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Structure changes along the lowest rotational band of the antiprotonic helium atom
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Along its lowest rotational band, the antiprotonic helium atom undergoes several changes of structure. It
evolves from an hydrogenlike atom with broader and broader resonant states, to a quasistable molecularlike
structure with narrow resonances, and then to a quasistable Rydberg pseudoatom. The antiprotonic helium
atom is studied with high accuracy as a nonrelativistic three-body Coulomb system in the framework of the
Lagrange-mesh method. Its metastable states are first determined from L = 0 to L = 80 by searching conditions
of calculation for which energies are stationary. Mean values of distances between the particles are then easily
deduced. They show the evolution of the structure of the system. Broad resonances are also analyzed with the
complex scaling method. Physical interpretations are provided.
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I. INTRODUCTION

Antiprotonic helium atoms, i.e., systems composed of a
helium nucleus, an antiproton, and an electron ( p̄He+), appear
when antiprotons are stopped in helium. Their existence was
anticipated by the fact that the average annihilation time of the
antiproton was anomalously long (see Ref. [1] for a review).
As suggested by Condo [2] for mesonic atoms, the antiproton
can be captured in states with a large total orbital quantum
number L where it replaces a 1s electron. These states have
long lifetimes because the Auger electron emission is then
a slow process. Hence the antiproton annihilation which re-
quires a number of deexcitations of the system is delayed.
These ideas were confirmed by calculations of Russell [3–5].
The spontaneous emission of an electron (or autoionization,
or Auger decay) is strongly hindered in these orbitals because
the electron can be emitted only with a rather high orbital
momentum l [3]. Also, in these high excited states with large
L values, radiative decays are quite slow. The experimental
confirmation of the existence of antiprotonic helium came 20
years later [1,6].

The interest in the antiprotonic helium atom is high since
its experimental study opened a way to accurately measure
the antiproton mass [1,7,8]. The attempts to deduce antipro-
ton properties from the experimental study of antiprotonic
helium required more and more accurate calculations of
energies and wave functions [3,7–16]. They were comple-
mented by the evaluation of relativistic and QED correc-
tions [8,11,12,17–19]. Estimating the widths of the observed
states was also important. The calculations of Auger widths
were in general based on the golden rule [5,9,20], but more
elaborate frameworks can also be found [8,20,21]. Radiative
decay widths were also determined [1,5,12,22,23].
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A series of experiments accurately measuring transitions
in the spectrum of antiprotonic helium for total orbital mo-
menta around L = 35 [1,24,25] combined with the accurate
calculations of three-body energy differences with relativistic
and QED corrections allowed researchers to provide the best
values of the antiproton mass. Within the present experimental
and theoretical error bars, the obtained mass does not differ
from the proton mass.

Because of the interest for the antiproton mass, most stud-
ies of antiprotonic helium concentrate on high orbital angular
momenta, for which this system is most likely to form when
antiprotons are stopped in helium. Indeed, except for L = 0
[26], the system has been studied only from L = 28 up to
L = 41 mostly by Korobov and coworkers [7,10,11,14,18–20]
and by the Kyushu group [8,13,15,17]. Antiprotonic helium,
however, is an interesting physical system by itself. It presents
a variety of structures and properties along its lowest ro-
tational band, sometimes like an atom, sometimes like a
molecule. For this reason, it is also called an atom-molecule
or atomcule [1]. The aim of the present work is to complement
the knowledge of p̄He+ by analyzing some of its physical
properties from L = 0 up to very high L values.

To this end, we treat the He2+ + p̄ + e system as a nonrel-
ativistic three-body Coulomb system. Except for the ground
state and its electronic excitations, all p̄He+ states are un-
stable, though often metastable with very narrow widths.
We calculate energies and some geometrical properties in
the perimetric coordinate system [27,28] with the help of
the Lagrange-mesh method [29–34]. This method has the
accuracy of a variational calculation and the simplicity of a
mesh calculation. It does not require analytical evaluations of
integrals, and computer times are short once optimal sets of
parameters are established.

The Lagrange-mesh method offers very accurate results
when the states are quasibound, i.e., when the electron emis-
sion width is small. When this is not the case, the method
can be combined with complex scaling [35,36]. However, the
perimetric coordinate system is not favorable for rather broad
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resonances, which limits its applicability with the complex-
scaling method.

The Lagrange-mesh method is summarized in Sec. II. The
conditions of the numerical calculations and various results
are presented in Sec. III. They are discussed along the rota-
tional band in Sec. IV. Section V contains a summary and a
conclusion. Atomic units (a.u.) are used throughout.

II. THE LAGRANGE-MESH METHOD

We study the lowest rotational band of the three-body
system formed by a 4He2+ nucleus or α particle of mass mα =
7294.299508, an antiproton of mass mp̄ = 1836.1526675, and
an electron of mass me = 1. We adopt here the values used in
Ref. [8] for the sake of comparison. The particles interact only
through the Coulomb force. Fine-structure and relativistic
effects are not taken into account.

The Lagrange-mesh method combines a three-dimensional
mesh, a basis of Lagrange functions which vanish at all mesh
point but one to which they are associated, and a Gauss
quadrature consistent with the mesh [29,34]. The Schrödinger
equation is solved in perimetric coordinates to avoid problems
with the singularities of the kinetic-energy operator and of
the Coulomb interactions. The system of perimetric coordi-
nates [27,28] is defined by the three Euler angles ψ, θ, φ and
the three coordinates

x = rα p̄ + rαe − rp̄e,

y = rα p̄ − rαe + rp̄e,

z = −rα p̄ + rαe + rp̄e.

(1)

The coordinates x, y, and z vary over the (0,∞) interval. The
volume element reads [32,37]

dV = (x + y)(y + z)(z + x) sin θ dψ dθ dφ dx dy dz. (2)

In perimetric coordinates, the Coulomb potential reads

V (x, y, z) = − 4

x + y
− 4

x + z
+ 2

y + z
. (3)

The kinetic energy operator for S states is given, e.g., in
Ref. [38]. The general expression for arbitrary states can be
found in Ref. [33].

The wave function with total orbital momentum L and
natural parity (−1)L is expanded as [33]

�L
M =

L∑
K=0

DL
MK (ψ, θ, φ)�L

K (x, y, z). (4)

In some cases, for L > 0, the sum can be truncated with ex-
cellent accuracy at some value Kmax. The normalized angular
functions DL

MK (ψ, θ, φ) are defined for K � 0 by

DL
MK (ψ, θ, φ) =

√
2L + 1

4π
(1 + δK0)−1/2

[
DL

MK (ψ, θ, φ)

+ (−1)K DL
M −K (ψ, θ, φ)

]
, (5)

where DL
MK (ψ, θ, φ) represents a Wigner matrix element.

Now let us define the Lagrange basis. Let ui, v j, wk

be the zeros of Laguerre polynomials of respective degrees
Nx, Ny, Nz, and hx, hy, hz be three scale parameters with the
dimension of a length. The Lagrange function associated with

the three-dimensional mesh point (hxui, hyv j, hzwk ) is defined
as

F K
i jk (x, y, z) = N−1/2

Ki jk RK (x, y, z) f (Nx )
i (x/hx )

× f
(Ny )
j (y/hy) f (Nz )

k (z/hz ), (6)

where

f (N )
n (u) = (−1)nu1/2

n

LN (u)

u − un
e−u/2 (7)

is a one-dimensional Lagrange-Laguerre function, LN (u) is a
Laguerre polynomial, and un is one of its zeros. The func-
tion RK (x, y, z) is a regularization factor introduced because
of the presence of singularities in the kinetic-energy part
of the Hamiltonian operator when L differs from zero (see
Refs. [33,37] for details). It is equal to 1 when K = 0 and to√

xyz(x + y + z) otherwise. The normalization factor NKi jk is
defined as

NKi jk = hxhyhz(hxui + hyv j )(hxui + hzwk )

× (hyv j + hzwk )R2
Ki jk, (8)

where RKi jk = RK (hxui, hyv j, hzwk ). The Lagrange func-
tions verify the Lagrange conditions

F K
i jk (hxui′ , hyv j′ , hzwk′ ) = (λiμ jνkNKi jk )−1/2

×RKi jkδii′δ j j′δkk′ , (9)

i.e., F K
i jk (x, y, z) vanishes at all mesh points except at the

i jk point. A triple Gauss-Laguerre quadrature with weights
λiμ jνk is associated with this mesh,

∫ ∞

0

∫ ∞

0

∫ ∞

0
G(x, y, z) dx dy dz ≈ hxhyhz

Nx∑
i=1

λi

×
Ny∑
j=1

μ j

Nz∑
k=1

νkG(hxui, hyv j, hzwk ), (10)

with which all matrix elements are computed. At the Gauss
quadrature approximation, the functions F K

i jk are orthonormal
for fixed K . More generally, matrix elements of an operator
O(x, y, z) which does not include derivatives are diagonal and
given by the values of the operator at the three-dimensional
mesh points because of the Lagrange property (9),〈

F K
i jk|O(x, y, z)|F K

i′ j′k′
〉
G

= O(hxui, hyv j, hzwk )δii′δ j j′δkk′ , (11)

where the subscript G indicates that the integrals are ap-
proximated with Gauss quadratures. This is the case for the
potential part of the Schrödinger equation.

The Lagrange-mesh method can be very accurate. It is
almost as accurate as a variational calculation with the same
basis [31,34]. Strangely, its accuracy for the lowest energies
is much better than the accuracy of the Gauss quadrature for
individual matrix elements. The Gauss quadrature can lose
its accuracy when integrands present singularities or discon-
tinuities, and the Lagrange-mesh method then also becomes
inaccurate. This problem is solved when the singularities are
regularized [30,34,39], i.e., when multiplicative factors render
the integrands nonsingular.
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The potential is regularized by the volume element, i.e., the
corresponding operator O(x, y, z) in Eq. (11) is the nonsingu-
lar product of V (x, y, z) and the Jacobian part in Eq. (2). The
kinetic matrix elements are also automatically regularized by
the volume element and by RK (x, y, z) (see Refs. [32,33,37]
for details), i.e., no singular term appears when these matrix
elements are calculated with a Gauss quadrature.

The �L
K (x, y, z) functions in Eq. (4) are expanded in the

Lagrange basis as

�L
K (x, y, z) =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

CL
Ki jkF K

i jk (x, y, z). (12)

The variational calculation then reduces to the system of
NxNyNz mesh equations

∑
Ki jk

{〈
F K ′

i′ j′k′
∣∣T L

K ′K

∣∣F K
i jk

〉
G + [V (hxui, hyv j, hzwk )

−E ]δKK ′δii′δ j j′δkk′
}
CL

Ki jk = 0, (13)

where T L
K ′K is the matrix element of the kinetic-energy opera-

tor between functions DL
MK ′ and DL

MK . The integration over the
angular coordinates is treated analytically, and the integrations
over the dimensioned perimetric coordinates are performed
with the Gauss-Laguerre quadrature associated with the La-
grange mesh as indicated by the subscript G and by the
simplicity of the diagonal potential term. The expression of
the kinetic-energy part calculated with this three-dimensional
Gauss quadrature is rather long but not very complicated to
compute. It is given in the appendix of Ref. [33]. It involves
only Laguerre zeros and weights, also appearing in values of
the first derivatives of the Lagrange functions at mesh points.
Note that the resulting Hamiltonian matrix is sparse.

The wave functions are normed at the Gauss approximation
according to

∑
Ki jk

(
CL

Ki jk

)2 = 1. (14)

Several mean values are easily obtained at the Gauss approx-
imation. For example, the mean distance between the helium
nucleus and the antiproton is given by

〈rα p̄〉G = 1

2

∑
Ki jk

(
CL

Ki jk

)2
(hxui + hyv j ). (15)

The basis (6) formed of products of Lagrange functions is
strictly equivalent to a basis involving products of Laguerre
polynomials

F̃ K
i jk (x, y, z) ∝ RK (x, y, z)Li(x/hx )Lj (y/hy)

× Lk (z/hz ) e−x/2hx e−y/2hy e−z/2hz (16)

with i ∈ {0, . . . , Nx − 1}, j ∈ {0, . . . , Ny − 1}, k ∈ {0, . . . ,

Nz − 1}, as employed, e.g., in Ref. [40]. The Lagrange-mesh
calculation is thus equivalent to a variational calculation
performed with basis (16) where the matrix elements would
be calculated with the same Gauss-Laguerre quadrature. It
has, however, a number of significant advantages over such
a calculation. The potential matrix elements are very simple

with property (11), the Hamiltonian matrix is rather sparse,
and this matrix is better conditioned.

For studying resonances, the Lagrange-mesh method can
be combined [34] with the complex scaling method [35,36].
The coordinates x, y, z are then replaced by eiθx, eiθy, eiθ z,
respectively, and Eq. (13) becomes

∑
Ki jk

{
e−2iθ

〈
F K ′

i′ j′k′
∣∣T L

K ′K

∣∣F K
i jk

〉
G + [e−iθV (hxui, hyv j, hzwk )

− E (θ )]δKK ′δii′δ j j′δkk′
}
CL

Ki jk (θ ) = 0. (17)

The complex-scaled Hamiltonian matrix has the same sparse
structure as the unscaled one and is symmetric but not
Hermitian. For large enough values of θ smaller than 1

2π ,
a resonant state corresponds to a square-integrable solution
of the complex-scaled Schrödinger equation. The stationary
values θ0 of E (θ ) with respect to θ in Eq. (17) provide ap-
proximations of the energy Er and width � of the resonances
as

E (θ0) = Er − 1
2 i�. (18)

III. ENERGIES, WIDTHS, AND MEAN DISTANCES

A. Conditions of the numerical calculations

When p̄He+ is considered as a three-body Coulomb sys-
tem, all states of the antiprotonic helium atom are unstable
except for the ground state and its electronic excited states.
The first step of their search consists in looking for regions
of the parameter space where the energies present plateaus
of stationarity. Lagrange-mesh calculations depend on six pa-
rameters: three numbers of mesh points Nx, Ny, Nz and three
scale parameters hx, hy, hz. For low total angular momenta L,
the shape of the system is very similar to a hydrogen atom
with the He2+ nucleus and the antiproton very close to each
other with respect to the electron mean distance [26,34]. The
mean values of the perimetric coordinates x and y should then
be very close to each other. Hence the choice N = Nx = Ny

and h = hx = hy is a natural way of reducing the parameter
space. We thus start with four free parameters and consider
increasing L values.

Given that almost all states are unstable, the number of
significant digits for the different observables is limited. Our
strategy is thus to minimize the number of mesh points
consistently with the accuracy achievable for each energy. In
other words, after finding a stationary energy for some set
of parameters, we try to reduce N and Nz without losing the
accuracy on the significant figures.

A difficulty may occur by the fact that the lowest eigen-
values of the Lagrange-mesh matrix may represent unphys-
ical square-integrable approximations of scattering states as
well as square integrable approximations of physical resonant
states. The mean values of the distances between the particles
provide an easy way to discriminate physical and unphysical
eigenvalues. This is also possible with the K probabilities
discussed later. It may happen, however, that an unphysical
energy is very close to a physical one and affects the accuracy
of the calculation. When this problem occurs, it is usually
easily solved by slightly increasing N or Nz.
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TABLE I. Optimal parameters for Kmax = L if L = 0 or 1 and Kmax = 2 if L � 2.

L N Nz h hz L N Nz h hz L N Nz h hz

0 12 20 0.0003 0.38 17 14 12 0.0075 0.36 34 24 16 0.020 0.40
1 12 16 0.0007 0.44 18 14 12 0.0080 0.40 35 24 16 0.020 0.40
2 12 16 0.0010 0.34 19 14 12 0.0085 0.30 36 24 16 0.022 0.40
3 12 16 0.0014 0.36 20 14 12 0.0092 0.34 37 24 16 0.024 0.40
4 12 16 0.0016 0.34 21 16 12 0.0095 0.40 38 24 16 0.026 0.40
5 12 16 0.0019 0.40 22 16 12 0.0102 0.26 39 24 16 0.028 0.40
6 12 16 0.0024 0.40 23 16 12 0.0106 0.30 40 24 16 0.030 0.40
7 12 16 0.0028 0.40 24 16 12 0.0114 0.42 41 24 16 0.032 0.40
8 12 14 0.0034 0.40 25 16 12 0.0122 0.42 42 24 16 0.036 0.40
9 12 14 0.0040 0.36 26 16 12 0.015 0.36 43 26 14 0.040 0.40
10 12 14 0.0046 0.43 27 16 12 0.018 0.38 44 26 14 0.044 0.40
11 12 14 0.0052 0.38 28 16 22 0.017 0.60 45 28 12 0.048 0.40
12 12 12 0.0056 0.46 29 18 16 0.016 0.42 46 28 12 0.052 0.40
13 14 12 0.0060 0.52 30 22 16 0.015 0.40 47 30 12 0.056 0.40
14 14 12 0.0063 0.46 31 24 16 0.017 0.40 48 30 12 0.059 0.40
15 14 12 0.0067 0.48 32 24 16 0.018 0.42 49 32 10 0.062 0.40
16 14 12 0.0070 0.42 33 24 16 0.020 0.40 50 32 10 0.064 0.40

The sum over the hypermomentum quantum number K in
Eq. (4) is truncated at some small value Kmax. Calculations
of stationary energies have been performed for truncations at
Kmax = 0, 1, 2, and 3. While using Kmax = 1 yields noticeably
different results from the case Kmax = 0, there is in general
little difference between Kmax = 1 and 2 and almost no differ-
ence between Kmax = 2 and 3, as can be seen below. Therefore
the optimization of the parameters has been performed with
Kmax = 2. The corresponding parameters are displayed in
Table I.

The values of N and Nz are rather stable up to L = 27. They
start increasing beyond that L value. Surprisingly, the choice
Nx = Ny and hx = hy remains an acceptable simplification
up to about L = 50 as we shall see below. The value of h
increases rather steadily with L, except in a region of structure
change around L = 27. Notice that in most cases, the energies
are almost insensitive to variations of h in an interval around
the quoted value. The value of hz scatters around 0.40 in most
cases. For small values of Nz, the results are quite sensitive
to hz.

While exploring the parameter space to find the (roughly)
optimal values presented in Table I can take a lot of time in
some cases, reproducing our results with these values using
a Lagrange-mesh code is quite fast. It takes from seconds
for the smallest basis sizes to less than half an hour for the
largest one with Kmax = 3 on a fast personal computer. The
time-consuming part of the calculation consists in the deter-
mination of a few low eigenvalues of the Hamiltonian matrix
when it is large. The evaluation of this matrix from Laguerre
zeros and weights is fast. The eigenvalue calculations are
performed with the software JADAMILU [41]. The physical
eigenvalue is usually found among the three lowest ones. For
L � 5 and L � 35, it is in general the lowest one.

B. Energies as real stationary eigenvalues

The real stationary energies obtained for L = 0–50 and
Kmax = 0–3 are gathered in Table II. Before discussing them

in more detail in Sec. IV, let us first make some general
comments. The number of stable digits strongly varies with
L. It decreases from L = 0 to L = 23 and increases beyond
that value. Energies obtained with Kmax = 0 display a larger
number of stable digits. They may be stationary for values of
hz different from those in Table I. The Kmax > 0 energies are
obtained with the parameters of Table I. For L � 3, increasing
Kmax from 0 to 1 reduces the number of stable digits and
modifies the energies by an amount comprised between about
10−6 and 4 × 10−3 in the region L = 20–30. Changes are far
less important for higher Kmax.

It should be noted that for unstable states, there may
exist several local minima in the parameter space. In such
cases, we have tried to choose the one which offered the
weakest variation with the parameters. One can assume that
the corresponding variation of several units on the last digit is
roughly indicative of the width of the state. This assumption
is analyzed in the next subsection.

The computer time increases with the product NxNyNz. For
high L values, it becomes interesting to reduce the number of
mesh points by decoupling Nx from Ny and hx from hy. This
is done for L = 50, 60, 70, and 80 in Table III. One observes
that the same result is obtained for L = 50 with a reduction of
NxNyNz by about 20%. Computer times are reduced at the cost
of a more tedious exploration of the parameter space. With Nx

almost constant and an increase of Ny, very accurate values
can be obtained for the energies and mean radii.

C. Energies and widths from complex scaling

For a number of states for which few digits are stable, the
complex scaling method has been used to compute resonance
energies Er and widths �. The FEAST software [42,43]
has been used to compute the eigenvalues of the complex
Hamiltonian matrix. The results are displayed in Table IV.
The parameters hx, hy, hz and the scaling angle θ are chosen
to minimize the derivative of the energy with respect to θ . An
accurate description of the square-integrable scaled resonance
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TABLE II. Energies for Kmax = 0 − 3. All the displayed digits are stable with respect to variations of the numbers of points and scale
parameters, except the last one, which may vary by a few units.

L Kmax = 0 Kmax = 1 Kmax = 2 Kmax = 3

0 − 2934.29714222503
1 − 733.94924619 − 733.9492462
2 − 326.47742024 − 326.477425 − 326.477423
3 − 183.8622991 − 183.862303 − 183.862303 − 183.862303
4 − 117.8519093 − 117.851910 − 117.851910 − 117.851910
5 − 81.99447987 − 81.99445 − 81.99445 − 81.99445
6 − 60.373685186 − 60.37364 − 60.37364 − 60.37364
7 − 46.341108318 − 46.3411 − 46.3411 − 46.3411
8 − 36.72062357 − 36.7205 − 36.7205 − 36.7205
9 − 29.83941049 − 29.8391 − 29.8391 − 29.8391
10 − 24.74841862 − 24.7480 − 24.7480 − 24.7480
11 − 20.87669828 − 20.876 − 20.876 − 20.876
12 − 17.8640600 − 17.863 − 17.863 − 17.863
13 − 15.474173 − 15.473 − 15.473 − 15.473
14 − 13.5467634 − 13.546 − 13.546 − 13.546
15 − 11.9700392 − 11.967 − 11.967 − 11.967
16 − 10.6640987 − 10.662 − 10.662 − 10.662
17 − 9.570614 − 9.570 − 9.570 − 9.570
18 − 8.646207 − 8.645 − 8.645 − 8.645
19 − 7.858077 − 7.857 − 7.857 − 7.857
20 − 7.181057 − 7.180 − 7.180 − 7.180
21 − 6.5955767 − 6.594 − 6.594 − 6.594
22 − 6.0862498 − 6.090 − 6.090 − 6.090
23 − 5.6408336 − 5.642 − 5.642 − 5.642
24 − 5.249498 − 5.2593 − 5.2596 − 5.2596
25 − 4.904281 − 4.90965 − 4.90952 − 4.90952
26 − 4.598683 − 4.602409 − 4.60246 − 4.60246
27 − 4.327349 − 4.330244 − 4.330238 − 4.330238
28 − 4.0858553 − 4.0881753 − 4.0881909 − 4.0881916
29 − 3.87050248 − 3.87240687 − 3.87240909 − 3.87240911
30 − 3.6781948980 − 3.679773780 − 3.679774782 − 3.679774786
31 − 3.50632021075 − 3.5076344917 − 3.5076350336 − 3.5076350311
32 − 3.35266369810 − 3.35375754525 − 3.35375786353 − 3.35375786378
33 − 3.21533649578 − 3.21624403698 − 3.21624423242 − 3.21624423252
34 − 3.09271792469 − 3.09346677930 − 3.09346690183 − 3.09346690187
35 − 2.98340755026 − 2.98402087684 − 2.98402095422 − 2.98402095424
36 − 2.88618460130 − 2.88668234139 − 2.88668239015 − 2.88668239016
37 − 2.79997262723 − 2.80037228493 − 2.80037231539 − 2.80037231540
38 − 2.72380763649 − 2.72412477408 − 2.72412479286 − 2.72412479286
39 − 2.656808383794 − 2.657056931562 − 2.657056942960 − 2.657056942961
40 − 2.598148207134 − 2.598340641362 − 2.598340648167 − 2.598340648168
41 − 2.547029189946 − 2.547176608811 − 2.547176612819 − 2.547176612819
42 − 2.502661588544 − 2.502773709070 − 2.502773711414 − 2.502773711414
43 − 2.464253686380 − 2.464338795496 − 2.464338796870 − 2.464338796870
44 − 2.431017243672 − 2.431082156644 − 2.431082157463 − 2.431082157463
45 − 2.402189028156 − 2.402239115582 − 2.402239116083 − 2.402239116083
46 − 2.377060921427 − 2.377100238930 − 2.377100239248 − 2.377100239248
47 − 2.355006325327 − 2.355037828728 − 2.355037828939 − 2.355037828939
48 − 2.335493802411 − 2.335519595495 − 2.335519595641 − 2.335519595641
49 − 2.318086709779 − 2.318108273733 − 2.318108273838 − 2.318108273838
50 − 2.302433278998 − 2.302451656877 − 2.302451656956 − 2.302451656956

states requires an increase of the numbers of mesh points with
respect to Table I. The values of Nx = Ny = Nz up to 22 have
been considered.

The resonance energies Er confirm the validity of the
estimated energies E from Table III. It is interesting to note

that the width can be somewhat larger than the order of
magnitude estimated from the stability of the real eigenvalues
E . The widths increase progressively with L.

The perimetric coordinate system does not seem suited to
give accurate widths beyond L = 21. Another method such
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TABLE III. High-L parameters and energies (Kmax � 1).

L Nx Ny Nz hx hy hz E

50 26 32 10 0.062 0.064 0.40 −2.302451656955
60 28 38 10 0.080 0.100 0.40 −2.200975494690
70 28 42 10 0.088 0.146 0.40 −2.146362258771
80 28 50 10 0.120 0.198 0.40 −2.111899337302

as the Gaussian expansion method used beyond L = 28 in
Refs. [8,15] would probably give good results.

D. Mean distances between the particles

For unstable states, mean values can not be defined rig-
orously since the wave functions are not square integrable.
However, we have square-integrable approximations of these
wave functions which describe their internal part and neglect
their oscillating asymptotic part. We have computed the mean
values of the distances between the three particles using these
approximate wave functions. It is in this sense that we discuss
mean distances below.

In the Lagrange-mesh method, the calculation of mean
values is very simple and often very accurate by using the
associated Gauss quadrature [see Eq. (15)]. Once the eigen-
values and eigenvectors are obtained, the computation of
the mean distances between the particles takes a negligible
time. As for the eigenvalues, the number of significant digits
is estimated from the stability with respect to variations of
the numbers of mesh points and of the scale parameters. In
Table V we have, however, limited the number of significant

TABLE IV. Resonance energies Er and widths � from complex
scaling (Kmax � 1) compared with stationary energies E for L = 2 −
21. All the displayed digits are stable with respect to variations of the
numbers of points and scale parameters, except the last one, which
may vary by one or two units.

L E Er �

2 −326.477424 − 326.477423 < 10−6

3 − 183.862303 − 183.862303 2 × 10−6

4 − 117.851910 − 117.851909 8 × 10−6

5 − 81.99445 − 81.994465 2.5 × 10−5

6 − 60.37364 − 60.373637 6.1 × 10−5

7 − 46.3411 − 46.341003 1.3 × 10−4

8 − 36.7205 − 36.720433 2.3 × 10−4

9 − 29.8391 − 29.839104 4.0 × 10−4

10 − 24.7480 − 24.74797 6.3 × 10−4

11 − 20.876 − 20.87608 9.6 × 10−4

12 − 17.863 − 17.86326 1.4 × 10−3

13 − 15.473 − 15.47318 1.9 × 10−3

14 − 13.546 − 13.5456 2.6 × 10−3

15 − 11.967 − 11.9687 3.4 × 10−3

16 − 10.662 − 10.6626 4.3 × 10−3

17 − 9.570 − 9.5691 5.4 × 10−3

18 − 8.645 − 8.6448 6.5 × 10−3

19 − 7.857 − 7.8568 7.8 × 10−3

20 − 7.180 − 7.1800 9.2 × 10−3

21 − 6.594 − 6.5951 1.1 × 10−2

digits to a maximum of 10 to save space, except for 〈rα p̄〉 at
L = 0.

For some L values, the electron-helium and electron-
antiproton distances are not stable at all. They steadily
increase when hz or Nz increases. On the contrary, the
antiproton-helium distances remain rather stable. Hence, for
L = 22–24, we do not display 〈rαe〉 and 〈rp̄e〉. For L = 15–21
and possibly 25, the displayed values are mostly indicative of
the fact that resonances replace quasibound states.

IV. DISCUSSION

We now discuss the results as a function of L with emphasis
on the various changes occurring along the rotational band.

A. L = 0

Considered as a three-body Coulomb system, the ground
state is the only stable state of p̄He+. With rather small num-
bers of mesh points (NxNyNz = 2880) and short computing
times of the order of 1 s, we obtain the L = 0 energy with
an absolute accuracy estimated as a few times 10−11, i.e., a
relative accuracy better than 10−14. The mean distances in
Table V have relative accuracies better than 10−12 for α p̄ and
10−8 for the other two.

The α p̄ mean distance differs from 1.5 times the
corresponding Bohr radius aα p̄ = (mp̄ + mα )/2mp̄mα ≈
0.00034085518967666 by about 4 × 10−14. The α p̄
subsystem is thus very close to its free counterpart. The other
two mean distances differ from 1.5 times the pseudohydrogen
Bohr radius a(α p̄)e = (mp̄ + mα + me)/(mp̄ + mα )me ≈
1.0001095236 by less than 5 × 10−7. They agree with
the picture of a 1s electron orbiting a charge 1 with mass
mp̄ + mα . This confirms the atomic interpretation of the
system.

The L = 0 state has first been studied with high accuracy in
Ref. [26] by using a nonorthogonal basis of 400 exponentials
of the relative coordinates between the particles with random
choices for the nonlinear parameters. In Ref. [26] the energy is
obtained with an absolute accuracy of 10−12 and the mean dis-
tances with absolute accuracies of 10−10 for α p̄ and 10−11 for
the other two. The authors also present accurately computed
values for many other properties.

In order to compare with Ref. [26], we briefly adopt the
same masses in this paragraph. With the conditions of calcu-
lation in Table I, we agree at the level of 2 × 10−10 for the
energy. For the distances, our accuracy is significantly better
for α p̄ and far less good for the other two. In order to deepen
the comparison, we have tried to improve the agreement for
the αe and p̄e mean distances. With N = 16, h = 0.0003, and
Nz = 55, hz = 0.28, our energy is still lower by 2 × 10−10

than in Ref. [26], but the αe and p̄e mean distances now agree
at the level of accuracy of Ref. [26], i.e., about 10−11, and the
same for the α p̄ mean distances, i.e., at about 10−10.

The p̄He+ ground state has also been studied in Ref. [44]
within the Born-Oppenheimer approximation. In that work,
the electronic energy curve is computed variationally and
used as the electronic potential to determine the ground-state
energy. With the same masses as in Ref. [44], the absolute
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TABLE V. Mean distances between the particles as a function of L.

L 〈rα p̄〉 〈rαe〉 〈rp̄e〉 L 〈rα p̄〉 〈rαe〉 〈rp̄e〉
0 0.0005112827845555 1.50016385 1.50016392 27 0.27781 1.3221 1.4010
1 0.0017042759548 1.5001590 1.5001597 28 0.29943 1.3028 1.3908
2 0.003578984 1.500134 1.500144 29 0.3223988 1.264163 1.362456
3 0.0061354015 1.500074 1.500093 30 0.346655076 1.2364056 1.3467724
4 0.0093735426 1.49995 1.49999 31 0.372444330 1.2082960 1.3323751
5 0.01329341 1.49976 1.49984 32 0.3999745610 1.179592351 1.319125665
6 0.01789503 1.4994 1.4995 33 0.4294966122 1.150265153 1.307160231
7 0.0231784 1.4986 1.4989 34 0.4613152556 1.1203737598 1.2967599608
8 0.0291437 1.4978 1.4982 35 0.4958003099 1.0900358595 1.2883249922
9 0.0357905 1.4969 1.4974 36 0.5333974859 1.0594176072 1.2823726838
10 0.043119 1.4952 1.4959 37 0.5746361641 1.0287353012 1.2795475976
11 0.051126 1.495 1.496 38 0.6201281372 0.9982636565 1.2806331625
12 0.05982 1.491 1.493 39 0.6705464298 0.9683472642 1.2865528324
13 0.06918 1.494 1.496 40 0.7265677950 0.9394094299 1.2983411250
14 0.07925 1.490 1.493 41 0.7887617259 0.9119475301 1.3170575124
15 0.0899 1.51 1.51 42 0.8574247298 0.8864993332 1.3436213531
16 0.1014 1.50 1.50 43 0.9324023194 0.8635689240 1.3785834780
17 0.1135 1.49 1.50 44 1.0129950446 0.8435235931 1.4219197584
18 0.1263 1.51 1.52 45 1.0980434262 0.8265058260 1.4729749078
19 0.1399 1.49 1.50 46 1.1861837882 0.8124114709 1.5306191136
20 0.1541 1.52 1.53 47 1.2761436991 0.8009451603 1.5935366300
21 0.1688 1.62 1.64 48 1.3669363774 0.7917145575 1.6604924024
22 0.185 49 1.4579120899 0.7843149386 1.7304814344
23 0.201 50 1.5487120955 0.7783806293 1.8027629443
24 0.216 60 2.4503942977 0.7555957660 2.5965361818
25 0.2373 1.425 1.492 70 3.406359500 0.7515800365 3.503938357
26 0.25714 1.362 1.434 80 4.4694343806 0.7505906336 4.539745916

accuracy of the p̄He+ energy at the Born-Oppenheimer ap-
proximation is found as about 5 × 10−5.

It is also instructive to use our accurate energy to test two
other approximations of the energy based on the simple above
picture which explained the values of some mean distances. If
one neglects the distance between α and p̄ for the electron mo-
tion, the energy becomes the sum of the energy of the lowest
state with orbital momentum L of the p̄He2+ hydrogenic ion
and the energy of the 1s ground state of an hydrogenic atom
with a nucleus of charge Z = 1 and mass mp̄ + mα [34]:

Elow L = − 2mαmp̄

(L + 1)2(mα + mp̄)
− (mα + mp̄)me

2(mα + mp̄ + me)
. (19)

Another approximation can be obtained with a simple varia-
tional calculation using the product of a 1s He+ wave func-
tion and an (n = L + 1, L) p̄He2+ wave function, both with
adjustable effective charges determined by minimizing the
energy [3]. This wave function in He2+ centered coordinates
should give good results when an atomic structure dominates
and provide a poor description of a molecular structure. The
errors on both approximations for L = 0 amount to about 10−7

for the analytical approximation (19) and to about 10−5 for
the variational calculation. These errors will also be discussed
below for other L values and are displayed in Fig. 1.

B. L = 1

The L = 1 excited state may autoionize into an electron
and an α p̄ hydrogenlike ion in its Lα p̄ = 0 ground state with

energy −2933.79719683. In spite of the large energy available
for the emitted electron, this state is quasibound because of
a width with an order of magnitude below 10−8. The reason
of this smallness of the width is the small overlap of the α p̄
parts of the initial L = 1 wave function and of the final wave
function describing the electron emission. For Lα p̄ = 0, the
α p̄ mean distance is 5.11 × 10−4 and its root-mean-square
deviation is 2.95 × 10−4, while, for the L = 1 part of the α p̄e
system, they are 1.70 × 10−3 and 7.62 × 10−4, respectively.

The αe and p̄e mean distances are slightly smaller than for
L = 0.

L
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L
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x
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L

10−6

10−4

10−2

1

FIG. 1. Accuracies of approximate energies EL,approx. in a.u. for
the low-L analytical approximation (19) (red squares), variational ap-
proximation (black dots), and high-L analytical approximation (22)
(blue triangles).
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FIG. 2. Probabilities PL (K ) = ∑
i jk (CL

Ki jk )2 of the K = 1
(blue diamonds), K = 2 (red squares), and K = 3 (black dots)
components.

C. L = 2–14

The L = 2 state can decay to Lα p̄ = 1 and 0. The search for
a stationary energy for this state was difficult because several
local plateaus occur. This state seems to correspond to a first
shape transition although it is not easy to characterize it. One
observes that, contrary to L = 1 where the intrinsic state is
essentially purely rotational with a K = 1 probability smaller
than 10−9, the L = 2 state has a small but significant K = 1
component with a probability larger than 10−5 as shown in
Fig. 2. The K = 2 component is negligible. Nevertheless, the
absolute uncertainty on the energy is around 10−6, and the
width was too small to be obtained with the present complex
scaling method.

For 2 < L � 14, the number of stable digits of the energies
progressively decreases. The K = 1 component increases,
but higher-K components remain essentially negligible and
the stable results with Kmax > 1 are identical to those with
Kmax = 1. The accuracy on the energies confirms that the
states can still be considered as quasibound. This is confirmed
by the complex scaling calculations. The widths increase from
2 × 10−6 for L = 3 to 2.6 × 10−3 for L = 14. With respect to
the resonance energies Er , the stationary energies E have an
accuracy better than 10−3.

From L = 3, the variational approximation of the energies
becomes better than the analytical formula (19). At L = 14, its
absolute error is 3 × 10−3, i.e., a relative error of 2 × 10−4.

For all these states, the αe and p̄e mean distances slightly
decrease with L. The decrease is smaller than a percent at L =
14. The α p̄ mean distance is very close to the hydrogenlike
expression for a state with L = n − 1,

〈r〉α p̄ = 1
2 (L + 1)(2L + 3)aα p̄ ≈ 0.000170 (L + 1)(2L + 3),

(20)

as shown in Fig. 3.

D. L = 15–21

At L = 15, the number of stable digits remains quite large
for Kmax = 0 but, for Kmax > 0, the last digit of the stationary
value, displayed in Table II, becomes less stable, and its
determination by this method is less accurate. The energy

L
0 10 20 30 40 50 60 70 80

r α
p̄

/(
L

+
1)

(2
L

+
3)

0

0.0001

0.0002

0.0003

0.0004

FIG. 3. 〈rα p̄〉 mean distances in a.u. divided by (L + 1)(2L + 3)
as a function of L. The dotted lines correspond to the low-L [Eq. (20)]
and high-L [Eq. (21)] limits.

at the middle of the small stationary plateau is nevertheless
consistent with the resonance energy (see Table IV). Also,
the accuracy on the mean distances drops significantly. The
K = 1 component strongly increases. The width of the reso-
nance and the α p̄ mean distance, however, do not show any
irregularity in their steady increase.

From L = 15 to L = 21, the resonances become wider and
the mean distances less stable. The K = 1 component reaches
3%, and the K = 2 one increases. The fluctuations of the K =
3 probabilities are probably due to the difficulty of locating
the optimal value for the hz scale parameter. On the contrary,
the results are quite insensitive to the precise value of h.

Since the values of 〈rα p̄〉 remain rather accurate and much
smaller than the other two, one can still interpret these nar-
row resonances as states of a hydrogen pseudoatom. This is
confirmed both by the L dependence of 〈rα p̄〉 in Fig. 3 and
by the good variational approximation on the energy in Fig. 1.
This remains true up to about L = 25, but an important change
occurs at L = 22.

E. L = 22–27

Up to now, all excited states are in principle able to decay
toward all lower states. Nevertheless, transitions where the
electron carries the smallest orbital momentum l are favored
if the corresponding emitted energy is large enough. For given
L � 21, the closest open channel corresponds to Lα p̄ = L − 1,
and the electron can carry an angular momentum l = 1.

The situation changes at L = 22: the channel Lα p̄ = 21 is
closed, and the dominant transition leads to Lα p̄ = L − 2 with
l = 2. The energy gap increases from 0.06 for L = 21 to 0.56
for L = 22 (see Fig. 4). This implies that the width variation
might not be large despite the change of l value.

In the range L = 22–27, a number of changes occur. The
search for stationary energies becomes uncertain. As shown
by Table I, irregularities appear in the determination of h and
hz. The 〈rαe〉 and 〈rp̄e〉 mean values cannot be determined for
L = 22–24. They are too sensitive to the uncertain hz but are
again rather stable at and beyond L = 25 where they start
decreasing. While Fig. 3 shows that the value of 〈rα p̄〉 still
follows expression (20), small fluctuations appear. The K = 1
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FIG. 4. Electron emission energy in a.u. for the lowest orbital
momentum l as a function of L, where E

Lα p̄
α p̄ is the energy of the

highest open threshold with Lα p̄ = L − l .

probability reaches a maximum of 10% at L = 24, and the
other probabilities also reach their maxima around L = 25.

All this indicates the start of a structure change. The widths
of the resonances must reach their maximum and then begin
to decrease. The hydrogen pseudoatom description ceases to
be valid as well as the analytical approximation (19) as shown
by Fig. 1. The simple atomic variational approximation gets
poorer and poorer. At L = 27, the threshold energy for the
emission of an l = 2 electron almost vanishes (see Fig. 4).

F. L = 28–42

At L = 28, the Lα p̄ = 26 threshold is closed, and the most
favorable spontaneous emission of an electron requires l = 3
(see Fig. 4). For this reason probably, at this L value, it was ex-
tremely difficult to find optimal conditions for the calculation.
Among various local minima, the lowest one presented here
is quite special with an unusually large number Nz of mesh
points and a very large hz.

Beyond L = 28, a higher number of stable digits can be
reached since the widths become very small [8]. To this end,
N is progressively increased to 24 while Nz is chosen as 16.
The h value becomes proportional to 〈rα p̄〉, and the hz value

stabilizes at 0.40. The optimization in this region is easy:
N, Nz, and hz are constant, and h regularly increases. One
observes that h is roughly equal to 0.042〈rα p̄〉. Ten digits of
the energy are stable even for the Kmax = 1 approximation,
which is excellent. The probability of the K = 1 component
decreases exponentially.

The energy slowly increases with L. As the angular mo-
mentum carried out by the electron increases from l = 3 to
l = 9, the stationary value of the energy becomes a local
minimum and the states more and more resemble bound
states.

In this whole range, the system keeps its moleculelike
structure with various shapes. The mean distances vary in
different ways. In Fig. 3 the 〈rα p̄〉 mean value starts to deviate
from the low-L limit by increasing faster than in expres-
sion (20). On the contrary, 〈rαe〉 steadily decreases and 〈rp̄e〉
passes through a minimum at L = 37, the former becoming
significantly smaller than the latter. The system has turned to a
moleculelike structure with, however, the important difference
that the heavy particles repel each other. This is confirmed
by the poor quality of the results with the simple atomic
variational wave function.

In this L range, accurate results from Ref. [14] (as updated
in Table 26 of Ref. [1]) and from Ref. [8] are available.
They allow a comparison of the energies and an external
test of their accuracies (see Table VI). The variational basis
in Ref. [14] involves bipolar harmonics and exponentials
in atomic coordinates with respect to He2+. In Ref. [8] an
expansion in bipolar harmonics and Gaussians combining the
three sets of Jacobi coordinates is employed. For L = 28, our
Kmax = 3 value agrees within better than 10−6 with Ref. [8].
As the width is 2.8 × 10−7 [8], our stationary value could not
be much more precise especially with the complicate structure
of this transition state. The accuracy improves fast beyond
that value. For L = 29, the agreement reaches 2 × 10−8 for
a width of 3.5 × 10−8. Beyond L = 30, the width is smaller
than 10−9 [8]. This can be understood by the fact that the
electron must carry out an orbital momentum l = 4 from L =
31 and l = 5 from L = 34. The states are again quasibound.

TABLE VI. Comparison with non relativistic results of Kino et al. [8] and of Korobov [14] as updated in Ref. [1]. The energies E are taken
from Table II, and the energies E ′ are calculated with the masses mα = 7294.299 and mp̄ = 1836.1527 of Ref. [14].

L E Kino et al. E ′ Korobov

28 − 4.0881916 − 4.088190936
29 − 3.87240911 − 3.872409094
30 − 3.679774786 − 3.679774778 − 3.679774782 − 3.6797747922
31 − 3.5076350311 − 3.507635035 − 3.5076350339 − 3.5076350346
32 − 3.35375786378 − 3.353757863 − 3.35375786388 − 3.3537578640
33 − 3.21624423252 − 3.216244231 − 3.21624423274 − 3.2162442328
34 − 3.09346690187 − 3.093466899 − 3.09346690211 − 3.0934669021
35 − 2.98402095424 − 2.984020954 − 2.98402095448 − 2.9840209545
36 − 2.88668239016 − 2.886682386 − 2.88668239038 − 2.8866823904
37 − 2.80037231560 − 2.8003723156
38 − 2.72412479305 − 2.7241247931
39 − 2.657056943126 − 2.6570569431
40 − 2.598340648313 − 2.5983406483
41 − 2.547176612946 − 2.5471766129
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At L = 30 and 31, Korobov’s energies are lower than ours
and thus probably a little better. Beyond L = 33, our accuracy
reaches 10−11. Our values are a little below the results of
Ref. [8] and agree perfectly with those of Korobov.

G. L � 43

At L = 43, 〈rαe〉 becomes smaller than 〈rα p̄〉, and the
system enters in another regime. To keep a good accuracy, N
must slowly increase while Nz can slowly decrease.

The new geometry of the system now resembles a pseu-
doatom, but a different one. The antiproton surrounds a diffuse
He+ core with a radius a little larger than the mean radius
of a free He+ ion. This pseudoatom possesses an infinity
of quasibound states. Its highly excited states are Rydberg-
like states. The energy tends to the asymptotic He+ value
−2mαme/(mα + me). The 〈rα p̄〉 mean distance tends to its
asymptotic value

〈r〉He+ p̄ = 1
2 (L + 1)(2L + 3)aHe+ p̄

≈ 0.000341 (L + 1)(2L + 3), (21)

with aHe+ p̄ = (mα + mp̄ + me)/(mα + me)mp̄. This high-L
limit is about twice the low-L value in Eq. (20). This trend
is already visible in Fig. 3. At L = 80, 〈rα p̄〉/(81 × 163) is
equal to 0.0003385.

Around L = 50, it becomes more economical to decouple
Nx, hx from Ny, hy (see Table III). Of course, the search for
optimal parameters has become more tedious, but calculations
are faster than with Nx = Ny when they are selected. Energies
can be obtained with 12 significant digits when Ny is large
enough.

The variational approximation starts to improve at L = 39.
It tends to a high-L analytical approximation involving the
He+ energy and the (n = L + 1, L) hydrogenlike energy of
an antiproton orbiting a He+ core,

Ehigh L = − 2mαme

mα + me
− (mα + me)mp̄

2(L + 1)2(mα + mp̄ + me)
, (22)

with a relative accuracy of about 1.5% at L = 48. At L = 80,
the accuracy of expression (22) and of the variational approx-

imation is 4 × 10−4. The error seems to decrease roughly as
exp(−L/10).

V. CONCLUSION

In previous works, the antiprotonic helium atom was
mostly studied around total orbital momentum L = 35,
through which the antiproton mass is most accurately deter-
mined until now. This system, however, presents an interesting
variety of structures across a wide range of L values, which
deserves to be studied. In this paper, we analyze the evolution
of the system structure with L by focusing on the states with
the lowest electronic excitation. These states are characterized
by a strongly dominant K = 0 component along the α p̄ axis
and define what we refer to as the lowest rotational band.
Among them, only the ground state is stable, while the others
are resonances with various degrees of instability.

From L = 0 up to L ≈ 25 along its lowest rotational band,
the system behaves as a pseudoatom with a progressively
expanding He2+ nucleus + antiproton core. Along this evo-
lution, the width for the spontaneous emission of the electron
increases from smaller than 10−8 up to at least 10−2. Around
L = 27, a transition occurs to a moleculelike structure. The
width then decreases and becomes again smaller than 10−8

above L = 30. This is due to a fast increase of the orbital
momentum carried out by the emitted electron. Above L =
42, a new transition occurs to a pseudoatom structure with
the antiproton orbiting a He+ core. An infinity of such states
exist with, progressively, a Rydberg-atomlike structure. The
electron emission width becomes so small that these states can
be considered as belonging to a stable Coulomb system. The
main deexcitation channel comes from photon emission [1].

The numerical study of this system is very efficient with
the Lagrange-mesh method after a sometimes tedious search
for four or six optimized parameters. With these parameters,
our results can easily be reproduced with rather short compu-
tation times. Wave functions are available in a practical form
allowing a simple evaluation of observables with the Gauss
quadrature associated with the three-dimensional mesh. The
Lagrange-mesh method, or probably the need to use peri-
metric coordinates to avoid problems with the singularities
of the Coulomb potentials, is less efficient for rather broad
resonances when combined with the complex-scaling method.
Another approach would be necessary in the L � 22 domain.
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