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Spectroscopy of the 1S0-1D2 clock transition in 176Lu+
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High-precision spectroscopy of the 1S0-1D2 clock transition of 176Lu+ is reported. Measurements are performed
with Hertz level precision with the accuracy of the hyperfine-averaged frequency limited by the calibration of an
active hydrogen maser to the SI definition of the second via a GPS link. The measurements also provide accurate
determination of the 1D2 hyperfine structure. Hyperfine structure constants associated with the magnetic octupole
and electric hexadecapole moments of the nucleus are considered, which includes a derivation of correction terms
from third-order perturbation theory.
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I. INTRODUCTION

Singly ionized lutetium is a unique atomic clock can-
didate supporting three clock transitions: a highly forbid-
den magnetic dipole (M1) transition 1S0-3D1 at 848 nm, a
spin-forbidden electric quadrupole (E2) transition 1S0-3D2 at
804 nm, and an E2 transition 1S0-1D2 at 577 nm. For each
transition, hyperfine averaging eliminates shifts associated
with the electronic angular momentum giving effective J = 0
levels with low sensitivity to electromagnetic fields [1,2].
Each transition has a unique sensitivity to environmental
conditions such that frequency comparisons within the same
apparatus provide important consistency checks for estimated
systematic shifts.

Transitions at 848 and 804 nm have been observed [3,4]
and investigated [5], which demonstrated competitive prop-
erties with leading clock candidates. The 848-nm transition,
in particular, offers an exceptionally low black-body radiation
(BBR) shift and all atomic properties relevant to clock perfor-
mance offer an improvement over the Yb+ octupole transition
[2,5]. Spectroscopy of the 577-nm transition has not yet been
reported in the literature, but theoretical calculations [6] have
recently been carried out indicating a BBR shift competitive
with the quadrupole transitions in Sr+, Ca+, Hg+, and Yb+.
Moreover, the calculated quadrupole moment of just 0.022 ea2

0
could be managed without the need for averaging.

In addition to clock applications, measuring the hyperfine
structure of the long-lived 1D2 level offers the possibility of
extracting the relatively unexplored magnetic octupole and
electric hexadecapole moments of the nucleus as for 3P2 levels
discussed in Ref. [7]. In that work only leading second-order
corrections arising from the coupling to a neighboring 3P1

level were considered. Naively one might expect coupling to a
singlet level to be diminished and hence the correction terms
for the higher-order nuclear moments minimal.

In this paper we report high-resolution measurements of
the 1S0-1D2 optical transitions in 176Lu+ from which we
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extract hyperfine splittings with Hertz level accuracy. Hyper-
fine structure constants associated with the nuclear magnetic
octupole and electric hexadecapole moments are considered,
which includes a derivation of correction terms up to third-
order perturbation theory. Based on considerations for both
1D2 and 3D2, it is argued that evidence of higher-order mul-
tipole moments should include consideration of leading-order
corrections from this third-order extension. To our knowledge,
such corrections have not been considered. The feasibility of
conclusively observing the influence of the nuclear octupole
and electric hexadecapole moments in 176Lu+ is also dis-
cussed.

The paper is organized as follows. A description of the
experimental system is given in Sec. II, followed by the mea-
surement procedures and results for 1D2 in Sec. III. Then, a
brief summary of relevant hyperfine theory is given in Sec. IV
followed by its application to the 1D2 and 3D2 hyperfine
structure in Sec. V.

II. EXPERIMENTAL SETUP

Measurements are performed in a four-rod linear Paul
trap with axial end caps as described in Ref. [4]. Radial
confinement is provided by a 16.8 MHz radio-frequency (rf)
potential applied to a pair of diagonally opposing rods via
a quarter-wave helical resonator, a small dc voltage applied
to the other pair of rods ensures a splitting of the transverse
frequencies, and the end caps are held at 8 V to provide axial
confinement. In this configuration, the secular trapping fre-
quencies are (ωx, ωy, ωz ) = 2π × (610, 560, 130) kHz, with
x, y indices denoting the two radial directions and z the trap
axis. A magnetic field of ∼0.24 mT defines a quantization
axis.

The energy level structure of 176Lu+ relevant to this work
is shown in Fig. 1. There are three narrow linewidth optical
transitions from the 1S0 ground state to the upper 3D1, 3D2,
and 1D2 clock states. The lifetime of 3D1 is estimated to be
approximately 172 hours [3], and the lifetimes of 3D2 and
1D2 have been measured to be 17.3 s and 180 ms respectively
[8]. Doppler cooling and detection are achieved via scattering
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FIG. 1. Relevant energy level and transition diagram of a 176Lu+

ion. The hyperfine interaction gives rise to five hyperfine levels in
1D2. The hyperfine splitting shown are determined from the measured
transition frequencies of 1S0-1D2. The uncertainties are the quadratic
sum of statistical and systematic uncertainties.

on the nearly closed 3D1-3P0 transition at 646 nm, which
has a measured linewidth of ∼2π × 2.45 MHz [4,9]. Optical
pumping into 3D1 is facilitated by driving the 1S0-3P1, 3D2-3P1,
and 1D2-3P1 transitions at 350 nm, 622 nm, and 895 nm,
respectively.

Spectroscopy of the 1D2 level is implemented us-
ing a frequency-doubled extended-cavity-diode-laser system
(ECDL) with a fundamental wavelength of 1154 nm. Second
harmonic generation is accomplished using a fiberized, peri-
odically poled potassium titanyl phosphate (PPKTP) waveg-
uide. The fundamental frequency is phase locked to an optical
frequency comb (OFC). The short term (<10 s) stability of
the OFC is derived from a ∼1 Hz linewidth laser at 848 nm,
which is referenced to a 10 cm long ultralow expansion (ULE)
cavity with finesse of ∼4 × 105. For longer times (� 10 s), the
OFC is steered to an active hydrogen maser (HM) reference.
The frequency of the maser is calibrated to the SI (Interna-
tional System of Units) second by continuous comparison
to a GPS time base. The HM-GPS link exhibits a fractional
instability of 2.8 × 10−14 per day. The 577-nm clock laser
is switched with a double-passed acousto-optic modulator
(AOM1 in in Fig. 2), which also controls the laser frequency
relative to the comb. A schematic of the experimental setup is
shown in Fig. 2.

III. MEASUREMENTS

Spectroscopy of the 1D2 level follows a similar procedure
to that reported in Ref. [4]. The atom is first optically pumped
to 3D1 with success checked in real time using a Bayesian de-
tection scheme reported in Ref. [3]. When the atom is detected
bright, the experiment continues with a 5 ms Doppler cooling
pulse followed by optical pumping to |3D1, F = 7, m = 0〉. A
π pulse on the 848 nm clock transition is then applied to trans-
fer the ion to |1S0, 7,±1〉. The transfer efficiency of ∼95%
is limited by both state preparation of |3D1, 7, 0〉 and the

FIG. 2. Schematic diagram of the experiment. The optical fre-
quency comb (OFC) is referenced to the 848-nm laser to stabilize
frep and fceo is referenced to a HM. The 1154-nm laser is stabilized
via phase locking to the OFC.

clock π pulse. The fidelity of population transfer is improved
to better than 99.9% by state detection after the π pulse.
If the ion is detected bright, state preparation of |3D1, 7, 0〉
and shelving to |1S0, 7,±1〉 is repeated. When a dark state
is confirmed, the experiment proceeds with a π -polarized
577-nm clock pulse to drive a transition to the |1D2, F ′, 0〉
state, where F ′ = 5, 6, . . . , 9. Population remaining in 1S0 is
reshelved to 3D1 with approximately 98% fidelity via a π pulse
from the 848-nm laser and subsequently detected by 646-nm
fluorescence.

The transition probability when driving |1S0, 7,+1〉 to
|1D2, 6, 0〉 as a function of either laser frequency offset or
probe time is shown in Fig. 3. The limited coherence time
indicated in Fig. 3(b) is likely limited by both the unstabilized
≈30 m optical fiber path from the laser source to the location
of the ion and thermal dephasing. Nevertheless the 2 ms
interrogation time provides sufficient frequency resolution to
resolve the ground-state splitting.

FIG. 3. Rabi spectroscopy of the transition from |1S0, 7, +1〉 to
|1D2, 6, 0〉. Each point represents an average of 100 experiments.
(a) Transition probability as a function of laser frequency offset for a
fixed pulse time of 2 ms. (b) Rabi oscillation on the carrier transition.
The model curve assumes dephasing of the oscillation due to thermal
motion and an overall exponential damping, which accounts for the
unstabilized optical fiber path.
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To remove the first-order Zeeman shift of the ground state,
the frequency of the 577-nm laser is steered to the average of
a pair of Zeeman transitions from |1S0, 7,±1〉 to |1D2, F ′, 0〉,
using a servo technique similar to Ref. [10] that alternatively
interrogates either side of each transition to derive error
signals. There are four interrogations in total: two for mF =
+1 and two for mF = −1. From these four points the laser
frequency offset from the average transition frequency and
splitting of two Zeeman components can be extracted. The
appropriate error correction is applied to the oscillator driving
AOM1 and recorded by a computer program. The servo to
each of the hyperfine lines is implemented for a duration of
≈1000 s, and the corresponding statistical uncertainty of a
measured optical frequency is at the ∼1 Hz level limited by
the flicker noise floor of the HM. The frequency offset and
linear frequency drift of the HM were assessed by comparison
with a GPS-linked reference over a six month period, yielding
a fractional uncertainty of 3 × 10−15 of the HM frequency.

Interleaved with the 577-nm servo loop is a similar servo
loop that steers the 848-nm laser to the average of transitions
from |3D1, 7, 0〉 to |1S0, 7,±1〉. This is serves two purposes,
(i) to determine the amplitude of the magnetic field from the
difference of the two Zeeman transitions and (ii) to provide
a consistently check of the absolute frequency measurement
methodology used for the 577-nm measurements. At each
different 577-nm line measurement, which were taken over
the course three days, the frequency of this 848-nm refer-
ence transition is measured from the interleaved servo. The
systematic shifts affecting the 848-nm transition are expected
to have instability well below the 1 × 10−15 level. The five
reference measurements have an rms spread of 0.6 Hz, or
1.7 × 10−15 fractionally. This is consistent with statistical
uncertainty of each measurement, which is limited to 2 ×
10−15 by the stability of the HM for a averaging time of
103 seconds. Additionally, a measurement of the 848-nm
reference transition was repeated four months later and found
to be in agreement at 2 × 10−15. This supports the 3 × 10−15

uncertainty assessment of the HM frequency from the GPS
link.

For the 1S0-1D2 transitions, systematic shifts at the Hz
level are completely determined by quadratic Zeeman shifts:
probe-induced ac-Stark shifts are negligibly small owing to
the relatively short lifetime, the quadrupole moment for the
1D2 is approximately two orders of magnitude smaller than
for the triplet states, and micromotion is trivially controlled to
the sub-Hz level. Expressions for the quadratic Zeeman shift
are identical to those for the 3D2 given in Ref. [4] differing
only in the value of gJ . For convenience these expressions are
given in Appendix A.

The Zeeman splitting between |1S0, 7,±1〉 transitions is
inferred from the 848-nm servo, to assess the strength of the
magnetic field, B. As the laser couples both mF = ±1 ground
states to the upper m′

F = 0 state, the transition frequency of
one Zeeman transition is shifted due to off-resonant coupling
to the other Zeeman transition. The shifts are equal and oppo-
site for the two transitions and thus do not lead to an overall
shift in the Zeeman-averaged transition frequency. However,
the accuracy in determining B can be degraded. With the in-
terrogation time of ≈5 ms, the effect of off-resonant coupling
is at the 0.1% level. This is much smaller than the accuracy

of gI = −2.436 × 10−4 [11,12] of the 1S0 level, which is
assumed to be 0.5%. From the measured Zeeman splitting an
average field of 0.2386(12) mT is deduced.

Within the LS-coupling limit, gJ for 1D2 would be given
by gL = 1. Recent calculations have given gJ = 1.01 [6]
indicating that mixing does not significantly influence the
value. Consequently, we take the calculated value for gJ

in determining the Zeeman shifts and assume the error is
dominated by the magnetic field determined from the ground
state. The resulting Zeeman-corrected optical frequencies, νF ′ ,
for each of the transitions from |1S0, 7, 0〉 to |1D2, F ′, 0〉 are,
in Hz units:

ν5 = 519 622 296 515 663.7 ± (1.6)stat ± (31.2)z, (1a)

ν6 = 519 617 783 775 485.6 ± (1.6)stat ± (8.5)z, (1b)

ν7 = 519 613 264 915 247.9 ± (1.6)stat ± (2.1)z, (1c)

ν8 = 519 609 084 301 184.6 ± (1.6)stat ± (10.4)z, (1d)

ν9 = 519 605 635 526 441.6 ± (1.6)stat ± (27.3)z, (1e)

where the values in (. . .)stat denote statistical uncertainties in
optical frequency measurement while (. . .)z are systematic
uncertainties from the quadratic Zeeman shifts. As the sys-
tematic shifts arise from imperfect knowledge of the magnetic
field, they are strongly correlated. In particular the average
frequency has a calculated magnetic field sensitivity of 1.2 ×
10−16 mT−2. Consequently, the average frequency here is
limited completely by the statistical error. This is comparable
to the gravitational red shift with respect to the geoid, which
we estimate to be approximately 1.0(0.2) Hz.1

IV. HYPERFINE INTERACTION THEORY

The accuracy of the measurements made allow high ac-
curacy determination of hyperfine splittings, which are suit-
able for investigating hyperfine structure constants. For this
purpose, we give a summary of relevant theory. We follow
closely the work of Woodgate [13] and Beloy [7], and include
an extension to third-order correction terms.

A nucleus can be approximately described as a pointlike
collection of electromagnetic moments. From the relativistic
treatment in Ref. [7], the hyperfine Hamiltonian can be written
as a sum of multipole interactions between electrons and
nucleons,

Hhfs =
∞∑

k=1

T e
k · T n

k =
∞∑

k=1

k∑
μ=−k

(−1)μT e
k,μT n

k,−μ, (2)

where T e
k,μ and T n

k,μ are spherical tensor operators of rank
k that operate on the space of electronic and nuclear coor-
dinates, respectively. The sum excludes the term k = 0 be-
cause the monopole interaction is included in the unperturbed
atomic Hamiltonian. Basis states where the total angular
momentum F = I + J is conserved are denoted |γ IJFmF 〉
where γ denotes all other quantum numbers. From to the

1We have taken a geoid height relative to the WGDS84 ellipsoid of
7.9 m from the Earth Gravitation Model data (2008). From this we
estimate the local height to be 17(3) m.
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Wigner-Eckart theorem, a matrix element of Hhfs over the
basis set is,

〈γ ′IJ ′F ′m′
F |Hhfs|γ IJFmF 〉

= δFF ′δm′
F mF (−1)J ′+I+F

×
k′∑

k=1

{
F J ′ I
k I J

}
〈γ ′J ′|∣∣T e

k

∣∣|γ J〉 〈I|∣∣T n
k

∣∣|I〉, (3)

where k′ = min(2I, J + J ′). Following the notations used in
Ref. [13], the energy shift of a level with specific quantum
numbers γ , J , and F can be expressed,

WJF =
km∑

k=1

Xk (IJF )U (1)
k (J )

+
km∑

k=0

(
Xk (IJF )

∞∑
n=2

U (n)
k (J )

)
, (4)

where the F -dependent scale factor is given by,

Xk (IJF ) = (−1)I+J+F

{F J I
k I J

}
( I k I
−I 0 I

)( J k J
−J 0 J

) , (5)

km = min(2I, 2J ) is the minimum number of electromagnetic
poles of either the relevant electronic state or the nucleus,
and U (n)

k are terms arising from nth-order perturbation theory.
The form of Eq. (4) up to second order was first derived
by Woodgate [13]. Following that work, an outline of the
derivation for U (3)

k (J ) and the extension to all orders is given
in Appendix B along with explicit expressions for U (n)

k up to
n = 3.

Similar to the first-order correction, Xk (IJF ) appears as an
overall multiplication factor for other perturbative corrections
(n > 1), except the index k starts from k = 0 in the summa-
tion. Since X0(IJF ) = 1 for all possible quantum numbers F ,
J , and I , the energy shift is,

WJF =
∞∑

n=2

U (n)
0 (J ) +

km∑
k=1

∞∑
n=1

Xk (IJF )U (n)
k (J ). (6)

The first term in Eq. (6) implies an overall shift, which should
properly be considered an isotope shift similar to the shifts
arising from the finite size and finite mass of the nucleus
[14]. To second order, this overall shift has been pointed out
and discussed in Ref. [15]. The F -dependent factor Xk (IJF )
entering in the first- and second-order corrections in an iden-
tical way was first noted by Woodgate [13] and much later by
Beloy and Derevianko [15]. Woodgate interpreted U (2)

k (J ) as a
second-order correction to U (1)

k (J ), which has a direct relation
to the conventional hyperfine constants A, B,C, . . . defined by,

A = 1

IJ
U (1)

1 (J ), (7a)

B = 4U (1)
2 (J ), (7b)

C = U (1)
3 (J ), (7c)

D = U (1)
4 (J ). (7d)

Notationally, it is convenient to introduce

Uk (J ) =
∞∑

n=1

U (n)
k (J ), (8)

with U (1)
0 (J ) ≡ 0. Equation (6) then has the simple form

WJF =
km∑

k=0

Xk (IJF )Uk (J ) (9)

with the k = 0 term being a scalar, hyperfine-induced isotope
shift. Hyperfine constants A′, B′,C′, . . . related to Uk (J ) by
equations analogous to Eqs. (7) can then be determined ex-
actly from the hyperfine splittings. Throughout the literature
A′, B′, . . . would be referred to as the uncorrected hyperfine
structure constants with corrections made to accommodate the
definitions given by Eqs. (7).

V. HYPERFINE CONSTANTS OF 1D2 AND 3D2

Using the expressions given in Sec. IV, the energy shift
WF due to the hyperfine interaction for D2 level in terms of
(uncorrected) hyperfine constants can be readily determined.
For both 1D2 and 3D2, equations for the hyperfine splittings
δWF = WF − WF−1 are given by

δW6 = 6A′ − 153
364 B′ + 459

91 C′ − 14535
1001 D′ (10a)

δW7 = 7A′ − 25
104 B′ − 21

13C′ + 285
13 D′ (10b)

δW8 = 8A′ + 5
91 B′ − 368

91 C′ − 1520
91 D′ (10c)

δW9 = 9A′ + 27
56 B′ + 27

7 C′ + 45
7 D′ (10d)

with the inverse relationships

A′ = 11
525δW6 + 51

1400δW7 + 117
2800δW8 + 19

600δW9,

B′ = − 88
105δW6 − 5

7δW7 + 39
238δW8 + 247

255δW9

C′ = 11
150δW6 − 7

200δW7 − 299
3400δW8 + 1729

30600δW9

D′ = − 11
1050δW6 + 33

1400δW7 − 429
23800δW8 + 143

30600δW9.

From the measured optical frequencies given in Eq. (1), the
uncorrected hyperfine constants for the 1D2 level are, in Hz
units,

A′ = −543 069 419.3 ± (1.7)z ± (0.07)stat (11a)

B′ = 2 984 226 871.4 ± (8.8)z ± (2.8)stat (11b)

C′ = 6904.2 ± (1.5)z ± (0.3)stat (11c)

D′ = −42.018 ± (58)z ± (95)stat. (11d)

For comparison, using the optical frequencies measured in
Ref. [4], the corresponding uncorrected hyperfine constants
for the 3D2 level are, in Hz units,

A′ = 1 370 376 728(8) (12a)

B′ = 1 825 831 163(350) (12b)

C′ = 396 959(42) (12c)

D′ = −1824(12). (12d)
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TABLE I. Matrix elements of the electronic operators T e
1 and T e

2

in units of MHz/μN and MHz/barn, respectively. Values are taken
from Ref. [8].a Note that signs of the matrix elements depend on a
convention choice but relative signs between them are fixed by that
choice.

ME Value

〈3D1‖ T e
1‖1D2〉 −10620 (870)

〈3D1|| T e
2||1D2〉 70 (45)

〈3D1|| T e
1||3D2〉 18680 (1900)

〈3D1|| T e
2||3D2〉 700 (100)

〈3D1|| T e
2||3D3〉 200 (50)

aSigns were not given [8] and one matrix element was missing. These
were given in a private communication.

The value of D′ for 3D2 is slightly different than that re-
ported in Ref. [4] owing to an incorrect gJ factor used in the
evaluation of Zeeman shifts. Appropriately corrected optical
frequencies are tabulated in Appendix A.

It should be noted that there is a large cancellation of
systematic shifts in the determination of these coefficients.
The D′ coefficient in particular has a Zeeman dependence of
just −180 Hz/mT2 and 100 Hz/mT2 for 3D2 and 1D2 respec-
tively. Consequently the statistical errors can be significant
even if the quadratic Zeeman shift systematic dominates the
frequency uncertainty. Statistical errors are much larger for
the 3D2 measurements owing to the stability of the optical
comb used at that time.

To compare these values to the usual hyperfine constants
proportional to the appropriate electromagnetic moment of
the nucleus, correction terms must be calculated. As noted
in Ref. [15], leading-order dipole-dipole (d-d), and dipole-
quadrupole (d-q) corrections do not contribute to D and only
d-q corrections apply to C. This has been proved as special
cases in Refs. [7,16], but the general second-order correction
derived by Woodgate [13] and given in Eq. (B2) makes this
immediate from the 6j-symbols involved.

Including only d-q corrections, the corrected C coefficient
for the 1D2 level is given by

C = C′ + ζ (3D1) −
√

3

7
ζ (3D2) + 1

7

√
3

2
ζ (3D3), (13)

where

ζ (3DJ ) = 6

175
μQ

〈3DJ |
∣∣T e

1

∣∣|1D2〉〈3DJ |
∣∣T e

2

∣∣|1D2〉
E1D2

− E3DJ

, (14)

with μ and Q being the usual magnetic dipole and electric
quadrupole moment of the nucleus respectively. A similar
expression can be found for the 3D2 level by interchanging
1D2 and 3D2 in all expressions.

Matrix elements for these corrections are not available for
all contributions. However, matrix elements for contributions
from 3D1 have been computed for the purposes of estimating
hyperfine quenching rates of the 3P0 level used for state
detection [8]. Relevant values are tabulated in Table I. In
the case of the 3D2 level these give a correction of approx
360(100) kHz, which has the same sign and magnitude of
C′. As other terms have a larger energy denominator and

smaller coefficient in Eq. (13), we would not expect these
to provide a large cancellation indicating a fairly large value
for C. For the 1D2 level, the corresponding contribution from
3D1 is ∼−2.4 kHz with an error bar of 50%. This has the
opposite sign as C′ so leads to a some cancellation. Thus it
would appear there is likely a very large difference in the C
coefficient for the triplet and singlet J = 2 levels.

For the D coefficient, leading second-order corrections are
q-q and possibly dipole-octupole (d-o). Including only these
terms the expression for the 1D2 level is given by

D = D′ + ξ (3D1) − 3

7
ξ (3D2) + 3

28
ξ (3D3)

− χ (3D1) + 1√
6
χ (3D2) − 1

3
√

14
χ (3D3), (15)

where

ξ (3DJ ) = 33

15925
Q2

∣∣〈3DJ |
∣∣T e

2

∣∣|1D2〉
∣∣2

E1D2
− E3DJ

, (16)

and

χ (3DJ ) = 11

245

√
2

7
μ


〈3DJ |
∣∣T e

1

∣∣|1D2〉〈3DJ |
∣∣T e

3

∣∣|1D2〉
E1D2

− E3DJ

. (17)

with 
 the magnetic octupole moment of the nucleus as
defined in Ref. [7]. Expressions for 3D2 can again be obtained
by interchanging 1D2 and 3D2.

Only ξ (3D1) can be estimated from the given matrix el-
ements giving ∼1280(430) Hz and ∼1.5 Hz for the 3D2 and
1D2 levels, respectively. The correction for 1D2 is only accurate
to about a factor of 3 but is clearly much smaller than D′ in
this case. Since ξ (3DJ ) is positive definite there will be some
cancellation of other q-q corrections, but it is unclear if d-o
corrections would contribute significantly.

Leading third-order corrections for the D coefficient would
be d-d-q corrections and these should not be disregarded. As
a crude estimate, such terms would have the scale of a d-q
correction term for C multiplied by the ratio of a T e

1 matrix
element and an energy separation. Including the magnetic
dipole moment, the matrix element is on the order 10 GHz
and energy separations are on the order of 10 THz. Hence,
we might expect d-d-q corrections to be on the order of 10−3

of the d-q corrections for C. For both 1D2 and 3D2 these
would be of similar magnitude to the estimated q-q corrections
for the respective D coefficient. For the same reasons, d-d-d
corrections to C may also be important. To our knowledge,
third-order corrections have never been considered.

Even if all required matrix elements were calculated,
evidence of the higher-order multipole moments would be
contingent on the validity of those calculations and, ideally,
that validity should be experimentally tested. Since the matrix
elements essentially determine a hyperfine mixing between
fine-structure levels, any measurable consequence of that mix-
ing could serve as a test of the theory. For Lu+, such mixing
would give rise to: (i) decays from 3P0 to levels other than 3D1,
(ii) deviations of the g factors applicable to the upper state, and
(iii) forbidden transitions from the ground-state such as E2
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transitions to 3D1 or M1 transitions to 1D2 or 3D2. Measured
rates for quenching decays from 3P0 in 175Lu+ were reported
in Ref. [8]. Quadrupole transitions from 3D1 to 1S0 have
also been observed and coupling strengths could be readily
calibrated. Ultimately it is desirable to have high-precision
measurements of g factors for the assessment of magnetic
fields and the average of gF over all hyperfine levels is gI [1].
Thus, there is opportunity to rigorously test the accuracy of
correction terms.

VI. SUMMARY

In this paper we have performed high-resolution spec-
troscopy of the 1S0-1D2 clock transition in 176Lu+. Transi-
tions to all hyperfine levels have been measured to Hertz
level precision. This sets the stage for clock operation
incorporating hyperfine averaging in which the laser is
servoed over all five transitions measured here. Limited
knowledge of gI limits the current accuracy of individual tran-
sitions but this uncertainty can be significantly reduced with
improved assessment of gI . Moreover, hyperfine averaging
practically eliminates the systematic uncertainty associated
with the static magnetic field. As a byproduct of this work
we have extracted accurate determinations of the hyperfine
structure.

Having accurate assessments of the hyperfine splittings
for 1D2 and 3D2 prompted us to investigate the possible
influence of higher-order nuclear moments, specifically the
magnetic octupole and electric hexadecapole moment. To
this end we have extended previous theory work to include
third-order perturbation theory. We have argued that proper
analysis of the higher-order nuclear moments should consider
at least the leading-order terms that appear in the third-order
result.

In the case of 176Lu+, it is unclear if theory could attain
sufficient accuracy to allow conclusive confirmation on the
existence of the higher-order nuclear moments, but experi-
ments have been suggested that could at least test the validity
of theoretical results. Similar such experiments would be
applicable in any system claiming to have observed these
properties. In the case of 176Lu+, the experimental tests would
be readily accessible as the system is developed towards a
high-performance clock.
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APPENDIX A: QUADRATIC ZEEMAN SHIFTS.

Expressions for the quadratic Zeeman shifts for both the
1D2 and 3D2 are functionally equivalent differing only in the
value of gJ and the hyperfine splittings. Defining the hyperfine
interval δνF ′ = νF ′ − νF ′−1 in units of frequency, the quadratic
shifts �F ′ for the m′

F = 0 states are

�E5/h = −16

13

R
δν6

, (A1a)

�E6/h = 16

13

R
δν6

− 102

65

R
δν7

, (A1b)

�E7/h = 102

65

R
δν7

− 117

85

R
δν8

, (A1c)

�E8/h = 117

85

R
δν8

− 14

17

R
δν9

, (A1d)

�E9/h = 14

17

R
δν9

. (A1e)

where R = (gJ − gI )2μ2
BB2/h2 with gJ and gI the usual g

factors. Within the LS-coupling limit gJ = 1 and 7/6 for 1D2

and 3D2, respectively.
In Ref. [4], the calculated Zeeman shifts inadvertently

used a value of gJ = 1/2. The appropriately corrected optical
frequencies are, in Hz,

ν5 = 372 776 905 829 552 (200), (A2a)

ν6 = 372 784 362 667 641 (200), (A2b)

ν7 = 372 793 515 721 790 (200), (A2c)

ν8 = 372 804 577 481 195 (200), (A2d)

ν9 = 372 817 792 702 607 (200). (A2e)

APPENDIX B: THIRD-ORDER HYPERFINE
CORRECTIONS

In this section an outline of the third-order correction to
the HFS is given illustrating that it has the same F -dependent
factor Xk (IJF ) as the first- and second-order terms. The
derivation illustrates how the form of the perturbation can be
extended to all orders of perturbation theory. For complete-
ness, expressions for the first- and second-order terms are also
given, which also establishes notation.

Using the notation I (k) ≡ 〈I‖T n
k‖I〉 and Q(k)

J1J2
≡

〈J1‖T e
k‖J2〉 for the reduced nuclear and electronic matrix

elements, respectively, expressions for U (1)
k (J ) and U (2)

k are
given by [13],

U (1)
k (J ) =

(
I k I

−I 0 I

)(
J k J

−J 0 J

)
I (k)Q(k)

JJ , (B1)
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and

U (2)
k (J ) =

(
I k I

−I 0 I

)(
J k J

−J 0 J

)

×
∑
k1k2

[
(−1)2I+2J+k1+k2+k (2k + 1)

{
k1 k2 k
I I I

}
I (k1 )I (k2 )

∑
J ′

{
k1 k2 k
J J J ′

}Q(k1 )
JJ ′ Q(k2 )

J ′J

(EJ − EJ ′ )

]
, (B2)

respectively, where EJ is the unperturbed fine-structure energy.
Using Eq. (3), the third-order correction to the energy WJF can be written in the compact form

W (3)
JF =
∑
J ′J ′′

P − G
(EJ − EJ ′ )(EJ − EJ ′′ )

, (B3)

where P and G are given by

P =
∑

k1k2k3

(−1)3I+J+J ′+J ′′+3F

{
F J I
k1 I J ′

}{
F J ′ I
k2 I J ′′

}{
F J ′′ I
k3 I J

}
I (k1 )I (k2 )I (k3 )Q(k1 )

JJ ′ Q(k2 )
J ′J ′′Q(k3 )

J ′′J (B4a)

G = δJ ′J ′′
∑

k1k2k3

(−1)3I+2J+J ′+3F

{
F J I
k1 I J

}{
F J I
k2 I J ′

}{
F J ′ I
k3 I J

}
I (k1 )I (k2 )I (k3 )Q(k1 )

JJ Q(k2 )
JJ ′ Q(k3 )

J ′J . (B4b)

Following Woodgate [13], the Biedenharn-Elliott identity [[17], pg. 305, Eq. (7)] can be used to reduce the number of 6J symbols
having an F dependence. Explicitly, the last two 6J symbols in Eq. (B4a) can be written

(−1)J+J ′+J ′′+3I+F

{
J ′ I F
I J ′′ k2

}{
J I F
I J ′′ k3

}
=
∑

K

(−1)k2+k3+K (2K + 1)

{
J ′ J K
I I F

}{
k2 k3 K
J J ′ J ′′

}{
k2 k3 K
I I I

}
.

This increases the number of 6J symbols in Eq. (B4a) by one but reduces the number with an F dependence to just two. Applying
the identity again reduces this to just one, which is exactly the factor required for Eq. (4). Treating Eq. (B4b) in a similar way
provides the desired expansion with U (3)

k (J ) given by

U (3)
k (J ) =

(
I k I

−I 0 I

)(
J k J

−J 0 J

)∑
J ′J ′′

(2k + 1)

(EJ − EJ ′ )(EJ − EJ ′′ )

∑
k1k2k3

∑
K

(−1)2K+α (2K + 1)

×
[

(−1)J−J ′′
{

k1 J J ′
J K k

}{
k1 I I
I K k

}{
k2 J ′ J ′′
J k3 K

}{
k2 k3 K
I I I

}
I (k1 )I (k2 )I (k3 )Q(k1 )

JJ ′ Q(k2 )
J ′J ′′Q(k3 )

J ′′J

− δJ ′J ′′

{
k1 J J
J K k

}{
k1 I I
I K k

}{
k2 J J ′
J k3 K

}{
k2 k3 K
I I I

}
I (k1 )I (k2 )I (k3 )Q(k1 )

JJ Q(k2 )
JJ ′ Q(k3 )

J ′J

]
, (B5)

where α = 3J ′ + 3J ′′ + 2J + k + k1 + k2 + k3. The summation of the 6J symbols over K can be conveniently written in terms
of a 12J symbol of the second kind ([17], pg. 367) to give

U (3)
k (J ) =

(
I k I

−I 0 I

)(
J k J

−J 0 J

) ∑
J ′J ′′

k1k2k3

(−1)α (2k + 1)

(EJ − EJ ′ )(EJ − EJ ′′ )

×

⎡
⎢⎣
⎧⎪⎨
⎪⎩

− J k3 J ′′
I − I k2

k1 J − J ′
I k I −

⎫⎪⎬
⎪⎭Q(k1 )

JJ ′ Q(k2 )
J ′J ′′Q(k3 )

J ′′J − δJ ′J ′′ (−1)J ′−J

⎧⎪⎨
⎪⎩

− J k3 J ′
I − I k2

k1 J − J
I k I −

⎫⎪⎬
⎪⎭Q(k1 )

JJ Q(k2 )
JJ ′ Q(k3 )

J ′J

⎤
⎥⎦I (k1 )I (k2 )I (k3 ).

(B6)

In this form, properties of the 12J symbol make it immediately clear that k � k1 + k2 + k3 for a nonzero contribution.
The validity of the form of the perturbation to any order can be established by induction. For nth-order perturbation theory,

the most general term has 6J symbols appearing in the form

{
F J I
k1 I J (1)

}⎛⎝{F J (n−1) I
kn I J

} n−1∏
j=2

{
F J ( j−1) I
k j I J ( j)

}⎞⎠, (B7)
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with all others as a special case, just as G is a special case of P in third-order perturbation. If it is assumed the term in parentheses
can be reduced to a product of 6J symbols with only one having an F dependence given by{

F J (1) I
K I J

}
, (B8)

the Biedenharn-Elliott identity can be used to produce same F -dependent factor as the first-order result. Moreover, the same
identity can also be used to inductively infer the validity the assumption to any order.

[1] M. D. Barrett, Developing a field independent frequency
reference, New J. Phys. 17, 053024 (2015).

[2] H. C. J. Gan, G. Maslennikov, K.-W. Tseng, T. R. Tan, R.
Kaewuam, K. J. Arnold, D. Matsukevich, and M. D. Barrett,
Oscillating-magnetic-field effects in high-precision metrology,
Phys. Rev. A 98, 032514 (2018).

[3] K. J. Arnold, R. Kaewuam, A. Roy, E. Paez, S. Wang, and M. D.
Barrett, Observation of the 1S0 to 3D1 clock transition in 175Lu+,
Phys. Rev. A 94, 052512 (2016).

[4] R. Kaewuam, A. Roy, T. R. Tan, K. J. Arnold, and M. D.
Barrett, Laser spectroscopy of 176Lu+, J. Mod. Opt. 65, 592
(2017).

[5] K. J. Arnold, R. Kaewuam, A. Roy, T. R. Tan, and M. D. Barrett,
Blackbody radiation shift assessment for a lutetium ion clock,
Nat. Commun. 9, 1650 (2018).

[6] S. G. Porsev, U. I. Safronova, and M. S. Safronova,
Clock-related properties of Lu+, Phys. Rev. A 98, 022509
(2018).

[7] K. Beloy, A. Derevianko, and W. R. Johnson, Hyperfine struc-
ture of the metastable 3P2 state of alkaline-earth-metal atoms
as an accurate probe of nuclear magnetic octupole moments,
Phys. Rev. A 77, 012512 (2008).

[8] E. Paez, K. J Arnold, E. Hajiyev, S. G. Porsev, V. A.
Dzuba, U. I. Safronova, M. S. Safronova, and M. D.
Barrett, Atomic properties of Lu+, Phys. Rev. A 93, 042112
(2016).

[9] K. J. Arnold, R. Kaewuam, T. R. Tan, S. G. Porsev, M. S.
Safronova, and M. D. Barrett, Dynamic polarizability measure-
ments in 176Lu+, Phys. Rev. A 99, 012510 (2019).

[10] J. E. Bernard, L. Marmet, and A. A. Madej, A laser frequency
lock referenceed to a single trapped ion, Opt. Commun. 150,
170 (1998).

[11] G. J. Ritter, Hyperfine structure and nuclear moments of 175Lu,
Phys. Rev. 126, 240 (1962).

[12] T. Brenner, S. Buttgenbach, W. Rupprecht, and F. Traber,
Nuclear moments of the low abundant natural isotope 176Lu and
hyperfine anomalies in the lutetium isotopes, Nucl. Phys. A 440,
407 (1985).

[13] G. K. Woodgate, Hyperfine structure and nuclear moments of
samarium, Proc. R. Soc. Lond. A 293, 117, (1966).

[14] W. H. King, Isotope Shifts in Atomic Spectra (Springer,
New York, 1984).

[15] K. Beloy and A. Derevianko, Second-order effects on the hy-
perfine structure of p states of alkali-metal atoms, Phys. Rev. A
78, 032519 (2008).

[16] K. Beloy, A. Derevianko, V. A. Dzuba, G. T. Howell, B. B.
Blinov, and E. N. Fortson, Nuclear magnetic octupole moment
and the hyperfine structure of the 5D3/2,5/2 states of the Ba+ ion,
Phys. Rev. A 77, 052503 (2008).

[17] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

022514-8

https://doi.org/10.1088/1367-2630/17/5/053024
https://doi.org/10.1088/1367-2630/17/5/053024
https://doi.org/10.1088/1367-2630/17/5/053024
https://doi.org/10.1088/1367-2630/17/5/053024
https://doi.org/10.1103/PhysRevA.98.032514
https://doi.org/10.1103/PhysRevA.98.032514
https://doi.org/10.1103/PhysRevA.98.032514
https://doi.org/10.1103/PhysRevA.98.032514
https://doi.org/10.1103/PhysRevA.94.052512
https://doi.org/10.1103/PhysRevA.94.052512
https://doi.org/10.1103/PhysRevA.94.052512
https://doi.org/10.1103/PhysRevA.94.052512
https://doi.org/10.1080/09500340.2017.1411539
https://doi.org/10.1080/09500340.2017.1411539
https://doi.org/10.1080/09500340.2017.1411539
https://doi.org/10.1080/09500340.2017.1411539
https://doi.org/10.1038/s41467-018-04079-x
https://doi.org/10.1038/s41467-018-04079-x
https://doi.org/10.1038/s41467-018-04079-x
https://doi.org/10.1038/s41467-018-04079-x
https://doi.org/10.1103/PhysRevA.98.022509
https://doi.org/10.1103/PhysRevA.98.022509
https://doi.org/10.1103/PhysRevA.98.022509
https://doi.org/10.1103/PhysRevA.98.022509
https://doi.org/10.1103/PhysRevA.77.012512
https://doi.org/10.1103/PhysRevA.77.012512
https://doi.org/10.1103/PhysRevA.77.012512
https://doi.org/10.1103/PhysRevA.77.012512
https://doi.org/10.1103/PhysRevA.93.042112
https://doi.org/10.1103/PhysRevA.93.042112
https://doi.org/10.1103/PhysRevA.93.042112
https://doi.org/10.1103/PhysRevA.93.042112
https://doi.org/10.1103/PhysRevA.99.012510
https://doi.org/10.1103/PhysRevA.99.012510
https://doi.org/10.1103/PhysRevA.99.012510
https://doi.org/10.1103/PhysRevA.99.012510
https://doi.org/10.1016/S0030-4018(98)00121-7
https://doi.org/10.1016/S0030-4018(98)00121-7
https://doi.org/10.1016/S0030-4018(98)00121-7
https://doi.org/10.1016/S0030-4018(98)00121-7
https://doi.org/10.1103/PhysRev.126.240
https://doi.org/10.1103/PhysRev.126.240
https://doi.org/10.1103/PhysRev.126.240
https://doi.org/10.1103/PhysRev.126.240
https://doi.org/10.1016/0375-9474(85)90237-4
https://doi.org/10.1016/0375-9474(85)90237-4
https://doi.org/10.1016/0375-9474(85)90237-4
https://doi.org/10.1016/0375-9474(85)90237-4
https://doi.org/10.1098/rspa.1966.0162
https://doi.org/10.1098/rspa.1966.0162
https://doi.org/10.1098/rspa.1966.0162
https://doi.org/10.1098/rspa.1966.0162
https://doi.org/10.1103/PhysRevA.78.032519
https://doi.org/10.1103/PhysRevA.78.032519
https://doi.org/10.1103/PhysRevA.78.032519
https://doi.org/10.1103/PhysRevA.78.032519
https://doi.org/10.1103/PhysRevA.77.052503
https://doi.org/10.1103/PhysRevA.77.052503
https://doi.org/10.1103/PhysRevA.77.052503
https://doi.org/10.1103/PhysRevA.77.052503



