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Density-matrix-renormalization-group study of a one-dimensional diatomic molecule beyond
the Born-Oppenheimer approximation
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We study one-dimensional (1D) models of diatomic molecules where both the electrons and nuclei are treated
as quantum particles, going beyond the usual Born-Oppenheimer approximation. The continuous system is
approximated by a grid which computationally resembles a ladder, with the electrons living on one leg and the
nuclei on the other. To simulate density-matrix renormalization group efficiently with this system, a three-site
algorithm has been implemented. We also use a compression method to treat the long-range interactions between
charged particles. We find that 1D diatomic molecules with spin-1/2 nuclei in the spin triplet state will unbind
when the mass of the nuclei reduces to only a few times larger than the electron mass, while the molecule with
nuclei in the singlet state always binds.
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I. INTRODUCTION

The Born-Oppenheimer (BO) approximation [1] has been
the starting point of solid-state physics and quantum chem-
istry since it was first introduced in 1927. Treating the degrees
of freedom of the nuclei adiabatically turns out to be a
satisfactory approximation because the mass of the nucleus
is more than 103 times the electron mass even for the lightest
atom—hydrogen.

However, the BO approximation is no longer valid for
exotic systems such as the positronium molecule [2–4] which
consists of two positrons and two electrons, and the emergent
biexciton molecule [5] which consists of two holes and two
electrons in semiconductors, because their masses are equal
or nearly so. In high precision spectroscopy experiments or
in systems where energy levels cross, nonadiabatic effects
involving the motions of the nuclei require a theoretical treat-
ment beyond the BO approximation [6]. Such systems are dif-
ficult to treat analytically. Various numerical approaches, such
as the stochastic variational method (SVM) [7–9], quantum
Monte Carlo (QMC) methods [10,11], and exact factorization
[6,12,13] combined with density-functional theory (DFT),
have been applied to explore the spectrum of the systems
in two or three dimensions and have correctly predicted the
bound ground state [3] and possible bound excited states [8,9]
later proved by experiments [4].

The hydrogen molecule (H2) and the positronium molecule
(Ps2) are in nearly opposite limits of mass ratios between
the nuclei and electrons, 1836 : 1 vs 1 : 1, corresponding to
adiabatic and nonadiabatic limits, respectively. Unlike H2, for
which the BO approximation can be used to simplify the
numerical treatments [14], the nonadiabatic features of Ps2

requires a complete four-body treatment. The electrons in H2

can be in either a bonding or antibonding state, corresponding
to a spin singlet or triplet respectively, and the antibonding
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state is unstable against dissociation into two atoms. There
are also two types of nuclear spin states, called spin isomers,
with the singlet known as parahydrogen and the triplet known
as orthohydrogen. In Ps2, if both the electrons and positrons
are in spin singlet states, the molecule is bound, while the
triplet-triplet excited state is unbound [7–9,15,16]. Similar
behavior is found for the biexciton, which has a typical mass
ratio me/mh = 0.67. Therefore, a crossover where the spin
state of the “nuclei” starts to influence the binding of the
molecule should exist when one tunes the mass ratio from that
of H2 to that of Ps2, corresponding to the breakdown of the BO
approximation.

Recently, Fisher and Radzihovsky have argued that nuclear
spin can cause significant changes in chemical reactions even
at room temperature [17]. In this article, we use the density-
matrix-renormalization-group (DMRG) method [18,19] to
study a one-dimensional (1D) version of H2 with mass ratio
1 � mp/me � 1000 with high precision [20]. While systems
with four quantum particles have previously been studied for
two and three dimensions, our technique can easily extend to
dozens of 1D particles, beyond the reach of many 2D and 3D
techniques.

Using DMRG, we are able to find the ground state of a one-
dimensional fermionic four-body system, i.e., the diatomic
molecule with tunable mass ratio, and measure its physical
observables such as the ground-state energy, density-density
correlation, and entanglement between particles. In the regime
of mass ratio mp/me � 1 as a benchmark, the results match
the BO approximation, as expected. At mass ratio mp/me = 1,
our results match the behavior of 3D Ps2: its singlet-singlet
four-body ground state is bound while the triplet-triplet state is
unbound in one dimension. However, contradicting with pre-
vious SVM results in three dimensions [9,15,16], the triplet-
singlet state is unbound in one dimension. (Note that it is not
an eigenstate of Ps2 because of the requirement of symmetry
of charge conjugation. Our nuclei and electrons are always
distinguishable particles.) We find that the mass ratio where
these unbound states become bound is mp/me = 2.73 for our
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chosen parameters of the interaction, while the singlet-singlet
state is bound for all the mass ratios. Obtaining the energies
and the average separations of nuclei at different mass ratios
mp/me of the singlet-singlet state and the triplet-singlet state,
we study the passage between the adiabatic and nonadiabatic
limit.

The outline of this article is as follows: first, we will
introduce the microscopic model and explain the numerical
techniques; then, the results from our DMRG calculations will
be illustrated and a comparison to the Hartree-Fock mean-
field calculation will be made; finally, we will discuss the
potential of our method to be used in other 1D few-body
systems and many-body systems.

II. MODEL

The Hamiltonian for a 1D system of interacting spin- 1
2

nuclei (“protons” with coordinates Xi and mass mp) and
electrons (with coordinates xi and mass me) is given by

H = −
Ne∑

i=1

1

2me

d2

dx2
i

−
Np∑
i=1

1

2mp

d2

dX 2
i

+
∑
i� j

V (xi − x j ) +
∑
i� j

V (Xi − Xj ) −
∑

i j

V (xi − Xj ),

(1)

where the spin index has been omitted. Ne and Np are the
total number of electrons and nuclei respectively. For our
H2-like diatomic system, we have Ne = 2 and Np = 2. V is the
“Coulomb” interaction whose form will be given in the next
section, with the intraspecies interactions being repulsive and
interspecies interactions being attractive. We use atomic units,
so h̄ = 1 and e = 1. The mass of the particle is measured in
units of me, so if we denote the mass ratio mp/me = M, then
me = 1, mp = M.

III. NUMERICAL TECHNIQUES

We need first to discretize the continuous system into a
lattice in order to use DMRG to study it. First, we write the
Hamiltonian (1) in the second quantized form in terms of field
operators,

H =
∫

dxφ†
α,s(x)

[
− 1

2mα

d2

dx2

]
φα,s(x)

+ 1

2

∫∫
dxdx′Vαβ (x − x′)φ†

α,s(x)φ†
β,s′

× (x′)φβ,s′ (x′)φα,s(x), (2)

where α, β ∈ {p, e}, s, s′ ∈ {↑,↓}, and Vαβ = V if α = β and
Vαβ = −V if α �= β. The Einstein summation convention has
been used. The field operators satisfy the canonical anticom-
mutation relation for fermions,

{φ†
α,s(x), φβ,s′ (y)} = δ(x − y)δαβδss′ .

Notice that we choose the interspecies operators to anticom-
mute. This does not matter as long as we keep the different
species of particles distinguishable in the implementation.

p

e

FIG. 1. Ladder arrangement of grid points describing the dis-
cretized 1D systems. A DMRG sweep is along the zigzag route
(black arrows), where the red grid points in the upper leg represent
the lattice sites for the nuclei and the blue in the bottom leg represents
the electrons. The total number of sites is 2NL , where NL = L/�x, L
is the size of the 1D system, and �x is the grid spacing. The dashed
outline shows three adjacent sites grouped together as part of the
three-site DMRG algorithm.

Using the fourth-order finite-difference formula for the
second derivative with grid spacing �x,

d2φ(x)

dx2
= 1

12(�x)2
[−φ(x + 2�x) + 16φ(x + �x)

− 30φ(x) + 16φ(x − �x)

− φ(x − 2�x)] + O((�x)4),

the Hamiltonian is discretized to be

H =
∑
i,α

tα
0 ni,α +

∑
〈i, j〉,αs

tα
1 c†

i,αsc j,αs +
∑

〈〈i, j〉〉,αs

tα
2 c†

i,αsc j,αs

+
∑
i,α

V (0)ni,α↑ni,α↓ −
∑

i

V (0)ni,pni,e

+
∑

i> j,αβ

V αβ
i j ni,αn j,β , (3)

where ni,α = niα↑ + niα↓ = �x
∑

s ρα,s(xi ) ≡ �x
∑

s φ†
α,s(xi )

φα,s(xi ), tα
0 = 5

4η
, tα

1 = − 2
3η

, tα
2 = 1

24η
, with η ≡ mα (�x)2,

and V αβ
i j = Vαβ ((i − j)�x). Notice that now 1 � i, j � NL

label the site points. To fourth order in �x, only hoppings up
to next-nearest neighbor remain. For the molecule, we use a
grid spacing �x = 0.1, which we find is accurate for energies
to a relative error of about 10−4.

To accommodate the two oppositely charged species of
particles, the geometry of the system is represented by a
two-leg ladder (Fig. 1), with each species living in one of
the legs. Hopping is only along the legs and the interactions
can be either along the legs (repulsive) or between the legs
(attractive).

Now we explain the form of the Coulomb interaction
V we use. The 1/x form of the Coulomb potential in one
dimension is numerically difficult and unphysical because of
its singularity at x = 0. Instead, there are some conventional
choices for one-dimensional systems, e.g., the soft Coulomb
potential 1/

√
x2 + a2, which is still long ranged and has no

singularity at the origin if a �= 0. If we are only concerned
about short-range properties, an exponential form can well
approximate the long-range potential and meanwhile reduce
the computational complexity [21]. Therefore as a convenient
choice, here we use an exponential potential of the form [21]

V (x) = A exp(−κ|x|), (4)

where A = 1.071 295 and κ−1 = 2.385 345 have been shown
to optimally approximate the soft Coulomb potential with
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FIG. 2. Illustration of the hopping and the interaction parame-
ters. t p and t e are the hopping parameters which can be the nearest
neighbor or the next-nearest neighbor for the nuclei and electrons
respectively.

a = 1 at short range [21]. This exponential potential nicely
mimics some three-dimensional electronic properties [21]. In
our work, A and κ are also varied to see their influence on the
results.

To use DMRG in the two-dimensional ladder system, we
take as usual the zigzag path to form a one-dimensional matrix
product state (MPS), i.e., the p leg being the odd sites and
the e leg being the even sites (see Fig. 2). In such a way,
there is no hopping between nearest neighbors, i.e., a p site
and an e site, so the number of particles in each block cannot
readily fluctuate in a conventional two-site DMRG sweep
and the optimization will get stuck. We could introduce a
special noise term in the Hamiltonian to solve this problem
[22]. Here, instead, we use a three-site algorithm which nat-
urally fits the hopping structure of the system and introduces
“communication” between the next-nearest neighbors at each
three-site local update. At each local update, a singular value
decomposition (SVD) is done once only at the left bond of the
three sites for a left-to-right half sweep, or the right bond for a
right-to-left half sweep. The computational complexity comes
mainly from applying the matrix product operator (MPO) to
the MPS in the mixed canonical form [23]. For the two-site
algorithm, the complexity is O(D3D2

W d3), where D, DW , d
are respectively the bond dimension of the MPS, MPO, and
the dimension of the local Hilbert space at each site; for the
three-site algorithm, the complexity is O(D3D2

W d4). So the
complexity of the three-site algorithm is O(d ) times that of
the two-site one, which is acceptable. For the singlet-singlet
state in a grid of L = 40, the number of states m needed to
achieve a truncation error of 10−10 is about 70, and the number
of sweeps needed to reach energy convergence with an error
smaller than 10−6 is about 160 (see Fig. 3). The large number
of sweeps needed is due to the fine grid spacing and large
associated kinetic-energy scale 1/(�x)2.

To accelerate the calculation, we utilize a compression
algorithm [24] which uses singular value decompositions
(SVDs) to reduce the bond dimension of the MPO. The
factorizability of the exponential function

Vi j = λ−|i− j| = λ−iλ j (i > j) (5)

indicates its MPO can be maximally compressed by SVDs.
Other forms of long-range interactions can be expressed in
terms of a sum of exponentials and the number of significant
singular values is still controllable [24].

1 40 80 120 160 200
sweep

10-6

10-3

100

103

E
 -

 E
0   

(a
. u

.)

2 site
2 site noise
3 site

FIG. 3. Comparison of the performance of two-site algorithm
with noise, without noise, and the three-site algorithm (without
noise). Data are taken from a DMRG simulation of system in
the singlet-singlet state with M = 3, L = 40, �x = 0.1 with 200
sweeps. Here E0 is the converged ground-state energy calculated by
DMRG after 240 sweeps.

Unlike the Ps2 molecule, which has a charge conjugation
symmetry between the electron and positron, the nuclei and
electrons in our system are distinguishable particles and the
total spin S of each species should be conserved individually.
Instead of dealing with the implementation of the global
SU(2) symmetry [25], a S2

tot operator for species of particles in
the singlet state is added to the Hamiltonian for optimization
in order to achieve its conservation.

Errors of our calculation can come from (1) discretization
of the continuous system with a grid spacing �x = 0.1;
(2) finite-size effects of order π2/4(M + 1)L2 for the energy;
(3) DMRG truncation errors of order 10−10; (4) errors from
incomplete convergence in the number of sweeps, which are
about 10−5.

IV. RESULTS

By measuring the density of particles (Fig. 4) and the
density-density correlations of the nuclei (Fig. 5), keeping the
electrons in the singlet state, we find that the triplet nuclei
system gradually becomes unbound when we decrease the
mass ratio M from 5 to 1 while the singlet nuclei system is
always bound.

To characterize the binding of the molecule quantitatively,
we define the average separation of the nuclei d , i.e.,

d =
√∑

i(xi − xc)2ρ(xi, xc)∑
i ρ(xi, xc)

, (6)

where xi = i�x, xc is the center site, and ρ(xi, xc) =
〈�|ρp(xi )ρp(xc)|�〉 is the density-density correlation for the
nuclei in ground state |�〉, and the binding energy Ebind, i.e.,

Ebind = E (2) − 2E (1), (7)

where E (1) is the ground-state energy of one atom consisting
of one electron and one nucleus and E (2) is the ground-state
energy of the diatomic molecule.
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FIG. 4. Comparison of density of particles in the singlet-singlet and the triplet-singlet ground states at different M, where the bold dashed
lines are for the nuclei and the thin solid lines are for the electrons. The states are labeled as |Sp, Se〉, where |Sp〉 is the total spin of the nuclei
and |Se〉 is the total spin of the electrons. The box size is 40.

From now on, we denote the triplet-singlet state as |10〉
and the singlet-singlet state as |00〉. For the |10〉 state, the
average separation d of nuclei scales linearly with the box
size L approaching M = 1, which indicates that d → ∞ as
L → ∞ at small M, i.e., the system is unbound at small mass
ratios. The error of the binding energy Ebind of the diatomic
molecule due to finite-size effects can be estimated by the
ground-state energy of a particle in a box, π2/4(M + 1)L2.
If we use a system size of L = 120, the error is of order
10−4 even for the smallest mass ratio M = 1, which is neg-
ligible. From the data of systems of length L � 120, it is
roughly observed that the binding energy is positive when
M = 3 but approaching 0− when M � 2.5, which means that
there should be some critical mass ratio between 2.5 and 3
where the system changes from bound to unbound. To give
an upper bound on the value of the critical mass ratio, we
extrapolate Ebind from the bound side to get the critical mass
ratio Mc = 2.731, which is consistent with the divergence of
d approaching Mc from the right side, as shown in Fig. 6.
This divergent behavior of d near Mc can also be fitted. Near
unbinding, the size of the bound state becomes much larger

than the exponential potential’s decay length, so the potential
becomes irrelevant and the scaling of the binding energy
is only related to the kinetic energy, i.e., Ebind ∼ 1/Md2 or
d ∼ 1/

√
EbindM. Combined with the extrapolation formula

Ebind = a(M − Mc), where a = 0.005 918, we get that the
fitting formula for d near Mc is d = b/

√
M(M − Mc) + dBO,

where b = 8.456 and dBO = 1.571. It accurately [26] predicts
dBO, which is the separation of the nuclei in the BO limit
M → ∞. For the |00〉 state, by observing its binding energy
Ebind and the average separation d of the nuclei, we can
conclude that it always binds.

As we mentioned before, many studies have shown that in
three dimensions the |00〉 ground state of Ps2 is bound and
the |11〉 is unbound, with which our results at M = 1 in one
dimension are consistent. However, while they predicted the
|10〉 excited state is bound in three dimensions, we conclude
in one dimension it is unbound.

In Fig. 7, we show the energy of the |00〉 and |10〉 states
at different mass ratio M. The energy gap � between the two
closes to 10−4 when M is increased to 50, where the influence
of nuclei’s spin on the binding energy is negligible.
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FIG. 5. Comparison of density-density correlations of nuclei 〈ρp(x1)ρp(x2)〉 in the singlet-singlet (upper) and the triplet-singlet (bottom)
ground states at different M.
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FIG. 6. Binding energy Ebind and average separation d vs mass
ratio M. The critical mass ratio where the molecule just binds is
Mc = 2.731 by extrapolation. Both the data of the binding energy
Ebind (blue square) and the average separation d (red star) for the
triplet-singlet state |10〉 are taken from systems of L = 120, while for
the singlet-singlet state |00〉 the data of d are from systems of L = 40
and the data of Ebind are from extrapolation to infinite size L. The
fitting curves are Ebind = a(M − Mc ) and d = b/

√
M(M − Mc ) +

dBO, where a = 0.005 918, b = 8.456, and dBO = 1.571.

The binding of the molecule can also be qualitatively illus-
trated in the adiabatic potential-energy surface (PES) Ee(X ).
Under the BO approximation, it is obtained by solving the
clamped-nuclei Schrödinger equation

He(X )χn,X (x) = Ee
n (X )χn,X (x) (8)

for each fixed configuration of nuclei X = (X1, . . . , XNp ),
where x = (x1, . . . , xNe ) is the coordinate of the electrons and
He(X ) is the Hamiltonian after separating the nuclei’s kinetic
part of the full Hamiltonian H , i.e.,

H = T p + He(X ),

He(X ) = V pp(X ) + T e + V ee + V pe(X ) (9)

1 10 20 30 40 50
M

-1.40
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-1.20

   
   

   
   

   
E

   
   

  (
a.

 u
.) |00

|10

3 10 20 30 40 50
M

0.00

0.02

0.04

FIG. 7. Comparison of the energy of the triplet-singlet state |10〉
and the singlet-singlet state |00〉 at different mass ratio M. Inset:
the energy difference � between the triplet-singlet state |10〉 and
the singlet-singlet state |00〉 at different mass ratio M. Data for |00〉
are from extrapolation to L = ∞ with error of order 10−3 and for
|10〉 from simulation of system of size L = 120. Data for |10〉 when
M < 3 has been excluded since the molecule becomes unbound.
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FIG. 8. Potential-energy surfaces (PESs) at different mass ratio
and box size. M = mp/me is the mass ratio and L is the box size.
|10〉 and |00〉 denotes the triplet-singlet state and singlet-singlet
state respectively. BO denotes the PES in the Born-Oppenheimer
approximation.

with the nuclei fixed to certain configuration X . This sepa-
ration can only be done when M � 1 and no level crossing
happens for the PESs of different energy levels Ee

n so that
the nuclei are almost stationary compared to electrons and
the adiabatic theorem is valid. Nevertheless, for diatomic
molecule at small mass ratio, we can still give an effective
definition of the PES:

Ee(R) = 〈�′|He|�′〉
〈�′|�′〉 , (10)

where

|�′〉 = ρ̂p(xc + R/2)ρ̂p(xc − R/2)|�〉 (11)

is the state after successively measuring (projecting) the den-
sity of nuclei at xc + R/2 and xc + R/2 in the eigenstate |�〉
of H (here |�〉 is the ground state calculated by DMRG). This
measurement projects |�〉 to the Hilbert subspace that has
one nucleus at xc − R/2 and the other one at xc + R/2. When
M � 1, Ee is equivalent to Ee in the BO approximation,
as illustrated in Fig. 8. At smaller M, however, T p + Ee is
only part of an effective nuclear Hamiltonian and feedback
from the nuclei’s motion needs to be taken into consideration
[13,27]. Nevertheless, we can still infer some information
from Fig. 8 about the binding of the molecule at small M.

For the |10〉 state, the overlap between the curves obtained
from the BO approximation and from DMRG when M � 10
implies that the BO approximation works pretty well in that
regime. For M ∼ 1, the depth of the PES decreases and the
minimum of the PES moves farther away from the equilibrium
position of the BO approximation. A considerable finite-size
effect appears when M = 1, which can be seen by comparing
the curves before and after increasing the box size. These two
qualitative facts indicate that the molecule in |10〉 might be
unbound when M ∼ 1, although it should not be conclusive
since Ee defined by Eq. (10) ignores part of the nonadiabatic
effects from the motion of the nuclei.

For the |00〉 state, the curves coincide with that of the |10〉
state when M > 10, which indicates in that regime the spin of
the nuclei does not affect the binding of the molecule and can
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FIG. 9. Energy of the singlet-singlet state |00〉 vs mass ratio
for unrestricted Hartree-Fock (UHF) calculation beyond the BO ap-
proximation. Also shown are the restricted and unrestricted Hartree-
Fock calculation under BO approximation (BO-HF), both of which
give the same energy, and DMRG energy under BO approximation
(BO-DMRG). The separation between nuclei we used under BO is
R = 1.6. The kinetic energy of the nuclei’s relative oscillation is
added to the BO energy so as to compare with the energy beyond
BO. Data are all taken from system of L = 40.

be treated classically. When M = 1, however, the PES of the
|00〉 state differs from that of the |10〉 state by being much
deeper and having a minimum closer to the origin, which
verifies the binding nature of the |00〉 state.

By tuning the parameters A and κ of the exponential
potential and using other forms such as the soft-Coulomb
or rounded exponential V (x) = A exp(−κ

√
x2 + 1/4) (not il-

lustrated here), we find that |00〉 is always bound for all
M independent of the specific form of the interaction. For
|10〉, the critical mass ratio Mc where the molecule becomes
unbound is changed with the shape of the potential, i.e., κ and
A, and the form of the potential.

We also investigated the case of spinless bosonic nuclei,
which turns out to be equivalent to the singlet fermion nuclei
case because they have the same symmetry requirement for
the spatial part of the wave function.

In a molecule, the Hartree-Fock (HF) approximation is
often a good starting point. However, without the BO approx-
imation, the separation between an electron and a nucleus
appears as a two-particle correlation, rather than a single-
particle effect. This fact makes a simple generalization of HF
a poor approximation, which is illustrated in Fig. 9, where
we did unrestricted Hartree-Fock mean-field calculations both
within and beyond the BO approximation in a discretized grid
for the diatomic molecule as a comparison. Unlike HF under
BO, which includes the nuclei’s interaction with electrons
by introducing an external potential after fixing the position
of the nuclei at the equilibrium positions and optimizing the
electrons’ orbitals, our non-BO UHF ansatz of the whole di-
atomic molecule is a factorization into Slater determinants of
electrons and nuclei, where the single-particle wave functions
of both species are optimized.

At the large mass ratio M = 103, the energy of the BO-
DMRG and DMRG calculations agree quite well. Correla-
tions result in an expected small energy difference between

BO-DMRG and BO-HF. Perhaps less expected is a small
but noticeable disagreement between the BO-HF and non-
BO HF calculations. While the BO-HF gives a satisfactory
approximation of electrons’ wave function in the BO limit,
the non-BO UHF assumption to factorize the wave function
of the whole molecule into the electrons and nuclei’s parts
fails because of the attractive nature of the interaction and
the nonadiabatic movement of the electrons with the nuclei
at small M, as illustrated by the large discrepancy between the
non-BO UHF and DMRG at small M in Fig. 9. To explain this
point, let us consider the simpler case of a single hydrogen
atom with the mass ratio M being tuned, where we do not
change to center of mass or relative coordinates (since this is
much less useful for our discussion of the molecule). In this
case BO-HF is exact at M → ∞, since the wave function is
single particle, i.e., φ(x), where x is the electron’s coordinate;
the non-BO HF at small M is not exact, since it approximates
the wave function of the whole atom φ(x, X ) as the product of
two orbitals, ψ (x)χ (X ), where x and X are the electron’s and
nucleus’s coordinates respectively. As we mentioned before, it
indicates that while the single-particle picture works well for
electrons at large M when the BO approximation is valid, it
fails to predict the correct behavior of the four-body system at
small M.

V. SUMMARY

We have developed a DMRG approach to study con-
tinuum multispecies systems in one dimension, interacting
with nonlocal Coulomb-like potentials. In order to get good
convergence with the number of sweeps, we implemented a
three-site DMRG algorithm, which performs well. As a first
application, we have applied it to a model of 1D diatomic
molecules, where we consider effects beyond the Born-
Oppenheimer approximation. The most interesting effect we
find is that the nuclear triplet state of the “H2” molecule
is unbound when the masses of electrons and nuclei are
similar, while it is bound for large mass ratios. This strong
dependence of binding on nuclear spin is absent in three
dimensions.

Our approach can be applied to systems with dozens
of particles without modifying the algorithm. More com-
plicated sets of particles could also be treated with rela-
tively minor changes. A very interesting direction would
be to study larger systems, progressing towards 1D solids,
with phonons emerging as the number of particles increase.
In our approach, one would not need to make approxima-
tions in deriving an electron-phonon interaction, and one
could study contributions of the phonons to entanglement
entropies.
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