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Oscillating quadrupole effects in high-precision metrology
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The influence of oscillating quadrupole fields on atomic energy levels is examined theoretically, and general
expressions for the quadrupole matrix elements are given. The results are relevant to any ion-based clock in which
one of the clock states supports a quadrupole moment. Clock shifts are estimated for 176Lu+ and indicate that
coupling to the quadrupole field would not be a limitation to clock accuracy at the �10−19 level. Nevertheless,
a method is suggested that would allow this shift to be calibrated. This method utilizes a resonant quadrupole
coupling that enables the quadrupole moment of the atom to be measured. A proof-of-principle demonstration is
given using 138Ba+, in which the quadrupole moment of the D5/2 state is estimated to be � = 3.229(89)ea2

0.
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In a recent paper [1], the effects of oscillating magnetic
fields in high-precision metrology were explored. In that
work, it was shown that magnetic fields driven by the oscillat-
ing potential of a Paul trap could have a significant influence
on high-precision measurements and optical atomic clocks.
Given that the oscillating potential itself provides a strong
quadrupole field, it is of interest to consider the effects this
might have on energy levels supporting a nonzero quadrupole
moment.

The interaction of external electric-field gradients with the
quadrupole moment of the atom is described by tensor opera-
tors of rank 2 [2]. As for ac magnetic fields, the interaction
will couple levels primarily within the same fine-structure
manifold. However, the rank-2 operators provide a cou-
pling between levels having �F = 0,±1,±2 and �m = 0,

±1,±2. In this paper, a general expression for the interaction
matrix elements is derived, and the various level shifts and
effects that can occur are considered. These results can be
readily applied to any system. For the purposes of illustra-
tion, fractional frequency shifts for three clock transitions of
176Lu+ are estimated for experimentally relevant parameter
values. Details of the relevant atomic structure in 176Lu+ are
given in [3,4].

I. THEORY

The notations and conventions used here follow that used
in [2]. The principal-axis (primed) frame (x′, y′, z′) is one in
which the electric potential in the neighborhood of the atom
has the simple form

�(x′, y′, z′) = A(x′2 + y′2 − 2z′2) + ε(x′2 − y′2), (1)

while a laboratory (unprimed) frame (x, y, z) is one in which
the magnetic field is oriented along the z axis. Using this
form of the potential, the time-dependent potential associated
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with an ideal linear Paul trap has A = 0, and that for the
ideal quadrupole trap has ε = 0, with the time dependence
provided by a cos(�rft ) factor, where �rf is the trap drive
frequency.

In the principal-axis frame, the spherical components of
∇E(2) are

∇E (2)′
0 = −2A, ∇E (2)′

±1 = 0, ∇E (2)′
±2 = ε

√
2

3
(2)

and the interaction HQ has the simple form

HQ = −2A�
(2)′
0 + ε

√
2

3

(
�

(2)′
2 + �

(2)′
−2

)
. (3)

States |JFm〉′ defined in the principal-axis frame and states
|JFμ〉 defined in the laboratory frame are related by

|JFm〉′ =
∑

μ

D(F )
μ,m(ω)|JFμ〉, (4)

with the inverse relation

|JFμ〉 =
∑

m

D(F )∗
μ,m (ω)|JFm〉′, (5)

where ω denotes a set of Euler angles {α, β, γ } taking
the principal-axis frame to the laboratory frame defined
with the same convention used in [2]. Specifically, starting
from the principal-axis frame, the coordinate system is rotated
about z by α, then about the new y axis by β, and then about
the new z axis by γ so that the rotated coordinate system co-
incides with the laboratory coordinate system. As the rotation
γ is parallel to the magnetic field, it has no effect and can
be set to zero. The rotation matrices D(F )

μ,m(ω) are given in
the passive interpretation for which expressions can be found
in [5].
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Matrix elements of �(2)′
q in the laboratory frame can then be found using the same derivation given in [2], generalized to

include off-diagonal matrix elements. Explicitly,

〈JF ′μ′|�(2)′
q |JFμ〉 =

∑
m′,m

D(F ′ )
μ′,m′ (ω)D(F )∗

μ,m (ω)�〈JF ′m′|�(2)′
q |JFm〉′ (6)

= 〈JF ′‖�(2)‖JF 〉
∑
m′,m

D(F ′ )
μ′,m′ (ω)D(F )∗

μ,m (ω)(−1)F ′−m′
(

F ′ 2 F

−m′ q m

)
(7)

= 〈JF ′‖�(2)‖JF 〉
∑
m′,m

D(F ′ )
μ′,m′ (ω)D(F )

−μ,−m(ω)(−1)F ′−m′+μ−m

(
F ′ 2 F

−m′ q m

)
(8)

= (−1)F ′−μ−q〈JF ′‖�(2)‖JF 〉
∑
m′,m

D(F ′ )
μ′,m′ (ω)D(F )

−μ,−m(ω)

(
F ′ 2 F

−m′ q m

)
(9)

= (−1)F ′−μ−q〈JF ′‖�(2)‖JF 〉
∑
m′, m

K, n′, n

(2K + 1)

(
F ′ 2 F

−m′ q m

)(
F ′ F K

μ′ −μ n′

)(
F ′ F K

m′ −m n

)
D(K )∗

n′,n (ω) (10)

= (−1)F ′−μ−q〈JF ′‖�(2)‖JF 〉
∑
m′, m

K, n′, n

(2K + 1)

(
F ′ F K

μ′ −μ n′

)(
F ′ F 2

m′ −m −q

)(
F ′ F K

m′ −m n

)
D(K )∗

n′,n (ω) (11)

= (−1)F ′−μ−q〈JF ′‖�(2)‖JF 〉
∑

n′

(
F ′ 2 F

−μ′ −n′ μ

)
D(2)∗

n′,−q(ω) (12)

= (−1)F ′−μ−q〈JF ′‖�(2)‖JF 〉
(

F ′ 2 F

−μ′ �μ μ

)
D(2)∗

−�μ,−q(ω) (13)

= (−1)F+μ′ 〈JF ′‖�(2)‖JF 〉
(

F 2 F ′

μ �μ −μ′

)
D(2)

�μ,q(ω), (14)

where �μ = μ′ − μ. Using the IJ-coupling approximation, the reduced matrix element may be written in terms of the usual
quadrupole moment �(J ) = 〈JJ|�(2)

0 |JJ〉 giving the final expression

〈(IJ )F ′μ′|�(2)′
q |(IJ )Fμ〉 = (−1)F ′+F+I+J+μ′√

(2F ′ + 1)(2F + 1)

{
F F ′ 2

J J I

}(
F 2 F ′

μ �μ −μ′

)

×
(

J 2 J

−J 0 J

)−1

�(J )D(2)
�μ,q(ω), (15)

where I is included in the notation to identify the ordering of
the IJ coupling.

The only q-dependence for the matrix element appears in
the Wigner rotation matrices and, from [5],

D(2)
0,2(ω) + D(2)

0,−2(ω) =
√

3

2
sin2 β cos 2α, (16a)

D(2)
±1,2(ω) + D(2)

±1,−2(ω) = ∓(cos β sin β cos 2α

± i sin β sin 2α), (16b)

D(2)
±2,2(ω) + D(2)

±2,−2(ω) = 1

2
(1 + cos2 β ) cos 2α

± i cos β sin 2α, (16c)

D(2)
0,0(ω) = 1

2
(3 cos2 β − 1), (16d)

D(2)
±1,0(ω) = ±

√
3

2
sin β cos β, (16e)

D(2)
±2,0(ω) =

√
3

8
sin2 β. (16f)

Equations (15) and (16) can then be used to determine
the various influences of the time-varying trapping potential
by considering the time-dependent interaction HQ cos(�rft ).
This implicitly assumes that there are no phase shifts between
sources determining the electric potential given in Eq. (1).
If this were not the case, the description would have to
be appropriately modified. For the typical case of two rf-
electrodes, a phase shift between them would result in a
sum of two potentials: one with the electrodes oscillating in
phase and the other out of phase. The out-of-phase potential
would have a relatively small amplitude, as determined by the
corresponding phase shift, and would be detectable as micro-
motion that could not be compensated for by dc compensation
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voltages [6]. Moreover, for a symmetric trap, the out-of-phase
potential would have a vanishing electric-field gradient in the
neighborhood of the ion. In general, the out-of-phase potential
would need to be treated as a separate term.

As with an oscillating magnetic field, the oscillating
quadrupole field will (i) modulate energy levels giving rise
to rf sidebands when transitions connected to the level are
driven, (ii) drive resonances between levels having an energy
difference matching the trap drive frequency, and (iii) shift
energy levels due to off-resonant coupling to other levels.
These effects will have a complicated dependence on trap
geometry and orientation with respect to the laboratory frame.
For a given setup, this can be readily calculated, but general
expressions are not so illuminating. Therefore, specific exam-
ples will be used to illustrate key considerations.

To determine the typical scale of the quadrupole shift, first
note that the ideal linear Paul trap (A = 0) has

ε = m�rfωs

e
√

2
, (17)

where ωs is the pseudopotential confinement frequency and e
is the usual electron charge. Similarly, the ideal quadrupole
trap (ε = 0) has the same expression for A, with ωs being
the smaller radial confinement frequency. Hence, matrix el-
ements have a typical scale of ε�(J ). For the 1S0-to-3D2 clock
transition in 176Lu+, the magic rf at which micromotion shifts
vanish is �rf ∼ 2π × 33 MHz [7], and the calculated value
for �(3D2) is −1.77ea2

0 [8]. Using ωs = 2π × 1 MHz then
gives ε�(J )/h̄ ∼ 2π × 2 kHz. Lighter atoms often use higher
�rf and/or have larger values of ωs. Consequently, the value
quoted for 176Lu+ is reasonably indicative for other systems.
The exceptions would be those levels having an anomalously
small quadrupole moment such as the 1D2 level of Lu+ [8] or
the 2F7/5 level of Yb+ [9].

II. EFFECTS WITHIN A SINGLE HYPERFINE LEVEL

A. Sideband modulation

The time-varying frequency shift of a level will give rise to
a sideband signal, as is the case for micromotion [6] and the
z component of an ac magnetic field [1,10]. The modulation
index associated with the sideband is simply determined by
the amplitude of the quadrupole shift divided by the trap drive
frequency. For A = 0, the quadrupole-induced modulation
index for a state |F, mF 〉 is

βQ = 〈F, mF |HQ|F, mF 〉
h̄�rf

(18)

= mωs

h̄e
√

2
C(2)

F,mF
�(J ) sin2 β cos 2α, (19)

where C(2)
F,mF

is

C(2)
F,mF

= (−1)2F+I+J+mF (2F + 1)

{
F F 2
J J I

}

×
(

F 2 F
mF 0 −mF

)(
J 2 J

−J 0 J

)−1

. (20)

Typically, �(J ) ∼ ea2
0 and C(2)

F,mF
� 1. Consequently, βQ �

10−4 in most circumstances of interest and typically less than

the modulation index arising from thermally-induced intrinsic
micromotion [11].

B. Resonant Zeeman coupling

The quadrupole field can induce a precession of the spin
when the Zeeman splitting between levels is resonant with the
trap drive rf. Since the quadrupole field can drive both �m =
±1 and ±2 transitions, resonances occur when the Zeeman
splitting between neighboring m-states matches either �rf

or 0.5�rf . Of interest are the �m = ±1 transitions as this
resonance can be used to measure trap-induced ac-magnetic
fields [1]. Accurate assessment of the magnetic field from the
measured coupling strength would have to take into account
the contribution from the quadrupole field.

To illustrate, consider the F = 5 level of 3D2 in 176Lu+.
This level has the largest gF factor among all available clock
levels and hence the smallest static field required to obtain
resonance. Within this level, the transition from |5, 0〉 to
|5,±1〉 has the strongest magnetic coupling with a sensitivity
of 21 kHz/μT. It also has the weakest quadrupole coupling
within the F = 5 manifold. For A = 0, the quadrupole cou-
pling is given by

�Q = 〈5,±1|HQ|5, 0〉
h̄

=
√

2

3

m�rfωs

h̄e
√

2

(√
5

26

)
�(J )

× (cos β sin β cos 2α ± i sin β sin 2α). (21)

Using ωs = 2π × 1 MHz, �rf = 2π × 33 MHz, �(3D2) =
−1.77ea2

0, and neglecting the spatial orientation factor gives
�Q = 2π × 140 Hz. Going to a slightly higher static field
would enable the F = 5 level of 1D2 level to be used instead.
This level has a ∼20% smaller sensitivity to ac magnetic
fields, but the quadrupole moment is a factor 80 smaller [8].

In principle, the resonance at 0.5�rf allows the quadrupole
moment to be measured as first pointed out by Itano [12]. As
this resonance only involves |�m| = 2 transitions, it cannot
be driven by an ac magnetic field and only depends on the
quadrupole coupling. From trap frequency measurements, A
and ε can be accurately measured and maximising the cou-
pling strength as a function of magnetic field direction fixes
the orientation factor. Hence the maximized coupling strength
could then be related directly to the quadrupole moment.
A proof-of-principle demonstration using 138Ba+ is given in
Sec. IV.

C. Off-resonant coupling

When the Zeeman splittings do not match �rf , off-resonant
coupling modifies the Zeeman splitting. In the case of an ac-
magnetic field, the shift of each state is proportional to m and
can be viewed as a modified g-factor for the hyperfine level of
interest. In analogy with the ac Stark shift, the shift of level m
is given by

δE

h̄
= −

∑
�m

( |〈F, m + �m|HQ|F, m〉|2

2h̄2

ωz�m

(ωz�m)2 − �2
rf

)
,

(22)
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TABLE I. Parameters for Eq. (24) determining the fractional
frequency shifts of clock transitions in 176Lu+. Values are calculated
using ωs = 2π × 1 MHz, �rf = 2π × 33 MHz, and quadrupole
moments calculated in [8].

Transition a (10−19) η

1S0 ↔ 3D1 1.28 −0.199
1S0 ↔ 3D2 −0.90 −0.197
1S0 ↔ 1D1 2.34[−4] −0.212

where ωz = gF μBB0/h̄ is the Zeeman splitting between
neighboring m-states. The expression gives rise to terms pro-
portional to m and m3. In the limit that the Zeeman splitting
is much less than �rf , the effect has a scale of [ε�(J )/�rf ]2,
which is likely well below 10−8 in most circumstances.

III. CLOCK SHIFTS

For clocks with a hyperfine structure, it is prudent to
estimate the shift that the oscillating quadrupole will have
on the clock frequency. In the limit in which the trap drive
frequency is much smaller than the hyperfine splittings, the
shift of an m = 0 clock state is given by

hδνF = −
∑

�m,F ′ �=F

|〈F ′,�m|HQ|F, 0〉|2

2(EF ′ − EF )
. (23)

The summation excludes F ′ = F as contributions within a
hyperfine level cancel for m = 0 states. Each value of |�m|
in the summation has a unique orientation dependence de-
termined by the appropriate term in Eqs. (16). In general,
the weighting between different values of |�m| is dependent
on the hyperfine structure resulting in a rather complicated
orientation dependence of the shift. Moreover, the shift does
not cancel with various averaging methods [2,3,13].

Weightings for each |�m| can be readily calculated, and,
in the case of Lu+, the result of hyperfine averaging [3] is
easily included. Hyperfine averaging cancels contributions
from �m = 0 terms, which may be readily verified from
Eq. (23). The fractional frequency shift can then be written
in the form

δν

ν
= a[ f2(α, β ) + η f1(α, β )], (24)

where fk (α, β ) is the magnitude squared of the appropriate
orientation dependence for |�m| = k taken from Eqs. (16).
For A = 0 this would be Eqs. (16b) and (16c) for f1(α, β ) and
f2(α, β ), respectively.

From quadrupole moments calculated in [8] and measured
hyperfine splittings [4,14], values of a and η can be readily
calculated for a given trap setup. In Table I, values are
tabulated using A = 0, ωs = 2π × 1 MHz, and �rf = 2π ×
33 MHz. For all three clock transitions, η ≈ −0.2 giving
maximum and minimum values of 1 and η, respectively, for
f2(α, β ) + η f1(α, β ).

In a linear ion chain, it would be desirable or
indeed necessary to have β ≈ cos−1(1/

√
3) to cancel

quadrupole shifts induced by neighboring ions. In this case,

f2(α, β ) + η f1(α, β ) ≈ [3 + cos(4α)]/10. Consequently, the
trap-induced rf quadrupole shift will be below 10−19 in any
realistic circumstances.

Although the shifts are not likely to be a limitation in
any foreseeable future, they could be assessed using resonant
Zeeman coupling discussed in Sec. II B. Dominant contribu-
tions to the shift arise from the |�m| = 2 couplings, which
have the same scaling factors and orientation dependence
as the coupling strength of the resonance that occurs when
the Zeeman splitting matches 0.5�rf . Measurement of this
resonant coupling strength could then provide a reasonable
estimate of the associated clock shifts.

IV. MEASURING THE QUADRUPOLE COUPLING

Coupling from the ac quadrupole field confining the ion
can be observed when the Zeeman splitting of a level sup-
porting a quadrupole moment matches 0.5�rf . In this sec-
tion, a proof-of-principle demonstration is given using the
S1/2 − D5/2 clock transition at 1762 nm in 138Ba+. Theoretical
estimates of the D5/2 quadrupole moment have been estimated
by a number of researchers [15–18] and the g-factor of ∼ 6/5
allows the resonant condition to be met at easily achievable
fields (�1 mT).

The experiment is performed in a linear Paul trap similar
to that used for previous work [4,7]. The trap consists of two
axial endcaps separated by ∼2 mm and four rods arranged on
a square with sides 1.2 mm in length. All electrodes are made
from 0.45 mm electropolished copper-beryllium rods. Radial
confinement is provided by a 20.585 MHz radiofrequency (rf)
potential applied to a pair of diagonally opposing electrodes
via a helical quarter-wave resonator. With only differential
voltages on the dc electrodes to compensate for micromo-
tion, the measured trap frequencies of a single 138Ba+ are
(ωx, ωy, ωz ) ∼ 2π × (990, 895, 112) kHz, with the trap axis
along z. Measurements described here were carried out in
this configuration. Ideally, with only an rf confinement, ωz =
ωx − ωy, as can be readily verified from Eq. (1). Deviations
from this indicate an asymmetry resulting in field curvatures
from the micromotion compensation potentials.

To maximize the coupling to the quadrupole field, a mag-
netic field is aligned along the trap axis such that the principle
and laboratory axes are aligned, that is, β ≈ 0 and α can be ar-
bitrarily set to zero. In this configuration, the coupling strength
for �m = ±2 transitions depends only on ε. Since the dc
confinement from the micromotion compensation would not
significantly affect the radial confinement, ε can be estimated
by Eq. (17) with ωs given by the mean of ωx and ωy. Moreover,
for β 
 1, the coupling strength varies quadratically with
β and is therefore insensitive to the exact alignment of the
field to the trap axis. However, limited optical access prevents
optical pumping to a particular mJ ground state, which limits
population transfer to 0.5 when driving the clock transition
and diminishes signal-to-noise.

As depicted in Fig. 1, we consider driving the optical clock
transition from |S1/2, m = 1/2〉 to |D5/2, m = 1/2〉 at 1762
nm. The excited-state Zeeman splitting ωz = gDμBB0/h̄ is set
to one-half the trap drive frequency �rf , resulting in a resonant
quadrupole coupling to |D5/2, 5/2〉 and |D5/2,−3/2〉. With
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614 

1762 

D5/2

D3/2

P3/2

P1/2

S1/2

m = 5/2
m = 1/2

m = −3/2

FIG. 1. Level structure of 138Ba+ used in the measurement of
the quadrupole moment of D5/2 showing transition wavelengths
of relevant lasers given to the nearest nm. The clock laser drives
|S1/2, m = 1/2〉 to |D5/2, m = 1/2〉 with coupling strength �0. The
oscillating quadrupole field confining the ion couples |D5/2, 1/2〉 to
|D5/2, −3/2〉 and |D5/2, 5/2〉. Other m states do not contribute to the
dynamics.

β = 0, the Hamiltonian can be written

H/h̄ =

⎛
⎜⎜⎜⎜⎝

−�
ωQ√

10
0 0

ωQ√
10

0 3ωQ

5
√

2
1
2�0

0 3ωQ

5
√

2
� 0

0 1
2�0 0 δ

⎞
⎟⎟⎟⎟⎠, (25)

where ωQ = ε�/h̄ is the characteristic strength of the
quadrupole coupling, �0 is the coupling strength of the clock
laser, and the rotating-wave approximation has been used for
both the quadrupole and laser coupling. This assumes the
detunings � = �rf − 2ωz, and δ = ω − [ω0 + (ωz − ω′

z )/2]
are both small with respect to �rf and the Zeeman-shifted
clock frequency ω0 + (ωz − ω′

z )/2, respectively. In this last
expression, ω′

z = gSμBB0/h̄ is the Zeeman splitting between
the S1/2 states.

When �0 
 ωQ, the quadrupole coupling results in an
Autler-Townes triplet [19] as illustrated in Fig. 2. Plots are
given for �0 = 0.05 ωQ (left) and �0 = 0.3 ωQ (right) and for
detunings � = 0, 0.25 ωQ, and 0.5 ωQ. In all cases, the clock
interrogation time is given by τ = π/�0. Note that there are
only two lines when � = 0 due to the fact that one of the
dressed states has no amplitude in |D5/2, 1/2〉, as is evident
from Eq. (25) for this case.

The experimental sequence starts with Doppler cooling a
single ion using the 493-, 614-, and 650-nm lasers (1 ms).
The 614-nm laser ensures that any population in D5/2 from the
previous experiment is returned to the cooling cycle. Cooling
is followed by optically pumping to S1/2 with the 650-nm
laser only (50 μs). The clock laser then drives the |S1/2, m =
1/2〉 to |D5/2, m = 1/2〉 transition. Detection of population
transfer from the clock laser is subsequently inferred from
photon counting during scattering with the 493- and 650-nm
lasers (1 ms).

Experimentally, magnetic field noise limits the clock probe
time. This limits the resolution of the Autler-Townes splitting,
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FIG. 2. Theoretical curves derived from Eq. (25) for different
values of �0 and �. Plots on the left and right have � = 0.05ωQ and
0.3ωQ, respectively. Detunings � from top to bottom are 0, 0.25ωQ,
and 0.5ωQ. All plots use an interrogation time τ = π/�0, which is
the π -time when the Zeeman splitting is far from the quadrupole
resonance.

as illustrated in Fig. 2, and the experimentally observed signal
is further degraded by the changing detunings induced by
magnetic field variations as seen in three data runs shown in
Fig. 3. For all datasets, � ≈ 0 and the clock probe time is
set to 1.2 ms, which is the π -time for the transition when the
Zeeman splitting is far from the quadrupole resonance. Each
data point represents 200, 300, and 500 experiments for plots
(a), (b), and (c), respectively. The solid curve given in each
plot is derived using a Gaussian distributed magnetic field
noise, which is assumed constant within a single experiment.
The standard deviation (σ ) of magnetic field deviations about
the mean and ωQ is determined by a χ2-fit to the data. Fit
parameters and the reduced-χ2 for each dataset are given in
Table II. The quoted errors in the fit parameters are determined
by standard methods using the covariance matrix from the fit,
and error scaling has been used to allow for the larger values
of χ2. Offset detunings have not been included in the fits,
as their inclusion does not significantly change the χ2 or the
fitted values of σ and ωQ.

TABLE II. Fit parameters and reduced-χ 2 for the curves given
in Fig. 3. Errors are determined by standard methods using the
covariance matrix from the fit, and we have used error scaling to
allow for the larger values of χ 2.

Plot N ωQ/2π (Hz) σ (nT) χ 2
ν

Fig. 3(a) 200 1708 (24) 18.2 (1.1) 1.15
Fig. 3(b) 300 1662 (19) 18.4 (0.8) 1.11
Fig. 3(c) 500 1713 (16) 18.2 (0.7) 1.48
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FIG. 3. Experimentally observed signals as a function of the clock laser detuning from the |S1/2, 1/2〉 to |D5/2, 1/2〉 transition. Each data
point represents 200, 300, and 500 experiments for plots (a), (b), and (c), respectively. Solid curves are fits using the rms spread of an assumed
Gaussian magnetic field noise, and quadrupole coupling strength, ωQ, as fitting parameters. Fit parameters are tabulated in Table II.

The reduced χ2 of 1.49 for plot (c) indicates a statistically
poor fit, and the difference in ωQ for plot (b) is statistically
significant. This is likely due to slow variations of the average
magnetic field over the timescales of a full data scan, which
are not captured by the model. The fitted values of σ are
consistent with the coherence times and stabilities observed
when servoing on the clock transition. However, this does
not account for a possible linear drift of the mean magnetic
field over the duration of the scan, which would increase or
decrease the fitted value of ωQ depending on the sign of the
drift. Based on clock servo data taken over 6 h, this drift is
unlikely to be more than 20 nT over the duration of any scan
shown in Fig. 3. This corresponds to an error of approximately
1.4% or 24 Hz in ωQ. Adding this error in quadrature with the
largest error from the fits and taking the mean of the fitted
values gives ωQ = 2π × 1.694(35) kHz as an estimate of the
coupling strength.

To estimate the quadrupole moment �, an estimate of ε

and hence ωs is needed. As noted, ωs is ideally given by the
mean of ωx and ωy and ωz = ωx − ωy. Taking the discrepancy
between measured values of ωz and ωx − ωy as a conservative
error estimate gives ωs = 2π × 943(17) kHz. Using Eq. (17)
and the definition of ωQ then gives � = 3.229(89)ea2

0. A
comparison with available theoretical estimates is given in
Table III. Although the estimated value is in fair agreement
with the theoretical value of � = 3.319 ea2

0 given in [18], a
more precise experimental value would be desirable to test
the accuracy of the theory.

The implementation here is limited by magnetic field
noise and stability of the mean magnetic field over longer
timescales. Modest improvements in magnetic field noise
would allow individual dressed states to be resolved. With
consideration of both |S1/2,±1/2〉 to |D5/2, 1/2〉 transitions,
the clock laser could be servoed to the outer dressed states

TABLE III. Comparison of the current experimental and theoret-
ical estimates of the electric quadrupole moment for the 5d D5/2 level
of Ba+. All values are given in units of ea2

0.

Experiment Theory

(this work) Ref. [15] Ref. [16] Ref. [17] Ref. [18]

3.229(89) 3.379 3.42(4) 3.382(61) 3.319(15)

associated with each transition. This would allow (i) the
ground-state splitting to be servoed to the correct value
as determined by known g-factors [20–22] and �rf , (ii)
the clock laser to be maintained on line-center, and (iii)
the dressed-state splitting to be measured to a precision lim-
ited by the integration time. Determination of the quadrupole
moment would then be limited by the determination of the
rf confinement potential. This typically dominates over the
dc contribution and could be assessed much more accurately
than done here. Measurement at 0.1% uncertainty should be
achievable using this approach.

V. SUMMARY

In this paper, the effects of an oscillating quadrupole
field on atomic energy levels have been considered. General
expressions for the interaction matrix elements have been
given and can be used to calculate effects for any given setup.
This work generalizes the results given in [2] for the first-
order quadrupole shift from a static field. It also complements
the recent discussion on ac magnetic field effects driven by
the same trapping fields considered here [1]. Although the
quadrupole effects are small and not likely to limit clock
performance, their possible influence on the assessment of
ac magnetic fields should be considered if the levels involved
support a quadrupole moment.

A proof-of-principle measurement of the quadrupole mo-
ment using the resonant coupling induced by the rf confine-
ment has also been demonstrated. Without any special mag-
netic field control, an accuracy of ∼3% has been achieved.
Modest improvement in magnetic field control and a rigorous
assessment of the trap rf confinement would significantly
improve accuracy. Other methods have utilized entangled
states within decoherence-free subspaces [23] or dynamic
decoupling [24], both of which have achieved inaccuracies
at the ∼0.5% level. In any case, one is limited by the size
of the interaction and the ability to characterize the potential.
The method here utilizes the dominant coupling produced by
the rf confinement, which is also less sensitive to stray fields.
Additionally, the method is technically easy to implement.
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