Nowadays, there is a set of total cross sections (TCS)
reported for several atomic and molecular targets. There is
reasonable agreement that the TCS for noble gases are well es-
tablished, mainly in the low-energy regime [2]. The situation
is rather different regarding the scattering by molecules, even
the simplest ones like the diatomic, mainly for energies below
the positronium formation threshold. This point, as we wish
to argue in the following, is particularly critical for molecular
oxygen.

The first TCS data for positron scattering by O2 was
reported by Coleman et al. [3] in the 1970s. Later, in the
beginning of the 1980s, Charlton et al. [4,5] presented two
sets of TCS covering high to low energies. Before the end
of the decade, two more sets of TCS had been measured
by Katayama et al. [6] and Dababneh et al. [7]. Except for
Charlton et al. [4] and Katayama et al. [6], all other authors
presented TCS for energies below the positronium formation
threshold (5.4 eV [8]). The first theoretical calculation, for
energies below 10 eV, was performed by Mukherjee and
Ghosh [9] using the positron correlation polarization poten-
tial (PCOP) [10,11]. In 1999, Przybyla et al. [12] reported
quasielastic differential cross sections (DCS). After that, a
set of TCS was measured by Marler [13], resolving the
positronium formation and direct ionization cross sections of
O2 by positron impact. The most recent study on positron-
O2 is the one presented by Chiari et al. [14], where the
authors presented TCS data measured with the Trento ap-
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paratus compared to theoretical calculations performed with
the independent atom model combined with the screening
corrected additivity rule, the IAM-SCAR method.

From Fig. 2 of the paper of Chiari et al. [14], we can
see that, for energies below 10 eV, the measurements of
Charton et al. [5] and Dababneh et al. [7] are well converged
among each other and the data of Coleman et al. [3] and
Marler [13] have similar magnitude but are a little bit higher
than those of Charlton et al. [5] and Dababneh et al. [7]. The
measurements of Chiari et al. [14] are significantly higher
in magnitude towards lower energies than all other previous
data and seem to be qualitatively different from all other
experimental results, with exception when compared to the
TCS of Marler [13] and Coleman et al. [3]. The theoretical
calculations of Mukherjee and Ghosh [9] support the data of
Charlton et al. [5] and Dababneh et al. [7] up to the positro-
nium formation threshold. On the other hand, the results
obtained by the IAM-SCAR method do not uphold the Trento
TCS, particularly below 10 eV.

Above the opening of the inelastic channels, the absorption
potential calculations present relatively good agreement with
the available total cross section measurements [15–18]. Such
agreement is significant above 100 eV, which leaves for the
theoretical approaches some work in refining the calculated
cross sections between 10 and 100 eV. It is desirable to ex-
plicitly determine the inelastic cross sections experimentally
and theoretically, but in the absence of such calculations the
absorption potential formulation seems to be doing notable
work in the representation of the TCS in this energy range.
Some adjustments may be necessary in order to represent
the TCS more accurately and more studies of this nature
shall bring clarity to the problem. Though the energy range
above the opening of the inelastic channels is well covered
theoretically and experimentally, it is important to note that
the elastic interaction is almost unexplored, particularly from
a theoretical point of view.
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Given this scenario, it seems reasonable to develop
more theoretical investigations on low-energy positron-O2

cross sections. Motivated by the works of Buckingham and
Orr [19,20], Gianturco et al. [21], Reid et al. [22], and Franz
et al. [23,24], we examine how the inclusion of higher-order
correction terms in the polarization component of the PCOP
formulation affects the scattering potential and the integral
and differential elastic cross sections for this target.

This paper is organized as follows. In Sec. II we provide a
brief revision of the method of continued fractions (MCF), the
details about the construction of the interaction potential, the
numerical details of the calculations, and a brief discussion
about the O2 polarizabilities; in Sec. III we show and discuss
the results obtained. Finally, in Sec. IV we state our conclu-
sions and final comments. We also review the polarization
interaction terms in the Appendix A.

II. THEORY

A. Method of continued fractions for scattering calculations

In the static plus correlation-polarization interaction level,
the scattering potential is defined as

V (�r) = Vst (�r) + Vcp(�r), (1)

where Vst (�r) and Vcp(�r) are, respectively, the static and
correlation-polarization potentials, to be defined later in the
text. Given the potential in Eq. (1) the Lippmann-Schwinger
equation (we drop the�r explicit dependence for simplicity)

|ψ〉 = |φ〉 + G0V |ψ〉 (2)

can be numerically solved. In order to perform such a task,
we employed the method of continued fractions (MCF) as
proposed by Horáček and Sasakawa [25], and implemented
by Lee et al. [26,27] and Ribeiro et al. [28]. This is a method
in which the potential is weakened iteratively, until it becomes
negligible in the scattering equation.

Considering that the K matrix in the first Born approxima-
tion is not equal to zero, we define the weakened potential as

V (1) = V − V |φ〉 〈φ|V

〈φ|V |φ〉 , (3)

and then rearrange the Eq. (2) as a function of V (1). Therefore,
the solution of Eq. (2) can be written as

|ψ〉 = |φ〉 + (1 − G0V
(1) )−1G0V |φ〉 〈φ|V |ψ〉

〈φ|V |φ〉 . (4)

From Eq. (4) we identify that the two new functions,

|φ1〉 = G0V |φ〉 (5)

and

|ψ1〉 = (1 − G0V
(1) )−1 |φ1〉 , (6)

lead to

|ψ〉 = |φ〉 + |ψ1〉 〈φ|V |ψ〉
〈φ|V |φ〉 . (7)

It is easy to verify (operate 〈φ|V and rearrange) that the K
matrix is given by

K = 〈φ|V |φ〉2

〈φ|V |φ〉 − 〈φ|V |ψ1〉 , (8)

and thus we only need to solve Eq. (6) to obtain the elements
of the K matrix. The reader may observe that if |ψ1〉 ≈ |φ1〉
(i.e., V (1) ≈ 0), the K matrix is completely determined. If
these functions are considerably different, then one should
proceed to obtain |ψ1〉. We notice that Eq. (6) is actually
the Lippmann-Schwinger equation for the potential V (1) and
solution |ψ1〉

|ψ1〉 = |φ1〉 + G0V
(1) |ψ1〉 . (9)

Thus we follow the very same steps as before to solve it. Such
procedure brings us the second-order weakened potential

V (2) = V (1) − V (1) |φ1〉 〈φ1|V (1)

〈φ1|V (1) |φ1〉 , (10)

and the functions

|φ2〉 = G0V
(1) |φ1〉, (11)

|ψ2〉 = (1 − G0V
(2) )−1 |φ2〉. (12)

The K matrix now reads

K = 〈φ|V |φ〉2

〈φ|V |φ〉 − 〈φ1|V (1)|φ1〉2

〈φ1|V (1)|φ1〉−〈φ1|V (1)|ψ2〉
. (13)

Again, if |ψ2〉 ≈ |φ2〉, then the K matrix is fully determined.
If not, then |ψ2〉 should be determined from Eq. (12).

This procedure can be repeated as many times as necessary.
Indeed, after n iterations we obtain

|ψn〉 ≈ |φn〉 , (14)

and then we can construct the scattering wave function and
the K matrix recursively. This method solves the scattering
equation with the caution to observe that the obtained solution
is approximate as it is the scattering potential.

B. Interaction potential

As stated above, the scattering potential is composed by the
static potential Vst (�r) and the correlation-polarization potential
Vcp(�r). In our scattering codes, the static potential is defined
in the usual way, which is

Vst (�r) = −
∑

i

∫
φ∗

i (�ri)φi(�ri)

|�ri −�r| d�ri +
∑

j

Z j

|�Rj −�r| , (15)

where �ri and �Rj represent the electronic and nuclear coordi-
nates, respectively. So, a good representation of the molecular
ground-state orbitals φi(�ri) is fundamental for the determina-
tion of the electronic term of the static potential, which can
be verified through the electrostatic moments of the molecule,
for instance.

The correlation-polarization term is obtained with the
PCOP model, as described by Jain [10,11], however, with a
small modification in the spherical term of the polarization

022703-2



LOW-ENERGY ELASTIC SCATTERING OF POSITRONS BY … PHYSICAL REVIEW A 99, 022703 (2019)

TABLE I. Oxygen Gaussian basis set used to construct the O2 HF
wave function. This set is a slight modification of the SVP+Rydberg
basis of Dunning and Hay [29].

Type Exponent Coefficient

S 7817.0 0.0011760
1176.0 0.0089680
273.20 0.0428680
81.170 0.1439300
27.180 0.3556300
9.5320 0.4612480
3.4140 0.1402060

S 9.5320 −0.1541530
0.9398 1.0569140

S 0.2846 1.0000000
S 0.0320 1.0000000
S 0.0150 1.0000000
S 0.0070 1.0000000

P 35.180 0.0195800
7.9040 0.1242000
2.3050 0.3947140
0.7171 0.6273760

P 0.2137 1.0000000
P 0.0280 1.0000000
P 0.0100 1.0000000
D 0.8500 1.0000000

part. Following Franz et al. [23,24], we consider the polariza-
tion potential given by

Vpol(�r) = − α0

2r4
− α2

2r4
P2(cos θ ) − αQ

2r6
+ B

2r7
− γ

24r8
, (16)

containing the usual α0 and α2 contributions, but also the
quadrupole polarization αQ and the first (B) and second (γ )
hyperpolarizabilities, described in the Appendix A. These
polarizabilities and hyperpolarizabilities enter our scattering
calculations as external parameters, so we can employ empir-
ical or theoretical data freely.

C. Numerical details

For the representation of the ground state of the O2

molecule, we employed a Hartree-Fock (HF) wave function
constructed with the basis set given in Table I. This basis set
is a slight modification of the SVP+Rydberg basis of Dunning
and Hay [29], which can be obtained from the Basis Set
Exchange database [30,31]. The equilibrium internuclear dis-
tance is O − O(re) = 2.282a0, as determined by microwave
spectroscopy [32].

The electronic orbitals generated by the HF calculation are
expanded in the spherical harmonics basis with lmax = 40.
With these orbitals the electrostatic potential given in Eq. (15)
is calculated. The accuracy of this potential is verified through
the determination of the electrostatic moments. Nonetheless,
the quadrupole, hexadecapole, and higher moments for l even
are presented, and can be compared with reference values.
In Table II, we compare the obtained electrostatic moments

TABLE II. Electrostatic moments of O2, compared with the
theoretical values of Bartolomei et al. [33] and experimental data
of Cohen and Birnbaum [34] and Buckingham et al. [35]; all values
given in atomic units.

Multipole moments This work Calc. [33] Expt. [34]a [35]b

Q2 −0.3338 −0.2251 −0.25a;−0.3 ± 0.1b

Q4 4.7269 4.4821
Q6 20.5468 20.287
Q8 59.2943 50.138

for O2 with the values reported by Bartolomei et al. [33]. All
calculations, including the scattering ones, were performed on
a radial grid with 800 points, up to 125.35a0.

The comparison of the obtained electrostatic moments
shows the adequacy of the employed wave function in the
description of the ground state of the O2 molecule. As stated
above, this is particularly important for the correct calculation
of the PCOP function and consequently for the determination
of the matching radius. We then proceeded to the determina-
tion of the correlation-polarization potential, employing the
PCOP function for the correlation part and Eq. (16) for the
polarization. The values of the dipole polarizabilities em-
ployed in the present work are the frequency corrected values
attributed to Hettema by Spelsberg and Meyer [36]. These
values, α0 = 10.60 a.u. and α2 = 4.77 a.u., are fairly close
to those calculated by Medved’ et al. [37] on standard cou-
pled cluster CCSD and CCSD(T) levels. For the quadrupole
polarizability and first hyperpolarizability we have taken the
values αQ = 60.452 a.u. and B = −118.26 a.u., both derived
from the CASPT2/d-aug-cc-pVTZ calculations by North [38].
This calculation level was chosen because it reproduces more
closely the values of α0 and α2 adopted here. It must be
noticed that this quadrupole polarizability agrees with the
values recommended by Bartolomei et al. [33] and Hettema
et al. [39]. Finally, we considered γ = 962.0 a.u. for the sec-
ond hyperpolarizability, as recommended by the experiment
of Shelton [40] and by the calculation of Calamicini et al. [41].

Reviewing the literature on positron scattering by atoms
and molecules, it appears that only Gianturco et al. [21], Reid
et al. [22], and Franz et al. [23,24] considered the effects
of the quadrupole polarizability and the first and second hy-
perpolarizabilities on the scattering cross sections. Gianturco
et al. [21] calculated the integral and differential cross sections
for positrons colliding with noble gas atoms, considering
the DFTCP model as correlation-polarization interaction, and
added the α0 = αD, αQ, and αO terms in the polarization
component. Reid et al. [22] did the same for molecular hy-
drogen, but considering a different correlation scheme. Franz
et al. [24] included the first and second hyperpolarizabilities
to the polarization interaction and constructed a correlation-
polarization potential with four different correlation models.
From our point of view, the four correlation-polarization mod-
els lead to similar cross sections with subtle quantitative dif-
ferences. Notwithstanding, these investigations did not clarify
the effect of successive polarization enhancements over the
convergence of the scattering potential.

In the present work, we study the effects of improving the
polarization potential with higher orders of polarizability and
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TABLE III. Nomenclature adopted in this work for the polariza-
tion potential corrections and the respective matching radius rc, given
in atomic units.

Nomenclature Polarization potential rc

PCOP − α0

2r4
− α2

2r4
P2(cos θ ) 2.54

PQ − α0

2r4
− α2

2r4
P2(cos θ ) − αQ

2r6
3.02

PB − α0

2r4
− α2

2r4
P2(cos θ ) − αQ

2r6
+ B

2r7
3.20

PG − α0

2r4
− α2

2r4
P2(cos θ ) − αQ

2r6
+ B

2r7
− γ

24r8
3.23

hyperpolarizability for positron scattering with O2 molecules.
In this sense, we denominate four different levels of polariza-
tion interaction, as stated in Table III. It seems reasonable to
assume that the successive inclusion of correction terms in the
polarization component enlarges the values of the matching
radius since B < 0. The value of rc must be consistent with the
apparent size of the molecule, as observed by Franz et al. [23].
Since the transversal van der Waals radius of the O2 molecule
is 3.55a0 [42] and the PG polarization leads to rc = 3.23a0,
we can conclude that the correlation potential acts only inside
the electronic cloud region. This means that the inclusion
of such terms in the polarization potential does not imply a
nonphysical size of the O2 molecule. In Fig. 1 we present the
spherical term of the scattering potential, where the effects of
each polarization level can be visually evaluated together with
the electrostatic potential.

D. Comments about the polarizability

We consider important to discuss, even briefly, the values
of the dipole polarizability of the O2 molecule found in
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FIG. 1. Spherical components of the scattering potential; see
Eq. (1). Legends are as follows: dashed-double-dotted line, static;
dashed-dotted line, PCOP; dotted line, PQ; dashed line, PB; solid
line, PG. The inset shows how different polarization potential affects
the matching radius (rc). Note that the solid and dashed lines are
practically merged.

scientific articles and presented in previous works on positron
scattering by this molecule.

First, Chiari et al. [14] states that the dipole polarizability
of the O2 molecule is α0 = 15.73 a.u., which is reiterated by
Brunger et al. [43]. Many values are available in literature for
such polarizability [33,36–38,44–46]; however, none of them
are close to the one used by Chiari et al. [14] and Brunger
et al. [43]. Actually, the experimental value derived from the
accurate refraction index measured by Newel and Baird [47]
is α0 = 10.67 a.u., while the value obtained by Bridge and
Buckingham [46] is α0 = 10.78 a.u. We note also that the
value referenced by Chiari et al. [14] was not employed in
the scattering calculations within the IAM-SCAR formalism,
as the polarization interaction for positrons colliding with O2

molecules was considered for isolated oxygen atoms, consis-
tent with the central idea of the independent atom model.

Verifying the values available in the literature for the po-
larizability of the O2 molecule, it seems that Chiari et al. [14]
and Brunger et al. [43] took the αzz component of the dipole
polarizability tensor as the spherical symmetric dipole polar-
izability, namely αD or α0. Of course, since αzz is a component
of the dipole polarizability tensor, it can be formally regarded
as a dipole polarizability. Nonetheless, it is customary to
denote αD = α0 = α, and since atoms and molecules respond
in all directions when subjected to the presence of an external
electric field α2 must be considered as well.

It is also noteworthy that the calculations of Mukherjee
and Ghosh [9] employed the spherical polarizability α0 =
10.9 a.u. to the O2 molecule, which is very close to the
experimental value of Bridge and Buckingham [46], fairly
close to the experimental value of Newel and Baird [47], and
just a little higher than the value applied in the present work.
At that time the TCS available for positron scattering with
O2 molecules were those of Coleman et al. [3], Katayama
et al. [6], Dababneh et al. [7], and Charlton et al. [5]. The
correlation polarization adopted by Mukherjee and Ghosh [9]
reproduced the TCS of Dababneh et al. [7] and Charlton
et al. [5] reasonably well. We do not consider the slight
difference between the polarizability employed by Mukherjee
and Ghosh [9] and by us as a hurdle to compare the results;
however, the use of α0 = 15.73 a.u., as suggested by Chiari
et al. [14] and Brunger et al. [43], would lead to elastic integral
cross sections too large and improper in order to compare with
other calculations and experimental data.

III. RESULTS AND DISCUSSION

In this section we present and discuss our results. We start
with the elastic integral cross section for energies below 5 eV,
since the positronium formation threshold is between 5 and
6 eV, and we report elastic cross sections only. For the sake of
completeness we provide the elastic integral cross section up
to 10 eV in Table IV. These results are shown and compared
with theoretical and experimental data in Fig. 2.

When we consider the PCOP level of polarization with
typical values for α0 (10.9 a.u. in Mukherjee and Ghosh [9]
and 10.6 a.u. in our calculation), the obtained integral cross
sections clearly describe the experimental data of Dababneh
et al. [7] until 3 eV. There is qualitative and some quantitative
agreement with Charlton et al. [5] up to 2.5 eV. The present
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TABLE IV. Calculated elastic integral cross sections from 0.1 to 10.0 eV.

Energy (eV) ICS (10−16 cm2) Energy (eV) ICS (10−16 cm2) Energy (eV) ICS (10−16 cm2)

0.1 39.4833 1.0 5.60022 3.0 3.74951
0.2 24.8098 1.1 5.23194 4.0 3.59581
0.3 17.5770 1.2 4.95684 5.0 3.47944
0.4 13.6484 1.3 4.74589 6.0 3.41210
0.5 10.6920 1.4 4.57782 6.75 3.37907
0.6 8.87582 1.5 4.44137 7.0 3.37109
0.7 7.70888 1.7 4.24748 8.0 3.34368
0.8 6.73342 2.0 4.06204 9.0 3.32511
0.9 6.06203 2.5 3.84749 10.0 3.31180

results and the results of Mukherjee and Ghosh [9] agree fairly
well in this level of polarization, as it should be. Although
we considered different wave functions, polarizabilities, and
theoretical scattering methodology, we can observe the dis-
tinct minimum in the cross section around 0.8 eV as observed
Mukherjee and Ghosh [9], which can be attributed to over-
correlation or, as we argue next, to underpolarization. Also,
as we considered different polarizabilities and a different
wave function from Mukherjee and Ghosh [9] it is expected
that our results do not match precisely, even considering that
we employed the same correlation-polarization model. The
wave functions are somewhat different, as it can be observed
in the quadrupole moments; see Table II. This significantly
alters the electronic density, that is an important parameter
for the calculation of the PCOP function. Still, the agreement
between our calculation and theirs is satisfactory and illus-
trates the difficulty of the PCOP formulation in describing
the intermediate range polarization. This question was briefly
discussed by Gianturco et al. [21], and it is a relevant issue
in the scattering of positrons with molecules that do not
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FIG. 2. Elastic integral cross section showing the contribution
of each correction term present in the polarization potential [see
Eq. (16)]. Theoretical approaches: solid line, PG; dashed line, PB;
dotted line, PQ; dashed-dotted line, PCOP; dashed-double-dotted
line, IAM-SCAR of Chiari et al. [14]. Experimental data: solid
circles, Chiari et al. [14]; triangles, Charlton et al. [5]; inverted
triangles, Dababneh et al. [7]; diamonds: Marler [13]; squares,
Coleman et al. [3].

present permanent electric dipole, since the dipole interaction
dominates at the intermediate and long range, overshadow-
ing the underpolarization problem. This was anticipated in
previous works where the PCOP model was employed to
calculate the cross sections for positron collisions with polar
molecules [48]. Nevertheless, even for such molecules the
polarization potential must be considered in full form, or at
least until convergence of the integral and differential cross
sections is obtained.

From Fig. 2, we see that the correction associated to
the quadrupole polarizability (PQ) introduces significant im-
provement in the magnitude of the ICS. The experimental data
of Dababneh et al. [7] could possibly suggest the existence
of a minimum below 1 eV, corroborated by the present and
previous PCOP results, but the inclusion of the quadrupole
polarizability correction eliminates this effect. Hence one can
state that the appearance of such minimum is partly due
to the lack of polarization of the molecule. In this energy
range, the PQ model presents reasonable agreement with the
data of Coleman et al. [3] and of Marler [13]. Also, the
PQ presents qualitative agreement with the data of Chiari
et al. [14]; however, the magnitude of the cross sections
concur only marginally. We expect that an angular correction
for this TCS set [14] would make this comparison even worse
for energies greater than 0.5 eV, since some enhancement
in the TCS is expected making the comparison even more
divergent.

The inclusion of the first hyperpolarizability correction
(PB) raises the magnitude of the cross section leading to the
agreement with the data of Chiari et al. [14] for energies above
1 eV. The second hyperpolarizability correction (PG), on the
other side, becomes practically indistinguishable from the PB
result. This suggests that convergence has been achieved in
the polarization corrections, and higher-order corrections to
the polarization interaction of positrons with O2 molecules
are unnecessary. The same feature can be observed in Fig. 1,
which demonstrates that the PB and PG approaches are well
converged with each other.

It is noteworthy that we compare our PG with the uncor-
rected TCS of Chiari et al. [14]. Some corrections for those
data were obtained from the IAM-SCAR calculated DCS,
indicating a 6% enhancement on the TCS for 1 eV positrons.
We expect that this correction becomes more significant for
lower incident energy positrons, which can potentially im-
prove the agreement between our results and the data of Chiari
et al. [14].
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The observed enhancement of the cross sections calcu-
lated with the PG relative to those obtained with PCOP is
not exclusively due to the increase of rc, as the inclusion
of the higher-order polarization terms implies in a different
description of the intermediate range, i.e., the region right
after the molecular border and before the asymptotic region.
The correct description of interaction potential in this region is
of fundamental importance for determining the cross sections
at lower energies. This observation can be drawn when we
compare the matching radius obtained by Mukherjee and
Ghosh [9] with the matching radius obtained in the present
work for each polarization level. Even their matching radius
being larger the reported cross section is still lower than our
PCOP in the 0 to 2 eV energy range, and then becomes a little
bit larger. Therefore, the effect of the increase of rc alone is
not responsible for the correct description of the magnitude
of the integral cross sections. There is a compromise between
the effective size of the molecule, which is indicated by rc,
and the intermediate range polarization, which depends
mainly on the adoption of the r−4, r−6, and r−7 polarization
terms. For the purpose of obtaining physically meaningful
scattering cross sections with the approximations made in this
and similar works, consistent values for αQ, B, and γ must be
known.

Besides that, the correlation part of the interaction is very
important and should be studied carefully. In order to evaluate
how much the correlation affects the cross sections we set it
as zero for r < rc, with rc still being defined with the aid of
the PCOP model. We observed that the cross sections became
very different from those that we report here. Particularly, the
integral cross sections present a very distinct minimum and
the magnitudes are not even close to any experimental data set
or theoretical calculations. The differential cross sections for
4 eV positron collisions became very divergent qualitatively
from the results that we present below, with a sensible drop at
lower angles and a displacement of the minimum of the DCS
by approximately 30◦ to lower angles. This is an interesting
result, since it gives us some intuition about the behavior
of the cross sections as a function of the correlation part
of the total interaction, and we will discuss it further in the
presentation of the differential cross sections.

A. Quasielastic differential cross sections

Our experience on the field of positron collisions with
molecules taught us that the ultimate test for polarization-
correlation models is the comparison between theoretical and
experimental differential cross sections, since it is possible
to obtain very similar integral cross sections with somewhat
distinct differential cross sections. Also, we noticed that the
correlation and polarization effects directly alter the qualita-
tive and quantitative aspects of the cross sections for low and
intermediate angles.

In order to visualize how the quadrupole polarizability and
hyperpolarizability terms influence the angular dispersion of
the scattered positrons, we present the elastic differential cross
sections for some selected energies. These energies have been
chosen in order to match the experimental relative differential
cross section data measured by Przybyla et al. [12]. It is
interesting to note that, as far as we know, no theoretical study
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FIG. 3. Differential cross section for 4.0 eV. Legends are as
follows: solid line, PG; dashed line, PB; dotted line, PQ; dashed-
dotted line, PCOP. Experimental data from Przybyla et al. [12].

has been reported concerning the elastic differential cross
sections of positron scattering by O2 molecules.

Figures 3 to 8 present the obtained elastic differential cross
sections for PG and PCOP polarization levels compared to
the available experimental data. For comparison between the
calculated and the relative DCS measurements, the experi-
mental data have been normalized at 120◦. The reason for
such a choice lies in the fact that the DCS at large angles
is dominated by the static potential (see Fig. 7a of [49] for
example). Choosing such a normalization scheme, we have a
fair way to compare the effects in the angular distribution of
the scattered positrons in both PCOP and PG formulations.

Likewise, we can clearly see that the differential cross
sections are convergent with one another as the positron
energy rises. This is expected, since the positron will become
less and less sensible to polarization and correlation effects as
its energy becomes greater. All these theoretical cross sections
are well converged in partial wave expansion up to lmax = 14
for high energies; however, for low energies, convergence
was achieved with lmax = 8. Also, the obtained K matrix
converged within six iterations with �δl = 10−5 rad, which
is considered sufficient in order to obtain consistent cross
sections with the desired numerical precision.

The agreement of the DCS reported here and the exper-
imental data of Przybyla [12] for 4 eV is satisfactory. The
cross sections clearly present a minimum, which is exper-
imentally located somewhere between 45◦ and 60◦. Except
for PCOP, all of the polarization levels presented here were
able to correctly represent the position of such minimum;
however, fully quantitative agreement between the theoretical
and experimental cross sections is not found at this energy.
For the PCOP approach, it remains clear that lack of polar-
ization prevents the cross sections from achieving the correct
magnitude (evaluated through the integral cross sections; see
Fig. 2). As for the PG approach, the correlation part may
be stronger than it really is in the physical system; hence
revisiting the correlation model can be necessary for obtaining
cross sections at lower energies. Second, for higher and lower
angles the agreement between the calculated differential cross
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FIG. 4. Differential cross section for 6.75 eV. Legends are the
same as Fig. 3.

sections is better with PG than with PCOP polarization level,
independent of the adopted normalization criterium of the
experimental data. So, it is sufficiently clear that the role of
the polarization interaction part in the intermediate region
is fundamental in order to achieve correspondence between
calculated and measured cross sections. Of course, since the
experimental data were recorded in arbitrary units, demanding
normalization of the values for comparison, the quantitative
agreement suggested by Fig. 3 may be artificial. However, we
believe that the magnitude of the cross sections are correct
since the integral cross section for this particular energy fairly
agrees with the TCS data of Chiari et al. [14], and the available
TCS data for this energy are not far from the most recent
measurements.

Figure 4 presents the calculated differential cross sections
for 6.75 eV positrons. Since the available experimental differ-
ential cross sections are quasielastic, our calculations can be
compared directly with such data. We see that the agreement
between our present results and the measurements of Przybyla
et al. [12] is even better for this energy, as expected. It is so
because the effects of the correlation part of the interaction
become less significant as the projectile energy increases.

10-2

10-1

100

101

 0  20  40  60  80  100  120  140  160  180

D
C

S
 (

10
-1

6 cm
2 )

angle (deg)

PG
PB
PQ

PCOP
Przybyla

FIG. 5. Differential cross section for 10.0 eV. Legends are the
same as Fig. 3.
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FIG. 6. Differential cross section for 20.0 eV. Legends are the
same as Fig. 3.

Notwithstanding, the polarization part still has an important
role in the determination of the qualitative and quantitative
behavior of the differential cross sections, as we can see
when comparing the results obtained within the PCOP and
PG levels of polarization. The analysis of the experimental
curve could indicate some kind of structure in this differential
cross section around 67.5◦, which is in contradiction with all
the results that we obtained. So, in this angular region, the
differential cross section is essentially smooth as it is observed
systematically for all calculated elastic differential cross sec-
tions presented in this work. The presented differential cross
sections for energies lower than 10.0 eV indicates that a richer
set of experimental differential cross sections is necessary in
order to evaluate the correlation and polarization models for
positron molecule scattering.

Paying attention to the differential cross sections for higher
energies, we find a similar behavior among them. The qual-
itative and quantitative agreement between theory and ex-
periment is still observed, with exception, perhaps, for the
20.0 eV cross sections. Also, the considered polarization
level becomes less and less significant as the positron energy
rises, turning to almost unimportant at 50.0 eV and higher
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FIG. 7. Differential cross section for 50.0 eV. Legends are the
same as Fig. 3.
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FIG. 8. Differential cross section for 100.0 eV. Legends are the
same as Fig. 3.

energies. So, for positron collisions with O2 molecules with
energies lower than 50.0 eV we can state that the polarization
part of the interaction potential must be considered carefully,
warranting at least convergence of the polarization terms as
we identified in Fig. 1.

IV. CONCLUSIONS

We presented theoretical integral and differential cross sec-
tions for positron collisions with O2. Particularly, we report a
study of how the polarization interaction levels in conjunction
with the PCOP approach would affect these cross sections.
Through this study, it seems that higher-order terms of the
polarization interaction are necessary in order to calculate the
cross sections for positron collisions with molecules, at least
for molecular oxygen. This conclusion can be drawn from
the analysis of the calculated integral and differential cross
sections presented here.

A known problem on the calculation of positron cross
sections with nonpolar molecules is the presence of a pro-
nounced Ramsauer minimum in the integral cross sections
when employing the PCOP model [48]. We observe here
that this minimum comes from the underpolarization of the
molecule in the presence of positrons when one considers
only the dipole-dipole polarizability, i.e., terms proportional
to r−4 in the polarization potential. With the addition of
the quadrupole polarization potential term, related to the
quadrupole-quadrupole polarizability, this effect already dis-
appears for positrons interacting with the O2 molecule; how-
ever, we also noticed that more terms are necessary in order
to achieve convergence of the interaction potential, which is
obtained considering the terms described in Table III.

Besides, with the inclusion of such corrections in the
scattering potential, we observed satisfactory qualitative and
quantitative agreement between our calculated cross sections
and the experimental data available up to the positronium
formation threshold. For whichever experimental data a dif-
ferent approach for the polarization level leads to agreement,
nonetheless the converged interaction potential fairly agrees
with the measurements of Chiari et al. [14], and the obtained
differential cross sections for this level show good agreement

with the quasielastic measurements of Przybyla et al. [12].
That being considered, we recommend the elastic cross sec-
tions obtained within the PG polarization level as reference
for further experimental and theoretical works.

Finally, from this work, it is clear that more theoretical
and experimental studies on positron collisions with O2 are
necessary, such as differential cross sections from lower ener-
gies up to the positronium formation threshold, in order to
investigate the effects of the correlation models. Likewise,
more theoretical studies are welcome in order to define criteria
for the choice of the higher orders of polarizabilities and hy-
perpolarizabilities and also a correlation model that improves
the description of the scattering phenomena at low and very
low positron energies.

ACKNOWLEDGMENTS

W.T. would like to thank Universidade Federal da Fronteira
Sul for supporting this research. M.V.B. and F.A. would like to
thank the Programa de Pós-Graduação em Física of Universi-
dade Federal de Santa Catarina for the support. M.V.B. would
like to thank the Conselho Nacional de Desenvolvimento
Científico e Tecnológico for the financial support.

APPENDIX: POLARIZABILITIES
AND HYPERPOLARIZABILITIES

The potential described in this paper, in particular the
asymptotic polarization potential (16), is constructed consid-
ering the long-range interaction. In the context of positron
scattering, the presence of an external electric field produces
a distortion in the molecule called polarizability; the induced
moments are linearly proportional to the strength of the field
applied. On the other hand, the description of the nonlinear
responses to the external electric field are known as hyperpo-
larizabilities [50].

As discussed in a recent work [51], in Appendix A, the
application of perturbation theory to the energy of diatomic
homonuclear systems leads to an unperturbed energy being
the ground-state energy of the molecule E (0) and a first
correction E (1) related to the static potential.

When one considers the second correction E (2) and the
multipole expansion of the many-body electrostatic potential
it is possible to infer the nonzero terms that contribute to the
energy correction. Then, comparing such second correction
with the polarizability tensor [50,52]

αlk,l ′k′ = 2
∑

n

〈0| Q̂lk |n〉 〈n| Q̂l ′k′ |0〉
En − E0

, (A1)

it is easy to obtain the final expression for the polariza-
tion potential regarding the polarizability tensor αlk,l ′k′ . The
multipole moments operator Q̂lk is described in Cartesian
components [50]; therefore, the expected value related to Q̂10

is the dipole, Q̂20 the quadrupole, and so forth. Applying this
procedure, the following recursive formulas are attained for
the polarization potential due to the second correction on the
energy:

Vpol = −
∞∑

l=1

αl

2r2l+2
. (A2)
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TABLE V. Polarizabilities and hyperpolarizabilities (nonlinear polarizabilities) nomenclatures used in literature compared with the tensor
notation.

Polarizabilities and hyperpolarizabilities

Multipole components Commonly used [21,23,24,53,54] Tensor notation [19,50]

Dipole-dipole α1, αz,z = α0 + α2P2(cosθ ) α10,10

Dipole-quadrupolea A α10,20

Dipole-octupole E α10,30 [55]
Quadrupole-quadrupole α2, αQ, C α20,20

Octupole-octupole α3 α30,30

Dipole-dipole-dipolea β β10,10,10

Dipole-dipole-quadrupole B β10,10,20

Dipole-dipole-dipole-dipole γ γ10,10,10,10

aNot applicable to diatomic homonuclear systems.

In this expression, r is the positron coordinate and αl is the
polarizability. From the summation raises the static dipole
polarizability α1, quadrupole polarizability α2, and so on, it
is important to note that the suppressed notation in Eq. (A2) is
commonly used [21]. In order to avoid any misunderstanding
regarding the notation, since the polarizability is described by
a rank 2 tensor and Eq. (A2) uses only one index, following
some previous works [19,21,24,50] such polarizabilities can
be expressed as in Table V. Note that the index z is due
to, without loss of generality, the choice of direction of the
external electric field. Moreover, the α0 and α2 present in the
dipole-dipole component are the spherical and nonspherical
polarizabilities. These polarizabilities (Table V), as stated
before, are the mathematical representation of the linear re-
sponse of the molecule to the external electric field.

Looking back to perturbation theory, the third correction
E (3) is given by

E (3) =
∑
p	=0

∑
n 	=0

〈0|V |p〉 〈p|V |n〉 〈n|V |0〉
(E0 − En)(E0 − Ep)

−
∑
p	=0

〈0|V |p〉 〈p|V |0〉
(E0 − Ep)2

〈0|V |0〉 . (A3)

Considering the multipole expansion in the potential V ,

V (�r,�ri,�Rj )
r→∞−→

∑
j

∑
λ

Zj

Rλ
j

rλ+1
Pλ(R̂ j · r̂)

−
∑

i

∑
η

rη
i

rη+1
Pη(r̂i · r̂), (A4)

as before �ri are the electron coordinates and �Rj the nuclei
coordinates, mathematically, any monopole contribution leads
the third energy correction (A3) to zero due to the orthogo-
nality of the states. In what concerns the dipole contribution,
considering |i〉 the electronic molecular states, it is possible to
write

〈i|V |i〉 =
∑
l,m

4π

2l + 1

[∫
d3�ri rl

i ρ(�ri )Y
m∗

l (r̂i)

]
Y m

l (r̂). (A5)

Considering ρ(�ri ) as a simple representation of the charge
density at normalized internuclear distance ρ(x, y, z) =
δ(x)δ(y)[δ(z + 1) + δ(z − 1)], from the integration only
terms of even power on z will not vanish.

The first nonzero term is due to the expansions in two dipole terms and a third one in quadrupole, such that

E (3) = 1

r7

⎡
⎣∑

p	=0

∑
n 	=0

〈0| Q̂1,0 |p〉 〈p| Q̂1,0 |n〉 〈n| Q̂2,0 |0〉
(E0 − En)(E0 − Ep)

−
∑
p	=0

〈0| Q̂1,0 |p〉 〈p| Q̂1,0 |0〉
(E0 − Ep)2

〈0| Q̂2,0 |0〉
⎤
⎦. (A6)

It is possible to relate Eq. (A6) to the first hyperpolarizability tensor [19,50], also known as dipole-dipole-quadrupole
hyperpolarizability; see Table V. Aforesaid tensor is given by

βlk,l ′k′,l ′′k′′ = S
∑
p	=0

⎡
⎣∑

n 	=0

〈0| Q̂l,k |p〉 〈p| Q̂l ′,k′ |n〉 〈n| Q̂l ′′,k′′ |0〉
(E0 − En)(E0 − Ep)

− 〈0| Q̂l,k |p〉 〈p| Q̂l ′,k′ |0〉
(E0 − Ep)2

〈0| Q̂l ′′,k′′ |0〉
⎤
⎦, (A7)

where S denotes a sum of all permutations, in this context S = 2!. Comparing Eqs. (A6) and (A7) the third correction on the
energy leads to the potential

V = β1,1,2

2r7
= B

2r7
. (A8)

It must be noted that this potential is attractive, since the element tensor β1,1,2 is negative; see Sec. II C.
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The fourth energy correction on the energy is described, from perturbation theory, by

E (4) =
∑
q 	=0

∑
p	=0

∑
n 	=0

〈0|V |q〉 〈q|V |p〉 〈p|V |n〉 〈n|V |0〉
(E0 − En)(E0 − Ep)(E0 − Eq)

−
∑
q 	=0

∑
n 	=0

〈0|V |n〉 〈n|V |0〉
(E0 − En)

〈0|V |q〉 〈q|V |0〉
(E0 − Eq)2

−
∑
q 	=0

∑
p	=0

〈0|V |q〉 〈q|V |p〉 〈p|V |0〉
(E0 − Ep)2(E0 − Eq)

〈0|V |0〉 −
∑
q 	=0

∑
n 	=0

〈0|V |q〉 〈q|V |n〉 〈n|V |0〉
(E0 − Eq)2(E0 − En)

〈0|V |0〉

+
∑
q 	=0

〈0|V |q〉 〈q|V |0〉
(E0 − Eq)3

〈0|V |0〉 〈0|V |0〉 . (A9)

Considering the first term in the multipole expansion (A4), i.e., the dipole, and the given fourth energy correction (A9), the
following energy is found for diatomic homonuclear systems:

E (4) = 1

r8

⎡
⎣∑

q 	=0

∑
p	=0

∑
n 	=0

〈0| Q̂1,0 |q〉 〈q| Q̂1,0 |p〉 〈p| Q̂1,0 |n〉 〈n| Q̂1,0 |0〉
(E0 − En)(E0 − Ep)(E0 − Eq)

−
∑
q 	=0

∑
n 	=0

〈0| Q̂1,0 |n〉 〈n| Q̂1,0 |0〉
(E0 − En)

〈0| Q̂1,0 |q〉 〈q| Q̂1,0 |0〉
(E0 − Eq)2

⎤
⎦.

(A10)

Note that all the terms (〈0|V |0〉) are equal to zero since this is the expected value of the dipole moment. In the same way as
previously done, such correction (A10) can be related to the second hyperpolarizability tensor [20],

γlk,l ′k′,l ′′k′′,l ′′′k′′′ = S
∑
q 	=0

∑
p	=0

∑
n 	=0

〈0| Q̂l,k |q〉 〈q| Q̂l ′,k′ |p〉 〈p| Q̂l ′′,k′′ |n〉 〈n| Q̂l ′′′,k′′′ |0〉
(En − E0)(Ep − E0)(Eq − E0)

−S
∑
q 	=0

∑
n 	=0

〈0| Q̂l,k |n〉 〈n| Q̂l ′,k′ |0〉
(En − E0)

〈0| Q̂l ′′,k′′ |q〉 〈q| Q̂l ′′′,k′′′ |0〉
(Eq − E0)2

, (A11)

where S is, as commented before, the sum of all permutations (in this specific case S = 4!), leading to a term for the potential
in the form of

V = −γ10,10,10,10

24r8
= − γ

24r8
. (A12)

Such second hyperpolarizability γ10,10,10,10 is also denoted by dipole-dipole-dipole-dipole hyperpolarizability, as shown in
Table V. Both first and second hyperpolarizabilities represent the nonlinear response to the electric external field.
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