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Energetics and structure of Ps–HPs using a molecular approach
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Many atoms and negative ions are able to bind a positron. Their structure consists of an atomic core with an
orbiting positron or positronium (Ps). A few systems can also bind two positrons, but much less is known about
their internal structure. We examine the family p e−

n e+
m with a proton p, n � 4 electrons, and m � 2 positrons.

Using quantum Monte Carlo techniques, we study the energetics and structure of p e−
4 e+

2 . We compute its ground-
state energy [−1.05910(1) hartree] and its binding energy (0.0079 hartree). We show that to construct a bound
variational wave function, despite having a single nucleus, we must adopt a molecular description of this system,
using HPs, Ps–, H–, and Ps2 as interacting fragments. The analysis of the electronic and positronic probability
distributions reveals that at zero order, the internal structure of this system consists of a Ps– interacting with the
HPs core. Based on these results, we speculate about the existence of similar systems containing three positrons.
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The study of multipositronic systems is a new and largely
unexplored field. Electrons and positrons, when no other par-
ticles are present, can form (disregarding annihilation) stable
systems. Dipositronium (Ps2) with two electrons and two
positrons is a well-known example. It has been extensively
studied theoretically [1–8] and it was detected experimentally
[9]. Positrons can also bind to an atom or a molecule [10–12].
The positive nuclear charge repels the positrons, but they
might attach to the whole system due to the attraction of the
electrons.

Predicting the stability of Coulombic few-body systems
containing positrons and electrons is a very difficult task re-
quiring extremely accurate calculations, as particle correlation
must be fully taken into account. Theoretical calculations
have established the stability of a few multipositronic systems
such as Ps2O [13], e+HPs [14–16], Li+Ps2 and Na+Ps2 [17],
F+Ps2 and Cl+Ps2 [16], but so far they have not been detected
experimentally.

In this paper, we study the stability diagram of the family
p e−

n e+
m composed of a proton p, n � 4 electrons, and m � 2

positrons. After a review of the known results, we study the
energetics of p e−

4 e+
2 , establishing an accurate value of its

binding energy (BE), and analyze its internal structure. We
then discuss the stability of systems of the same family with
three positrons and up to five electrons.

Figure 1 shows our current knowledge on the systems
that can be built using one fixed proton and any number of
electrons and positrons, with the caveat that in most cases
only the L = 0 state has been investigated. Shaded boxes
correspond to unstable combinations, while white boxes cor-
respond to bound systems. For unstable systems, we used
as a hypothetical name the combination of the two species
corresponding to the lowest dissociation channel.

It is known that p e−e+, the hypothetical e+H system, is
unstable. The hydrogen atom is not able to bind a positron and
this has been theoretically proved by Aronson and collabora-
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tors [18] and Armour [19]. Unsurprisingly, H– is able to bind
a positron to form HPs, which is also stable with respect to the
dissociation into H + Ps. This system, theoretically predicted
by Ore [20], was experimentally observed by Schrader and
collaborators [21]. The next system p e−

3 e+ is unstable with
respect to the dissociation into e– + HPs.

HPs can bind an additional positron to form p e−
2 e+

2 , a
multipositronic system [14–16]. The analysis of its structure
[15] revealed that this system is better described as e+HPs: a
positron bound to positronium hydride.

e+HPs has a positive charge, so one might try to add
one electron to see if it remains stable. Varga [14] showed,
however, that this system very likely is not bound since
by increasing the basis size in stochastic variational method
(SVM) calculations, the energy converges to the threshold
HPs + Ps.

Rather counterintuitively, even if e+HPs is not able to
bind a single electron, it can, however, capture two electrons,
leading to the stable system p e−

4 e+
2 [14]. The energies of the

two lowest dissociation channels, computed using the known
exact nonrelativistic energies [7], are HPs + Ps– (−1.051201
hartree) and H– + Ps2 (−1.043754 hartree).

Using the SVM and a large correlated Gaussian basis,
Varga [14] was able to conclude that p e−

4 e+
2 is stable with

respect to all dissociation channels. However, he commented
that his estimate of the binding energy, 0.00423 hartree, was
not converged and that additional calculations were needed to
establish a more realistic value.

Varga speculated that this system could be considered as a
three-body system with a proton p and two orbiting Ps− ions,
in analogy with H− where the electrons have been replaced by
the composite ion Ps−. However, no further calculations have
been published on this peculiar and intriguing system.

Method. We employed an explicitly correlated functional
form,

� = Â
6∏

i=1

fi(ri)
∏

i< j

gi j (ri j ), (1)
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FIG. 1. Stability chart of the p e−
n e+

m family. Systems in shaded
boxes are unbound. The binding energy in hartree for a bound system
is shown in white boxes.

to describe p e−
4 e+

2 . Â is the antisymmetrizer operator, ri is
the distance between particle i and the proton, while ri j is the
distance between particles i and j. We assumed that both the
positrons and the electrons are in a singlet state and the total
angular momentum is 0. The functional form in Eq. (1) is
the simplest, most general function where all two-body terms
are taken into account. Since p e−

4 e+
2 has a fixed proton with

four electrons and two positrons, it is natural to view it as an
atomic system with two positrons attached. In this picture, the
electronic f functions describe the 1s and 2s orbitals, while
the positronic f functions describe the two 1s+ orbitals.

Each particle occupies its own orbital centered on the
nucleus. The fi functions have the form

1s = 1s+ = e
ar+br2

1+cr , 2s = (r − d )e
ar+br2

1+cr , (2)

where the parameters in each orbital are independent from
each other and can assume different values. To reduce the
number of variational parameters, we fixed the a parameter
for the 1s+ and 1s orbitals, respectively, to their theoretical
value of ±1.

The correlation function gi j has the form g(r) =
exp[(a r + b r2)/(1 + cr)]. For electron-electron and
positron-positron interactions, we set b = 0 and a = 1/2
or a = 1/4 for unlike and like spin, respectively. For
electron-positron interactions, we fixed the cusps setting
a = −1/2. We optimized all other parameters.

We used variational Monte Carlo (VMC) to estimate the
variational energy. We first roughly optimized the parameters
minimizing the mean absolute deviation of the local energy
[22], and then finetuned them using an energy optimization
procedure. We employed the resulting wave functions in
fixed-node diffusion Monte Carlo (FN-DMC) simulations to
obtain an upper bound to the exact energy. We estimated the
FN-DMC energies using 10 000 walkers and eliminated the
time-step bias by extrapolating to zero time step.

We computed various average distances and probability
distributions using VMC and FN-DMC. If the employed wave
function were exact, VMC and FN-DMC would give exactly
the same values. We observed only small differences between
the two, with no qualitative differences in the distributions; we
combined these to further reduce the residual error using the
second-order estimator (SOE).

FIG. 2. DMC energies as a function of the mixing parameter c.
The solid horizontal line is the lowest dissociation threshold.

Calculations. We extensively optimized all the orbitals
and correlation factors in Eq. (1) but despite all efforts, we
have been unable to obtain a bound system. Since in the
past this functional form has been able to describe with
great accuracy the essential physics of small electronic and
positronic systems [23–26], its inability to do so in this case
is a hint that some essential physics is missing. The implicit
assumption of this picture is that the system has essentially
an atomic character, and the trial wave function has been built
accordingly.

The two lowest dissociation thresholds differ in energy
by only 0.0074 hartree. The slow convergence of the SVM
previously observed by Varga, and our inability to obtain a
bound state using a single-term atomic wave function, despite
the inclusion of all two-body correlations, led us to speculate
that both limiting structures of the two dissociation channels
could be important to describe the physics of the bound state.
In other words, maybe we can view p e−

4 e+
2 as a molecule that

can dissociate into different fragments.
As a preliminary test of this hypothesis, we performed the

following computational experiment. We first built the wave
functions of the fragments using the same building blocks
f and g already defined. The ground-state wave function of
all fragments is positive everywhere and FN-DMC is able to
recover, within the statistical uncertainty, their exact energy.
We then built the total wave function mixing the two fixed
structures, in a valence-bond-like framework (wave functions
are not normalized),

� = cÂ �(HPs)�(Ps−) + (1 − c)Â�(H−)�(Ps2). (3)

When the mixing parameter c is either 0 or 1, one of the
limiting structures is recovered with the corresponding energy
dissociation threshold.

The Pauli principle dictates that the wave function of a
four-electron system has a nontrivial nodal structure [27] and
we expect its shape to vary as c changes, with a corresponding
variation in the FN-DMC energy.

Figure 2 shows the result of several FN-DMC simulations
with c varying from 0 to 1. The solid horizontal line is the
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TABLE I. Total and binding energies of p e−
4 e+

2 .

p e−
4 e+

2 Energy (hartree) BE (hartree)

Threshold H– + Ps2 –1.043754
Threshold HPs + Ps– –1.051201
Vargaa –1.05542 0.00422
Eq. (3) with c = 0.5 –1.0574(1) 0.0062
VMC –1.05424(1) 0.0030
FN-DMC –1.05910(1) 0.0079

aReference [14].

lowest dissociation threshold. Figure 2 also shows that by
mixing into the lowest-energy structure even a small contri-
bution from the second structure, the nodal structure changes
and the system becomes bound. The lowest energy obtained
with this crude experiment, reported in Table I is −1.0574(1)
hartree. It is remarkable that such a simple nonoptimized
wave function, with just a single tunable parameter, recovers a
binding energy 50% larger than the one previously computed
with the SVM with thousands of variational parameters.

The results of this computational experiment show that
the structures of both fragments are necessary to capture the
physics of this system. Encouraged by this result, we then
proceeded to optimize a wave function of the form

� = Â�(HPs)�(Ps−)ϕ1(HPs; Ps−)

+ cÂ�(H−)�(Ps2)ϕ2(H−; Ps2), (4)

where the two functions ϕ describe the interaction between
the fragments and are constructed using products of the func-
tions f and g already described. We first optimized all the
variational parameters of the ϕ functions and then relaxed
the parameters of the fragments, both orbitals and correlation
factors. Optimizing only the ϕ functions is not sufficient to
obtain a bound wave function.

The optimized wave function has a variational energy of
−1.05424(1) hartree, well below the dissociation threshold.
We then performed a FN-DMC simulation. FN-DMC sim-
ulations can give an exact estimate of a fermionic ground
state only if the wave function has the exact nodal surfaces
[27]. In all other cases, such as this one, FN-DMC gives an
upper bound to the exact energy. The estimate of the ground-
state energy is −1.05910(1) hartree with a binding energy of
0.0079 hartree, almost double the previous estimate.

To investigate the internal structure, we computed the
electronic and positronic distributions. Figure 3 shows the
probability p(r) to find an electron or a positron at a given
distance from the nucleus. The distribution functions of the
electrons and positrons are normalized, respectively, to 4 and
2. The electronic distribution shows two electrons close to the
nucleus, with a maximum at 1.2 bohr, and the remaining two
at a much larger distance, with a maximum at about 8.3 bohr.
The positronic distribution is very broad and almost flat from
3 to 8 bohr with two slightly pronounced maxima.

As a comparison in e+HPs the two positrons are closer
to the nucleus [15] and the probability curve shows a single
maximum. The two maxima of the positronic distribution
immediately suggest to decompose it into the individual con-
tributions of the inner and outer positrons [24,28] shown as

FIG. 3. Electronic (blue thin line) and positronic (black thick
line) probability distributions, in arbitrary units, as a function of the
distance from the nucleus. The curves are normalized to 4 and 2,
respectively. The dashed lines are the probability distributions for
the inner and outer positron.

dashed curves. The two interacting fragments emerge clearly:
the inner positron is close to the two inner electrons, while
the outer positron is closer to the two outer electrons. This
is consistent with the molecular description we have adopted
in the wave-function construction, and it is what we should
expect from a Ps– bound to a HPs.

However, as discussed previously, this limiting structure
alone is unable to correctly describe this system since we
must include into the wave function the two other possible
fragments: H– + Ps2. This implies that the two positrons are
not independently distributed around the nucleus, but they
rather try to stay closer, to partially form dipositronium.
From now on, we name this system Ps–HPs, after the lowest
dissociation channel. A detailed study of the internal structure
of Ps–HPs will be published elsewhere.

This structure can now explain why e+HPs can bind two
electrons, but not just one. In a molecular description, two
electrons are needed to form the stable Ps– that interacts with
HPs, and at the same time the H– + Ps2 resonant structure. A
single electron added to e+HPs would form the hypothetical
Ps-HPs that cannot be stabilized by resonance since the H +
Ps2 channel is much higher in energy.

Discussion. We now discuss the stability diagram of the
entire family p e−

n e+
m . It is tempting to speculate on the possi-

ble existence of systems containing more than two positrons.
We restrict our discussion to hypothetical systems with three
positrons. In all systems considered so far, the two positrons
have been assumed to have opposite spin. By adding an addi-
tional positron, the Pauli principle comes into play, introduc-
ing an additional nodal surface into the wave function since
the electrons and positrons are antisymmetrized separately.
Two like-spin positrons must avoid each other, raising the
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total energy and destabilizing the system. When we try to add
a third electron to helium, for example, the system becomes
unstable due to the newly formed nodal surface produced
by the two electrons with the same spin. A way to overcome
the effective repulsion and the destabilization is to increase
the attraction due to the nuclear charge. This explains why the
1s2 2s 2S Li exists, while the 1s2 2s 2S He– does not. There is
another way to accommodate the effective repulsion between
like-spin identical fermions: the four electrons in the bound
system Ps–HPs do just that by distributing themselves in a sort
of molecule where the electrons with the same spin belong to
different fragments.

There are three possible tripositronic systems, with three
to five electrons and at present it is unknown if they are stable
species. Based on the discussion above, if they exist at all, they
should be molecular systems with two interacting fragments.
We assume that their structure mimics the two fragments of
the lowest dissociation channel, with a possible stabilization
due to the interaction of higher channels. In our discussion,
we make the further assumption that Ps3 and Ps3

– do not exist
as stable isolated species [29].

If pe−
3 e+

3 exists, it would probably be described as
e+HPs + Ps (Eth = −1.0603 hartree) rather than HPs + Ps+
(Eth = −1.0512 hartree). Ps does not seem able to bind to
charged species, but since the energy difference between the
two channels is 9 mhartree, slightly bigger than for Ps–HPs,
this system might exist due to resonance stabilization.

Consider now pe−
4 e+

3 . The lowest dissociation channel is
HPs + Ps2 (Eth = −1.3052 hartree). Both Ps2 and HPs need
a charged system to bind, but the next dissociation channel,
e+HPs + Ps– (Eth = −1.0723 hartree), is much higher in
energy and a resonance stabilization is unlikely. So this system
is probably unstable.

Finally, consider pe−
5 e+

3 . Since Ps3 and Ps3
– are probably

unbound and pe−
3 e+

2 and pe−
3 e+ do not exist, the only possible

way to build this system is Ps + Ps–HPs (Eth = −1.3091
hartree) with no possible resonance stabilization: in conclu-
sion, pe−

5 e+
3 should be unstable.

In conclusion, using quantum Monte Carlo techniques, we
studied the system composed of one proton, two positrons,
and four electrons. We showed that this system has a molecu-
lar character, with a Ps– bound to a HPs, but with a contribu-
tion from the higher dissociation channel, H– + Ps2, that leads
to an energetic stabilization. We have computed its ground-
state energy, estimating its binding energy at 0.0079 hartree.
The analysis of various probability distributions showed that
the inner positron stays closer to the two inner electrons, while
the outer positron is closer to the two outer electrons. We
also speculated about the possible existence of three-positron
systems.
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