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Efficiently evaluating the Krieger-Li-Iafrate and common-energy-denominator
approximations in the frequency-dependent Sternheimer scheme
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We show that within the Krieger-Li-Iafrate and common-energy-denominator approximations, the linearized
time-dependent Kohn-Sham equations for orbital functionals can be solved very efficiently using the frequency-
dependent Sternheimer scheme. The Kohn-Sham response can be obtained without the need to explicitly evaluate
the exchange-correlation kernel as a functional derivative with respect to the density. Instead, it suffices to
compute functional derivatives with respect to the orbitals. The scheme allows for the computationally efficient
use of orbital functional potential approximations in Kohn-Sham response theory.
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I. INTRODUCTION: TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY AND

ORBITAL FUNCTIONALS

Time-dependent density-functional theory (TDDFT) has
become one of the most often used approaches to compute op-
tical properties of molecules and nanostructures. The accuracy
of TDDFT has greatly increased with the advent of functionals
that depend explicitly on the orbitals and are thus implicit
density functionals [1,2]. Global hybrid functionals [3–5],
local hybrids [6–10], and range-separated hybrids [11–17]
exploit the combination of orbital-dependent exact exchange
(EXX) with semilocal density functionals in order to achieve
a remarkable accuracy. Time-dependent self-interaction cor-
rections (SICs) in different variants [18–21] use the orbital
dependence in order to correct for the spurious Hartree self-
interaction and are particularly interesting for the description
of electron emission [22–26] and charge-transfer processes
[27–29].

So far, orbital functionals are mostly used in TDDFT in the
generalized Kohn-Sham scheme, with individual potentials
for each orbital. First introduced pragmatically as an adia-
batic extension of the ground-state generalized Kohn-Sham
scheme, the time-dependent (TD) generalized Kohn-Sham
approach can also be formally justified [30]. The generalized
Kohn-Sham scheme has become the de facto standard for the
use of orbital functionals in TDDFT.

Despite the unquestionable successes of the TD general-
ized Kohn-Sham approach, it would be desirable to be able
to use orbital functionals also in TD Kohn-Sham theory,
i.e., with equations that use the same global multiplicative
potential for all orbitals. From a computational point of view,
the use of a single local potential is attractive because it
parallelizes nicely and can be used efficiently with many
different types of numerical realizations, including numeri-
cal grids. From a conceptual point of view, the Kohn-Sham
approach is attractive because the Kohn-Sham system in
uniquely defined. Furthermore, as the Kohn-Sham potential
is the same for occupied and unoccupied orbitals, the unoccu-
pied Kohn-Sham eigenvalue spectrum has attractive features

that are typically not shared by the corresponding generalized
Kohn-Sham spectrum, such as a Rydberg series resulting from
Fock exchange [1,31]. Also, for the purposes of functional
development, the concepts of Kohn-Sham theory serve as an
important guideline for learning how to incorporate spatial
and temporal nonlocalities [32–34].

The use of orbital functionals in TD Kohn-Sham theory
has so far been limited by the difficulties that are associated
with solving the TD optimized effective potential (TDOEP)
equation [35]. In the linear-response regime, evaluating the
exchange-correlation (xc) kernel fxc(r, t, r′, t ′) as a second
functional derivative of the xc action functional with respect
to the density leads to involved mathematical expressions.
The evaluation of the xc kernel for orbital functionals and
its numerical realization have been carried out in several
important works [36–46]. However, the resulting expressions
are challenging to code, not always easy to interpret, and
in some of the works the adiabatic approximation has been
invoked [36–38]. In the real-time propagation approach to
TDDFT [47], one need not evaluate fxc(r, t, r′, t ′), as only the
potential vxc(r, t ) is required. However, solving the TDOEP
equation in the real-time propagation context proved very
challenging. Straightforward propagation is fraught with com-
putational difficulties [48–50], and progress made [51] has
so far been restricted to one-dimensional model systems. A
particularly sobering aspect of the combination of real-time
techniques and orbital functionals is the finding that approx-
imations to the OEP such as the Krieger-Li-Iafrate (KLI)
approximation [52] and the common-energy-denominator ap-
proximation (CEDA) [53] (also termed the localized Hartree-
Fock approximation [54]) cannot generally be used. Although
these approximations often work quite reliably in ground-
state calculations, they, as well as related approximations, fre-
quently become unstable in real-time propagations [29,55,56].
As a consequence, there are only a few systems for which
reliable TD Kohn-Sham results using orbital functionals are
available.

In this paper we show how approximate Kohn-Sham po-
tentials for orbital functionals such as the KLI approximation
and CEDA can be used in TD Kohn-Sham theory without
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suffering from instabilities and in a numerically efficient
way. The decisive idea is to use the frequency-dependent
Sternheimer scheme [57,58]. In this way, one can avoid the
explicit evaluation of fxc for orbital functionals, as well as the
accumulation of numerical inaccuracies that hinders real-time
propagation with the KLI and CEDA potentials. The power
of the Sternheimer approach, which has been brought to bear
previously in different areas of electronic structure theory
[59–65], can thus be harnessed for TDDFT.

In the following, we first discuss the linearization of
orbital-dependent quantities in Kohn-Sham theory in general
and then use this concept to set up Sternheimer equations for
the linear response following from the KLI and CEDA poten-
tials. After a brief recapitulation of the frequency-dependent
Sternheimer scheme, we demonstrate the reliability and accu-
racy of our method for several paradigm test cases as a proof
of concept. We conclude with a summary and an outlook on
future work.

II. LINEARIZATION OF ORBITAL-DEPENDENT
QUANTITIES IN THE KOHN-SHAM FRAMEWORK

In TDDFT, the usual way of calculating the linear response
of a (spin-)density-dependent quantity O to an external per-
turbation is by means of an expansion with respect to the
linear spin-density response n(1)

σ (r, t ) that results from the
perturbation [66]:

O(1) =
∑

τ=↑,↓

∫
dt ′

∫
d3r′

[
δO

δnτ (r′, t ′)

](0)

n(1)
τ (r′, t ′). (1)

The superscript (0) indicates that the term in square brackets
is evaluated in the unperturbed system, σ and τ are spin
indices, r and r′ are spatial coordinates, and t and t ′ are
time variables. Applying Eq. (1) to the exchange-correlation
potential υxcσ (r, t ) introduces the xc kernel fxcστ [66,67]:

fxcστ (r, r′, t, t ′) =
[
δυxcσ (r, t )

δnτ (r′, t ′)

](0)

. (2)

In this work, we are dealing with quantities [such as approx-
imations to υxcσ (r, t )] that are known as functionals of the
time-dependent occupied orbitals of the Kohn-Sham system.
Consider any occupied-orbital-dependent quantity

O = O
[
{ϕkα, ϕ∗

kα} α= ↑, ↓
k=1, . . . , Nα

]
(3)

[it can be complex and depend on further variables, e.g.,
Oσ (r, t ) ∈ C]. In the time-dependent Kohn-Sham framework,
the orbitals are determined by the density and the initial state
[66–68]. For the perturbation theory setting where propaga-
tions start in the ground state (GS), the Kohn-Sham orbitals
are unique functionals of the density,

ϕiσ (r, t ) = ϕiσ [n↑, n↓](r, t ). (4)

As a consequence, O itself is also a functional of the density,

O[{nβ}] = O[{ϕkα[{nβ}], ϕ∗
kα[{nβ}]}]. (5)

This means that O can be linearized in the perturbation using
Eq. (1). However, as it depends on the density via the occupied

orbitals, the functional derivatives in Eqs. (1) and (2) have to
be calculated with the help of the chain rule,

δO
δnτ (r′, t ′)

=
∑

γ=↑,↓

Nγ∑
j=1

∫
dt ′′

∫
d3r′′

×
{

δO
δϕ jγ (r′′, t ′′)

δϕ jγ (r′′, t ′′)
δnτ (r′, t ′)

+ δO
δϕ∗

jγ (r′′, t ′′)

δϕ∗
jγ (r′′, t ′′)

δnτ (r′, t ′)

}
. (6)

The derivatives δϕ jγ (r′′, t ′′)/δnτ (r′, t ′) are not known ana-
lytically and have to be calculated from complicated integral
equations. This step so far has been a major hurdle in the use
of orbital-dependent functionals. A central piece of our work
here is to show how the explicit evaluation of these derivatives
can be avoided: First, we express the linear response of
the TD Kohn-Sham orbitals to an external perturbation in
two different ways, namely, as a solution of the Sternheimer
equations on the one hand and as a formal density expansion
as in Eq. (1) on the other. We can then use the latter to rewrite
the chain rule expression for O(1) in terms of the response
of the orbitals, which we calculate using the former. This
procedure is explained in detail in the following.

In the first step, we recall the Sternheimer scheme in the
form that we recently discussed in detail in Ref. [58]. We
consider perturbations of the form

υext,σ (r, t ) = [
υ

(+)
ext,σ (r)e−iωt + c.c.

]
eηt , ω, η > 0, (7)

i.e., the perturbations are exponentially switched on harmonic
oscillations. Here υ

(+)
ext,σ (r) denotes the Fourier component and

specifies the spatial and spin dependence of the perturbation.
The specific forms that we used in the calculations presented
in this work are given in Eqs. (54) and (62). For a general
discussion of the possible spin and spatial dependences of the
perturbation, we refer to Ref. [58].

As shown in Ref. [58], the zeroth- and first-order contribu-
tions to the perturbation series of the TD Kohn-Sham orbitals
can be written as

ϕ
(0)
jσ (r, t ) = φ jσ (r)e−i(ε jσ /h̄)t (8)

and

ϕ
(1)
jσ (r, t ) = e−i(ε jσ /h̄)t

{[
ϕ

(+)
jσ (r)e−iωt + ϕ

(−)∗
jσ (r)eiωt

]
eηt

− iφ jσ (r)ε(1)
jσ (t )

}
, (9)

where φ jσ (r) and ε jσ are GS orbitals and eigenvalues of the
unperturbed Kohn-Sham system, the orbitals φ jσ are chosen
to be real, and

ε
(1)
jσ (t ) = [

ε
(+)
jσ e−iωt + c.c.

]
eηt (10)

is real as well. The quantities ϕ
(±)
jσ (r) are Fourier components

of the first-order response of the orbitals and will be deter-
mined by the Sternheimer equations [see Eq. (16) below].

The linear response of the density and of the Hartree-
exchange-correlation potential then takes the form

n(1)
σ (r, t ) = [

n(+)
σ (r)e−iωt + c.c.

]
eηt , (11)
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n(+)
σ (r) =

Nσ∑
i=1

φiσ (r)
[
ϕ

(+)
iσ (r) + ϕ

(−)
iσ (r)

]
, (12)

and

υ
(1)
Hxc,σ (r, t ) = [

υ
(+)
Hxc,σ (r)e−iωt + c.c.

]
eηt , (13)

where the latter is derived from Eqs. (1) and (11). The Hartree
contribution to υ

(+)
Hxc,σ can be calculated from Poisson’s

equation

∇2υ
(+)
H (r) = −4e2π [n(+)

↑ (r) + n(+)
↓ (r)], (14)

where e is the elementary charge. While the energy response
components ε

(+)
jσ mentioned above eventually drop out of our

equations (cf. Sec. III) and thus never need to be computed,
they could in principle be calculated from [58]

ε
(+)
jσ = i

∫
d3r

φ2
jσ (r)

[
υ

(+)
ext,σ (r) + υ

(+)
Hxc,σ (r)

]
h̄(ω + iη)

. (15)

Finally, the Sternheimer equations determining the orbital
response components ϕ

(±)
jσ read

[ĥσ − ε jσ ∓ h̄(ω + iη)]ϕ(±)
jσ (r)

= −Q̂ jσ
[
υ

(+)
ext,σ (r) + υ

(+)
Hxcσ (r)

]
φ jσ (r), (16)

with the additional condition

〈φ jσ |ϕ(±)
jσ 〉 =

∫
d3r φ jσ (r)ϕ(±)

jσ (r) = 0. (17)

Here

Q̂ jσ := 1 − |φ jσ 〉〈φ jσ | (18)

projects onto the subspace orthogonal to φ jσ and ĥσ is the
unperturbed (GS) Kohn-Sham Hamiltonian. To perform a
linear-response calculation in the Sternheimer scheme, we
thus need an expression for υ (+)

xcσ (r) in terms of the linear
response of the spin density or of the orbitals, so that Eq. (16)
can be solved self-consistently.

In the second step we note that due to the orbitals’ density
dependence (4), an alternative expression for their first-order
response can be derived by applying Eq. (1) to them. This
leads to

ϕ
(1)
jσ (r, t ) =

∑
τ=↑,↓

∫
dt ′

∫
d3r′

[
δϕ jσ (r, t )

δnτ (r′, t ′)

](0)

n(1)
τ (r′, t ′),

(19)

as well as a similar relation for the response of the complex
conjugate orbitals, ϕ

∗(1)
jσ (r, t ) = [ϕ(1)

jσ (r, t )]∗. We can use this
to rewrite O(1) after applying the chain rule (6) in Eq. (1):

O(1) =
∑

τ=↑,↓

∫
dt ′

∫
d3r′ ∑

γ=↑,↓

Nγ∑
j=1

∫
dt ′′

∫
d3r′′

⎧⎨
⎩

[
δO

δϕ jγ (r′′, t ′′)

](0)[
δϕ jγ (r′′, t ′′)
δnτ (r′, t ′)

](0)

+
[

δO
δϕ∗

jγ (r′′, t ′′)

](0)[
δϕ∗

jγ (r′′, t ′′)

δnτ (r′, t ′)

](0)
⎫⎬
⎭n(1)

τ (r′, t ′)

=
∑

γ=↑,↓

Nγ∑
j=1

∫
dt ′′

∫
d3r′′

⎧⎨
⎩

[
δO

δϕ jγ (r′′, t ′′)

](0) ∑
τ=↑,↓

∫
dt ′

∫
d3r′

[
δϕ jγ (r′′, t ′′)
δnτ (r′, t ′)

](0)

n(1)
τ (r′, t ′)

+
[

δO
δϕ∗

jγ (r′′, t ′′)

](0) ∑
τ=↑,↓

∫
dt ′

∫
d3r′

[
δϕ∗

jγ (r′′, t ′′)

δnτ (r′, t ′)

](0)

n(1)
τ (r′, t ′)

⎫⎬
⎭

(19)=
∑

γ=↑,↓

Nγ∑
j=1

∫
dt ′′

∫
d3r′′

⎧⎨
⎩

[
δO

δϕ jγ (r′′, t ′′)

](0)

ϕ
(1)
jγ (r′′, t ′′) +

[
δO

δϕ∗
jγ (r′′, t ′′)

](0)

ϕ
(1)∗
jγ (r′′, t ′′)

⎫⎬
⎭.

After renaming the summation indices and integration variables, we arrive at

O(1) =
∑

τ=↑,↓

∫
dt ′

∫
d3r′

[
δO

δnτ (r′, t ′)

](0)

n(1)
τ (r′, t ′)

=
∑

τ=↑,↓

Nτ∑
j=1

∫
dt ′

∫
d3r′

{[
δO

δϕ jτ (r′, t ′)

](0)

ϕ
(1)
jτ (r′, t ′) +

[
δO

δϕ∗
jτ (r′, t ′)

](0)

ϕ
(1)∗
jτ (r′, t ′)

}
. (20)

We have thus arrived at an important insight: The expansion with respect to the density response is equivalent to an expansion
with respect to the linear response of the Kohn-Sham orbitals.

A special case of particular interest results when we apply Eq. (20) to an orbital-dependent expression for the xc potential,

υ (1)
xcσ (r, t ) =

∑
τ=↑,↓

Nτ∑
j=1

∫
dt ′

∫
d3r′

⎧⎨
⎩

[
δυxcσ (r, t )

δϕ jτ (r′, t ′)

](0)

ϕ
(1)
jτ (r′, t ′) +

[
δυxcσ (r, t )

δϕ∗
jτ (r′, t ′)

](0)

ϕ
(1)∗
jτ (r′, t ′)

⎫⎬
⎭. (21)
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This shows that one can calculate the linear xc potential
response using an orbital expansion instead of a density
expansion. Although this expression is still strictly within the
Kohn-Sham scheme, the computational effort has basically
been reduced to calculating functional derivatives with respect
to the orbitals as in the generalized Kohn-Sham scheme.

Note that even an orbital-adiabatic potential, i.e., one that at
time t only depends on the orbitals at time t , is a nonadiabatic,
nonlocal density functional. When the potential is linearized
using Eq. (21), the corresponding memory is implicitly con-
tained in the response of the orbitals: If we were to write
the response of the potential in terms of a kernel, we would
have to reinsert Eq. (19). This would introduce the space
and time nonlocality to the kernel in form of the derivatives
δϕ jσ (r, t )/δnτ (r′, t ′).

From a practical point of view, Eq. (21) has important
and beneficial consequences. First, one is typically interested
in using it for vxc approximations whose dependence on the
orbitals is analytically known. The functional derivatives in
Eqs. (20) and (21) can thus also be calculated analytically.
Second, if one uses the Sternheimer scheme for one’s TDDFT
calculations, then the linear response of the orbitals is cal-
culated anyway. Therefore, evaluating Eqs. (20) and (21) is
equivalent to, but much simpler than, actually calculating
the kernel of an orbital-dependent potential. Thus, when one
wants to stay on the grounds of Kohn-Sham theory, then the
Sternheimer scheme for orbital functionals is much easier to
use than the usual Casida [69] linear-response formalism.

III. LINEARIZATION OF THE ORBITAL-SPECIFIC
POTENTIALS OF AN ORBITAL-ADIABATIC FUNCTIONAL

Typically, one is interested in the situation that one knows
an orbital-dependent expression Exc[{ϕkα, ϕ∗

kα}] for the xc
energy of GS DFT, based on which one can define a TDDFT
action functional in an orbital-adiabatic fashion [35,48]. In the
following, we demonstrate how the most common approxi-
mations to the TDOEP can be evaluated in the Sternheimer
scheme.

A key ingredient in the TDOEP (and in its approximations)
are the orbital-specific potentials uxciσ , which in the orbital-
adiabatic case are given by

uxciσ (r, t ) = uxciσ (r)|ϕkα=ϕkα (t )
ϕ∗

kα=ϕ∗
kα (t )

, (22)

where

uxciσ (r) = 1

ϕ∗
iσ (r)

δExc[{ϕkα, ϕ∗
kα}]

δϕiσ (r)
. (23)

The goal of this section is to derive an expression for their
linear response. We will then use this in Sec. IV. Since the
uxciσ only depend on the orbitals at time t , we have

δuxciσ (r, t )

δϕ jτ (r′, t ′)
= δ(t − t ′)

δuxciσ [{ϕkα, ϕ∗
kα}](r)

δϕ jτ (r′)

∣∣∣∣ϕkα=ϕkα (t )
ϕ∗

kα=ϕ∗
kα (t )

. (24)

The remaining functional derivative, evaluated at the zeroth-
order orbitals ϕ

(0)
jσ [as needed for Eqs. (20) and (21)], is in

general neither real nor time independent since Eq. (8) shows
that the ϕ

(0)
jσ are still complex and time-dependent even for our

real choice of the GS orbitals φ jσ . However, we will restrict

our theory to functionals that depend on the orbitals only
via products ϕ∗

jσ (r, t ) · ϕ jσ (r′, t ), which includes functionals
containing exact exchange contributions, self-interaction cor-
rections without unitary orbital transformations [70,71], and
kinetic-energy-dependent metageneralized gradient approxi-
mations. In that case,[

δuxciσ (r, t )

δϕ jτ (r′, t ′)

](0)

= δ(t − t ′)
δuxciσ [{ϕkα, ϕ∗

kα}](r)

δϕ jτ (r′)

∣∣∣∣ϕkα=φkαe−iεkα t/h̄

ϕ∗
kα=φkαe+iεkα t/h̄

= δ(t − t ′)e+i(ε jτ /h̄)t δuxciσ [{ϕkα, ϕ∗
kα}](r)

δϕ jτ (r′)

∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

(25)

and[
δuxciσ (r, t )

δϕ∗
jτ (r′, t ′)

](0)

= δ(t − t ′)e−i(ε jτ /h̄)t δuxciσ [{ϕkα, ϕ∗
kα}](r)

δϕ∗
jτ (r′)

∣∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

.

(26)

Note that during the functional differentiation we still have to
treat ϕkα and ϕ∗

kα as independent and insert the real-valued GS
orbitals φkα only afterward. Also, while ϕkα and ϕ∗

kα enter the
functional in a symmetric way, Eq. (23) shows that the uxciσ

do not depend symmetrically on ϕkα and ϕ∗
kα . Thus,

δuxciσ (r)

δϕ jτ (r′)

∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

�= δuxciσ (r)

δϕ∗
jτ (r′)

∣∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

(27)

in general, even though those quantities are real. However,

δuxciσ (r)

δϕ jτ (r′)

∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

= δu∗
xciσ (r)

δϕ∗
jτ (r′)

∣∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

(28)

and

δuxciσ (r)

δϕ∗
jτ (r′)

∣∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

= δu∗
xciσ (r)

δϕ jτ (r′)

∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

(29)

still hold. In principle, we can use these relations and Eqs. (9)
and (20) to construct the linear response of u∗

xciσ (r, t ) to the
perturbation, yielding

u∗(1)
xciσ (r, t ) = [

u(+)
xciσ (r)e−iωt + u(−)∗

xciσ (r)eiωt
]
eηt , (30)

where we have defined

u(±)
xciσ (r) =

∑
τ

Nτ∑
j=1

∫
d3r′

{
δu∗

xciσ (r)

δϕ jτ (r′)

∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

ϕ
(±)
jτ (r′)

+ δuxciσ (r)

δϕ jτ (r′)

∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

ϕ
(∓)
jτ (r′)

± i

[
δuxciσ (r)

δϕ jτ (r′)
− δu∗

xciσ (r)

δϕ jτ (r′)

]
ϕkα=ϕ∗

kα
=φkα

φ jτ (r′)ε(+)
jτ

}
.

(31)
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However, most approximations to the TDOEP, such as the
Slater and KLI potentials, only depend on the real parts of
the orbital-specific potentials:

wxciσ (r, t ) := Re[uxciσ (r, t )] = 1
2 [uxciσ (r, t ) + u∗

xciσ (r, t )].
(32)

From the symmetries (28) and (29) it follows that

δwxciσ (r)

δϕ jτ (r′)

∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

= δwxciσ (r)

δϕ∗
jτ (r′)

∣∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

, (33)

and since the derivatives of wxciσ evaluated at the (real) GS
orbitals φkα are real, we also have [cf. Eq. (9)]

iφ jτ (r′)ε(1)
jτ (t )

δwxciσ (r)

δϕ jτ (r′)

∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

+ c.c. = 0. (34)

That means that if we now use Eq. (20) to calculate the
linear response of wxciσ , the ε

(1)
jτ (t )-dependent contributions

to ϕ
(1)
jσ (r, t ) cancel. Inserting the relations derived above as

well as Eq. (9), we arrive at

w
(1)
xciσ (r, t ) = [

w
(+)
xciσ (r)e−iωt + c.c.

]
eηt , (35)

where

w
(+)
xciσ (r) =

∑
τ

Nτ∑
j=1

∫
d3r′ δwxciσ (r)

δϕ jτ (r′)

∣∣∣∣
ϕkα=ϕ∗

kα
=φkα

× [
ϕ

(+)
jτ (r′) + ϕ

(−)
jτ (r′)

]
(36)

(which is equal to 1
2 [u(+)

xciσ (r) + u(−)
xciσ (r)]) and

δwxciσ (r)/δϕ jτ (r′)

= δ

δϕ jτ (r′)
1

2

[
δExc[{ϕkα, ϕ∗

kα}]
ϕ∗

iσ (r)δϕiσ (r)
+ δExc[{ϕkα, ϕ∗

kα}]
ϕiσ (r)δϕ∗

iσ (r)

]
. (37)

In the following section, we will see that in the linear response
of approximations to the TDOEP (including the CEDA),
w

(+)
xciσ plays a role similar to the one that uxciσ plays in the

nonlinearized potentials.

IV. LINEARIZATION OF COMMON APPROXIMATIONS
TO THE TDOEP

One of the most simple and rather crude approximations to
the (TD)OEP is the Slater potential. It is the orbital density-
weighted average of the orbital-specific potentials [72,73],

υSla
xcσ (r, t ) =

Nσ∑
i=1

|ϕiσ (r, t )|2
nσ (r, t )

wxciσ (r, t ). (38)

A more sophisticated and probably the most commonly
known and employed approximation is the KLI potential
[35,48,52]

υKLI
xcσ (r, t ) = υSla

xcσ (r, t ) +
Nσ∑
i=1

′ |ϕiσ (r, t )|2
nσ (r, t )

× [
υKLI

iiσ (t ) − wiiσ (t )
]
, (39)

where

υKLI
i jσ (t ) :=

∫
ϕ∗

iσ (r, t )υKLI
xcσ (r, t )ϕ jσ (r, t )d3r, (40)

wi jσ (t ) :=
∫

ϕ∗
iσ (r, t )wxciσ (r, t )ϕ jσ (r, t )d3r (41)

are the matrix elements of υKLI
xcσ and wxciσ between the TD

Kohn-Sham orbitals. At least for the special case of the exact
exchange functional, a further approximation is known. The
CEDA potential [53,54,74,75] is defined by

υCEDA
xcσ (r, t ) = υSla

xcσ (r, t ) +
Nσ∑

i, j=1

′ 1

2

{
ϕiσ (r, t )ϕ∗

jσ (r, t )

nσ (r, t )

× [
υCEDA

i jσ (t ) − ui jσ (t )
] + c.c.

}
, (42)

where υCEDA
i jσ (t ) and ui jσ (t ) are defined similarly to υKLI

i jσ (t )
and wi jσ (t ), but with υKLI

xcσ (r, t ) and wxciσ (r, t ) replaced by
υCEDA

xcσ (r, t ) and uxciσ (r, t ), respectively. If the sums in the KLI
and CEDA expressions are allowed to run over all occupied
orbitals, then the potentials are defined only up to a TD
constant. This constant is usually fixed by the condition

υ
KLI,CEDA
Nσ Nσ σ (t ) − wNσ Nσ σ (t ) = 0. (43)

In practice, realizing the condition amounts to dropping the
i = Nσ term of the second (primed) sum in the KLI expression
and the i = j = Nσ term of the primed sum in the CEDA
potential. This is indicated by the primes.

The Slater potential is an explicit orbital functional and can
thus be linearized by a straightforward application of Eq. (21).
With the help of Eqs. (35) and (36) we arrive at

υSla(1)
xcσ (r, t ) = [

υSla(+)
xcσ (r)e−iωt + c.c.

]
eηt , (44)

with

υSla(+)
xcσ (r) =

Nσ∑
i=1

{
φ2

iσ (r)

nσ (r)
w

(+)
xciσ (r) − n(+)

iiσ (r)

nσ (r)
�υSla

iσ (r)

}
.

(45)

Here we have defined

n(+)
i jσ (r) := 1

2

{
φiσ (r)

[
ϕ

(+)
jσ (r) + ϕ

(−)
jσ (r)

]
+ φ jσ (r)

[
ϕ

(+)
iσ (r) + ϕ

(−)
iσ (r)

]}
, (46)

and

�υSla
iσ (r) := [

υSla
xcσ (r) − uxciσ (r)

]
ϕkα=ϕ∗

kα
=φkα

= [
υSla

xcσ (r) − u∗
xciσ (r)

]
ϕkα=ϕ∗

kα
=φkα

= [
υSla

xcσ (r) − wxciσ (r)
]
ϕkα=ϕ∗

kα
=φkα

(47)

is simply the difference of the real-valued GS Slater and
orbital-specific potentials. The diagonals of the symmetric
matrix n(+)

i jσ (r) = n(+)
jiσ (r) reduce to the response components

n(+)
iiσ (r) = φiσ (r)[ϕ(+)

iσ (r) + ϕ
(−)
iσ (r)] of the orbital densities.

In addition, w
(+)
xciσ is the quantity derived in Sec. III and

depends on the chosen xc functional through Eq. (37).
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The linearization of the KLI and CEDA potentials is
slightly more involved since they are only defined semiex-
plicitly by Eqs. (39) and (42) due to the appearance of their
matrix elements on the right-hand sides of these equations.
There are two different ways to deal with this problem, which
however lead to the same result. The longer way is detailed
in Appendix B. For a relatively short derivation one can
simply linearize Eqs. (39) and (42) by expanding every input
quantity into a perturbation series up to first order. Since
these input quantities are known in terms of the Kohn-Sham
orbitals, the expansions can be constructed using Eq. (20).
Then the only remaining unknown terms are the first- and
zeroth-order contributions to the KLI or CEDA potential.
Equating only zeroth-order terms simply yields the GS KLI
or CEDA equations and equating the first-order terms leads to
the equations for the response υKLI,CEDA(1)

xcσ (r, t ) of the KLI or
CEDA potential.

The resulting equations are

υKLI,CEDA(1)
xcσ (r, t ) = [

υKLI,CEDA(+)
xcσ (r)e−iωt + c.c.

]
eηt (48)

[consistent with Eq. (13)], with

υKLI(+)
xcσ (r)

=
Nσ∑
i=1

{
φ2

iσ (r)

nσ (r)
w

(+)
xciσ (r) − n(+)

iiσ (r)

nσ (r)
�υKLI

iσ (r)

}

+
Nσ∑
i=1

′
{

n(+)
iiσ (r)

nσ (r)
�υKLI

iiσ + φ2
iσ (r)

nσ (r)

×
[
υ

KLI(+)
iiσ − w

(+)
iiσ +

∫
n(+)

iiσ (r′)�υKLI
iσ (r′)d3r′

]}
(49)

for the KLI case and

υCEDA(+)
xcσ (r)

=
Nσ∑
i=1

{
φ2

iσ (r)

nσ (r)
w

(+)
xciσ (r) − n(+)

iiσ (r)

nσ (r)
�υCEDA

iσ (r)

}

+
Nσ∑

i, j=1

′
{

n(+)
i jσ (r)

nσ (r)
�υCEDA

i jσ + φiσ (r)φ jσ (r)

nσ (r)

×
[
υ

CEDA(+)
i jσ − w

(+)
i jσ +

∫
n(+)

i jσ (r′)�υCEDA
iσ (r′)d3r′

]}
(50)

for the CEDA, where �υ
KLI,CEDA
iσ (r) are defined equivalently

to �υSla
iσ (r) [Eq. (47)],

w
(+)
i jσ :=

∫
φiσ (r)w(+)

xciσ (r)φ jσ (r)d3r (51)

are the matrix elements of w
(+)
xciσ (r) between the GS or-

bitals, and υ
KLI,CEDA(+)
i jσ and �υ

KLI,CEDA
i jσ are the corresponding

matrix elements of υKLI,CEDA(+)
xcσ (r) and �υ

KLI,CEDA
iσ (r). As

before, primes indicate that the i = Nσ (KLI approximation)
or i = j = Nσ (CEDA) terms are missing in the sums, which
is a direct result of enforcing the condition (43) in Eqs. (39)
and (42). Using Eq. (20) again to expand this condition into a

perturbation series yields, to orders zero and one,

�υ
KLI,CEDA
Nσ Nσ σ = 0 (52)

and

υ
KLI,CEDA(+)
Nσ Nσ σ − w

(+)
Nσ Nσ σ +

∫
n(+)

Nσ Nσ σ (r)�υ
KLI,CEDA
Nσ σ (r)d3r = 0.

(53)

The left-hand sides in these equations are exactly the terms
dropped in the primed sums of Eqs. (49) and (50). The KLI
and CEDA response potentials should meet these conditions,
which can be used to check or even enhance the numerical
accuracy of these potentials.

V. METHOD

Linear-response calculations in the Sternheimer scheme
are performed as described in Ref. [58]. We recapitulate only
the main aspects here. The frequency ω enters the scheme
only as a parameter. By solving the full scheme for a single
chosen value of ω, we obtain the change in the density to first
order in the perturbation. From this we obtain observables,
e.g., the frequency-dependent dipole moment, evaluated at
our single chosen frequency. From the solutions for various
different ω values within a frequency range of interest, we
can then construct a spectrum. Here η is a real parameter
that determines the width of the Lorentzian lines in these
spectra. Larger values of η accelerate convergence. Since
the potential response υ

(+)
Hxcσ entering the right-hand side of

the Sternheimer equations depends on their solutions, the
scheme is solved self-consistently. We use Anderson mixing
[76] to stabilize the convergence of this self-consistency loop.
In every self-consistency step, Eq. (16) is solved with the
complex symmetric conjugate gradient algorithm (CGsymm)
introduced in Ref. [58].

To calculate photoabsorption spectra, we use the dipole
approximation

υ
(+)
ext,σ (r) = er · E (+), (54)

where e is the elementary charge and E (+) is a homogeneous
electric field, and evaluate the induced dipole moment

μ(+) = −e
∫

d3r r n(+)(r) (55)

from which we can deduce the polarizability α(ω)

according to

μ(+) = α(ω) · E (+). (56)

In general, three calculations with independent field directions
are needed to construct the full polarizability tensor. Finally,
the absorption cross section σ (ω) is calculated as

σ (ω) = 4πω

3c
Im[Trα(ω)], (57)

where c is the speed of light.
During a self-consistent Sternheimer linear-response cal-

culation, after each solution of Eq. (16) we have to update
υ (+)

xcσ (r) for a given set of response orbitals ϕ
(±)
iσ (r). For the

Slater potential, this can be done by simply evaluating the

022507-6



EFFICIENTLY EVALUATING THE KRIEGER-Li-IAFRATE … PHYSICAL REVIEW A 99, 022507 (2019)

explicit expression (45). The expressions (49) and (50), how-
ever, are not explicit due to the matrix elements υ

KLI,CEDA(+)
i jσ

appearing on the right-hand side. This is no major problem,
though, as the KLI and CEDA potentials can be evaluated
iteratively: For a given approximation to υKLI,CEDA(+)

xcσ (r), we
can calculate approximate matrix elements and use them
to construct a new approximation to υKLI,CEDA(+)

xcσ (r) from
Eq. (49) or (50). This has to be repeated until self-consistency
between the potentials used to calculate the matrix elements
and those constructed from these elements is reached. Dur-
ing this procedure, the orbital-specific response potentials
w

(+)
xciσ (r) do not have to be iterated since they do not depend

on the matrix elements. This means that they only have to
be constructed once per Sternheimer self-consistency step,
which is convenient since their construction involves the most
time-consuming steps in the calculation of the Slater, KLI, or
CEDA potential response: For EXX, they contain Nσ (Nσ +
1)/2 independent Fock integrals

∫
e2n(+)

i jσ (r′)/|r − r′|d3r′ per
spin channel. This reduces to only Nσ diagonal self-Hartree
integrals

∫
e2n(+)

iiσ (r′)/|r − r′|d3r′ for the self-interaction cor-
rection functional [77].

We have added the routines for the construction of the
KLI and CEDA potential response to our Sternheimer linear-
response code [58] in the Bayreuth version [78,79] of the
PARSEC [80] GS program package, which employs a real-
space grid and norm-conserving Troullier-Martins pseudopo-
tentials [81,82].

In our implementation, the Coulomb integrals incorporated
in w

(+)
xciσ (r) are evaluated by solving Poisson’s equation using

multigrid techniques [21,83]. This is also how we calculate
the response of the Hartree potential.

In every self-consistency step, the additional iteration that
is needed to construct υKLI,CEDA(+)

xcσ (r) is stabilized by An-
derson mixing and thus typically converges in roughly three
to six (KLI approximation) or five to ten (CEDA) steps.
During this iteration, only the numerically cheap one-point
integrals for the matrix elements υ

KLI,CEDA(+)
i jσ have to be

evaluated repeatedly, which is of negligible cost compared to
solving Poisson’s equation. Thus, the cost for constructing the
response υ (+)

xcσ (r) of the Slater, KLI, or CEDA potential once
for a given set of response orbitals is roughly the same as for
constructing the occupied orbital-specific response potentials
w

(+)
xciσ (r).

VI. RESULTS

In this section we present several applications involving the
KLI and CEDA potential response, mainly to demonstrate that
our method works and to prove that it is a useful addition
to other TDDFT approaches like the Casida formalism or
real-time propagation. To that purpose, we first consider in
Sec. VI A a case that allows us to compare the detailed spatial
structure of the xc potential response to reference calculations.
We thus confirm that we are able to construct υ (+)

xcσ (r) with
high accuracy throughout the whole simulation sphere and
even at large distances from the system.

In Sec. VI B, we then calculate absorption spectra for a sys-
tem where we can also perform stable real-time propagations
with KLI and CEDA potentials. By comparing the resulting
spectra we show that our method works well through an

extended frequency range and therefore is a suitable alterna-
tive to the real-time method.

Finally, in Sec. VI C, we calculate the absorption spectrum
for a system for which real-time propagations with KLI po-
tentials are notoriously unstable. We thus provide a proof of
concept that our method allows us to circumvent the stability
issues that can arise in real-time calculations employing po-
tentials which are not strictly defined as functional derivatives.

We focus on the KLI and CEDA potential of the exact ex-
change (XKLI and XCEDA, respectively) functional, defined
as the Fock integral evaluated with Kohn-Sham orbitals, and
on the KLI potential of the self-interaction-corrected local-
density approximation (SICKLI) [29,70].

A. Hydrogen chain: Comparison to static finite-field results

To test our way of calculating the response of the xc
potential, we do not want to rely solely on excitation spectra
for two reasons. First, excitation energies are affected by the
chosen xc approximation not only through the kernel or the
potential response, but also through GS properties such as
the Kohn-Sham eigenvalue spectrum or GS potential. It is
therefore not straightforward to extract information “purely”
on υ (+)

xcσ (r) from excitation energies. The second problem is
that “integrated” quantities such as dipole moments or the
absorption cross section contain less information than the
potential itself as a function of the spatial coordinates. Even
a wrong kernel or potential response can by chance move
the energies of some excitations in the right direction on
the frequency axis, but potentially makes grave errors for
other types of excitations. We would thus have to test our
implementation for a large number of excitation energies of
as many different excitation types (valence, Rydberg, charge
transfer, etc.) as possible to make sure that the potential is
calculated correctly.

Therefore, we follow a two-pronged approach. We test
our method for excitation energy spectra (see the following
sections), but we also directly examine the response potential
as a function of the spatial coordinates in this section. For
that purpose, we need a test case which should have two
properties. The first is that different xc approximations should
yield clearly different results for υ (+)

xcσ (r). The second is that
we should be able to construct the response of the potential for
the xc approximations under consideration by some method
that is different from and completely independent of our
linear-response formalism and can thus serve as a benchmark
for our response potential υ (+)

xcσ (r).
The static field-counteracting effect in hydrogen chains

meets these conditions: Hydrogen chains with alternating
H-H distances of 2a0 and 3a0 (where a0 is the Bohr radius)
are frequently used model systems that provide a tough test
case for many-body methods [71,84–94]. Local and standard
semilocal functionals are known to severely overestimate the
static polarizability and hyperpolarizabilities in these systems.
This error is not removed but significantly reduced by the
EXX, with the CEDA performing better than the KLI approx-
imation and the exact OEP yielding the best results. Due to
these pronounced differences, hydrogen chains make for ideal
test systems and therefore we study the H8 molecule in the
following.
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The observed differences have been traced back, at least
partially, to an ultranonlocal feature of the EXX potential
which cannot be mimicked by standard semilocal functionals:
When a system is placed in a homogeneous external field,
the EXX GS potential builds up a field-counteracting term,
which makes it harder to move charge and thus lowers the
polarizability.

The standard way [74,85,88] to visualize this term is by
performing two GS calculations. In the first one, the electrons
are merely subjected to the atomic potentials. In the second
one, an additional external potential

υext(r) = eEx (58)

is applied. This corresponds to a homogeneous electric field
of strength E along the x direction. Then one simply plots the
difference of the resulting xc potentials

�υxc(r) := υxc(r)|E �=0 − υxc(r)|E=0. (59)

In this way, the position-dependent response of the xc po-
tential to the field can be constructed from two standard GS
calculations, without the need for an explicit expression for
υ (+)

xcσ (r).
To make the connection to our linear-response scheme, we

first treat the potential of the static external field as a small
perturbation and expand υxc(r) around E = 0. For small field
strengths, this leads to

�υxc(r)
E→0−→ υ (1)

xc (r) + O(E2), (60)

where υ (1)
xc (r) is the static first-order response of the xc

potential.
Next we examine the static limit of our TD Sternheimer

scheme: For vanishing ω and η, the general TD perturbation
introduced in Sec. II becomes time independent,

υext,σ (r, t )
ω,η→0−→ 2 Re

[
υ

(+)
ext,σ (r)

]
. (61)

Thus, we can mimic the situation described above in a Stern-
heimer calculation by setting ω and η to zero and choosing the
real-valued perturbation

υ
(+)
ext,σ (r) = 1

2 eEx. (62)

Similarly, the TD linear response of the xc potential becomes
time independent,

υ (1)
xcσ (r, t )

ω,η→0−→ 2 Re
[
υ (+)

xcσ (r)
]
. (63)

Since in this limit, and for a real perturbation, υ (+)
xcσ also

becomes real, we can simply evaluate �υxc as

�υxc(r) = 2υ (+)
xcσ (r) (64)

after performing a self-consistent Sternheimer calculation
with the υ

(+)
ext,σ given above and with small or vanishing values

for ω and η. Comparing the resulting �υxc(r) with the one
calculated from Eq. (59) after two GS calculations thus allows
us to probe directly the full spatial structure of our υ (+)

xcσ (r)
construction and to compare it to an independent reference.
(In this way we check the full spatial structure of the response,
whereas the frequency dependence will be checked in the
following sections.)

We have performed these tests for the XKLI, XCEDA, and
SICKLI potential [95]. To make sure that our static finite-
field calculations are well within the linear regime, which
is required so that the results from Eqs. (59) and (64) can
coincide, we use an extremely small field strength of E =
10−6 e/a2

0.
Also, since the frequency ω enters the Sternheimer scheme

merely as a parameter, it should in principle be sufficient to
test our implementation for ω = 0 in order to verify that our
method is correct. However, ω = η = 0 might be a special
case numerically. Therefore, we here present results for small
but nonvanishing values of h̄ω = 0.2 eV and h̄η = 0.1 meV.
This should make it easier to conclude that if our method
works well for these parameter values, it should in principle
also do so for any other value. Additionally, we explicitly
checked that doing the calculations for ω = η = 0 poses no
problem and yields virtually the same results as for these
finite values.

Figure 1 shows our results for the various functionals. For
comparison, we also include the LDA potential response. One
can clearly see the field-enhancing character of the LDA, the
well-known field-counteracting behavior of the EXX, which is
slightly more pronounced in the CEDA than in the KLI poten-
tial, as well as the lack thereof for the SICKLI potential. (We
here once more note that for the SIC energy functional, the
details of how the potential is constructed are very important,
as discussed previously in Refs. [29,71,94].) More interesting
for our purposes is that in all cases, the Sternheimer and finite-
field results perfectly coincide not only qualitatively, but also
quantitatively. This is true for the whole simulation sphere
which extends out to ±25a0, 16.5a0 beyond the outermost
atom. In Appendix C we verify that the decisive features
and the differences between the different functionals observed
here do not follow just from differences in the ground-state
eigenvalues or orbitals, but are really a consequence of differ-
ences in the exchange(-correlation) response.

B. Silane photoabsorption spectrum: Comparison to
propagation results

After having shown in the preceding section that we can
construct the response of the KLI and CEDA potentials cor-
rectly with its full spatial dependence for a given frequency,
we now demonstrate that our approach works for different
frequencies, i.e., we verify that our approach allows for cal-
culating absorption spectra using orbital functionals within
the Kohn-Sham framework. We thus prove in particular that
no unexpected numerical problems arise when solving the
Sternheimer scheme with the KLI or CEDA response for a
frequency close to a resonance.

For this we need reference Kohn-Sham TDDFT calcula-
tions to compare to. As discussed in the Introduction, the
number of orbital functional calculations reported in the
literature using the Kohn-Sham approach is limited. Further-
more, it makes sense to base the comparison on reference
data that are completely independent, but technically and in
accuracy comparable to our real-space approach. For these
reasons, silane (SiH4) appears as an ideal test system, because
for this molecule, real-space, real-time propagation linear-
response calculations using the XKLI and SICKLI potentials
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FIG. 1. Static response �υxc(r) of the xc potential to an exter-
nal electric field for the H8 model and E = 10−6 e/a2

0. Lines are
constructed from GS calculations and Eq. (59), while points are the
results from Sternheimer linear-response calculations and Eq. (64).
Black circles mark the positions of the H atoms.

have been reported [18,21,29]. In order to have a full set of ac-
curate reference data available for comparison we calculated
the photoabsorption spectrum of SiH4 ourselves once more
by real-time propagation for the XKLI, XCEDA, and SICKLI
potentials using the BTDFT program package [96].

We compare this reference data to the KLI and CEDA pho-
toabsorption spectra that we calculate with the Sternheimer
scheme. In the latter, we use the XKLI approximation (or
XCEDA or SICKLI approximation, respectively) throughout
the full calculation, i.e., both in the GS calculation and for the
construction of υ (+)

xcσ (r). For the comparison we focus on the
energy range in which the most important excitations lie,
which is between 8 and 13 eV for the EXX potentials XKLI
and XCEDA, and between 7.3 and 11.8 eV for the SICKLI
potential. The results for XKLI, XCEDA, and SICKLI poten-
tials are shown in Figs. 2(a), 2(b), and 2(c), respectively [97].

In all three cases, the real-time and Sternheimer spectra
with corresponding xc approximations agree perfectly. This
confirms our method of linearizing the KLI and CEDA poten-
tials.

0
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9 10 11 12
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RT, XKLI (a)

(b)

(c)

LR, XKLI+XKLI
LR, XKLI+LDA

σ
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)
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ni
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)

RT, XCEDA
LR, XCEDA+XCEDA

LR, XCEDA+LDA

h̄ω (eV)

RT, SICKLI
LR, SICKLI+SICKLI

LR, SICKLI+LDA

FIG. 2. Photoabsorption spectra of SiH4 calculated with differ-
ent xc approximations. Red dashed lines marked LR show results
from Sternheimer linear-response calculations in which the same xc
approximation has been used for the ground-state calculation and
the calculation of the response potential, namely, (a) exact exchange
in the KLI approximation, (b) exact exchange in the CEDA, and
(c) the SICKLI potential. Black solid lines marked RT denote the
results from real-time propagations as a reference. The agreement
is excellent. Blue dotted lines show results from Sternheimer linear-
response calculations in which the ground-state calculation was done
as previously, but the LDA was used for constructing the response
potential. This shifts the excitation energies noticeably.

Finally, we perform linear-response calculations where
again the KLI or CEDA potentials for the EXX and SIC
functionals are used in the GS calculation, but υ (+)

xcσ (r) is
constructed from the LDA. In this way, we can check how
sensitive the photoabsorption calculation is to the xc approx-
imation that is used for computing the response potential.
Using the LDA potential response on top of the orbital
functional ground states leads to excitation energies that are
shifted by 0.1–0.3 eV, i.e., notable differences. Thus, the
response potential does influence the excitation energies and
the agreement observed above is not trivial.
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FIG. 3. The XKLI photoabsorption spectrum of Na5.

C. Photoabsorption in Na5: The Sternheimer approach for a
system where real-time propagation is unstable

Finally, we demonstrate in the following that the Stern-
heimer approach allows us to examine cases that cannot be
described properly by the real-time approach. When an xc
potential approximation is used that is not a functional deriva-
tive, the real-time propagation of the Kohn-Sham equations
can become unstable. This has been demonstrated explicitly,
e.g., for the XKLI potential [55] and other approximations
[98]. The violation of the zero-force theorem [99,100] has
been suggested as an explanation of this effect [55].

The Sternheimer linear-response approach offers the pos-
sibility to avoid such instabilities, as the time dependence
of the density, orbitals, and Kohn-Sham potential has been
constructed analytically, and one only has to find the Fourier
components for various frequencies. These frequencies are
independent of each other. Thus, whereas instabilities can
build up from time step to time step in a real-time propagation,
no instabilities can build up when going from frequency to
frequency. Therefore, the Sternheimer formalism can yield
stable converged results even for systems were propagations
become unstable.

The sodium cluster Na5 has become infamous for being a
system where propagations with various xc potentials includ-
ing XKLI and SICKLI have been reported to become unstable
and the zero-force violations have been found to be severe
[20,29,55,56,98,101]. We therefore focus on this system as a
worst-case scenario.

We use the TURBOMOLE [102] program package to
optimize the Na5 geometry at the B3LYP/def2-QZVPP
[3,103,104] level. Then we calculate the XKLI photoabsorp-
tion spectrum as described in Sec. V. Figure 3 shows our
results [105]. While both the GS and the linear-response
self-consistency iterations take more steps to converge than
for other sodium clusters of comparable size or for silane, we
do not encounter any serious problems in the calculations.

In real-time calculations with a stable propagation, the
total propagation time only governs the linewidths. Due to
the instabilities arising in the Na5 calculations, however, the
spectrum changes qualitatively with increasing propagation
time: New lines appear, grow in intensity, and move along the
frequency axis. This makes it impossible to uniquely identify
excitation energies or oscillator strengths.

Therefore, we carefully examine whether our Sternheimer
spectrum is unique and robust with respect to numerical
parameters. The parameter determining the linewidths in our
approach, and in that sense “corresponding” to the total prop-
agation time, is η. Calculations with various different values
for η show that it indeed only influences the shape, but not the
number, positions, or heights of the lines in the spectrum, as it
should.

Additionally, we tested how the atomic coordinates, the
numerical grid, and the convergence criteria in the linear-
response algorithm influence the calculation. Switching from
our coordinates to the MP2/6-31G(d)-optimized coordinates
presented in Ref. [106] only leads to an almost rigid redshift of
the whole spectrum by approximately 0.1 eV. Using a larger
simulation sphere radius, a smaller spacing of the numerical
grid, or stricter convergence criteria has almost no noticeable
influence on the spectrum. Switching to the unoccupied sub-
space projection scheme presented in Appendix A also has
no effect on the resulting spectrum. Finally, in Appendix D
we verify that our XKLI spectrum is physically reasonable by
comparing it to reference calculations and to experiment.

All of this leads to the conclusion that the Sternheimer
linear-response approach indeed allows us to construct a
unique, converged, and robust XKLI photoabsorption spec-
trum for Na5.

VII. CONCLUSION

We have derived an approach that enables one to use the
KLI approximation and the CEDA in the time-dependent
Kohn-Sham scheme in a computationally efficient and nu-
merically stable way. Our approach inherits the computational
advantages of the general Sternheimer scheme that have been
discussed in previous works [57,58]: No unoccupied orbitals
need to be calculated, the approach scales well because adding
an electron just adds one more response equation to be solved,
and the structure of the equations is such that they can very
efficiently be parallelized. In our work, a numerical grid is
used for solving the equations, but a basis set implementation
is possible as well. Based on the frequency-dependent Stern-
heimer formalism, we derived a set of transparent equations
for the density response in which the frequency of the excita-
tion enters just as a parameter. A linear-response spectrum can
thus easily be generated for an orbital functional in the KLI
approximation or the CEDA over a wide range of frequencies
in a massively parallel computation by solving the equations
independently for each frequency. We have demonstrated the
stability and accuracy of this orbital-Sternheimer scheme for
well-established test cases. In contrast to the real-time propa-
gation approach in which the errors introduced by the KLI or
CEDA potential (both being only approximate solutions to the
true functional derivative defined by the OEP) can accumulate
from time step to time step, no error accumulation can occur
in the separate calculations for each frequency.

The derivation of this scheme led to the important insight
that the linear response of an orbital functional can be ob-
tained within the Kohn-Sham framework without having to
compute the xc kernel fxc explicitly. Instead, the Kohn-Sham
response in our scheme is obtained from expressions that
involve only functional derivatives with respect to the orbitals.
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The latter can straightforwardly be obtained in an analytical
calculation for a given density functional. Thus, two noto-
rious limitations that hindered the use of orbital functionals
in time-dependent Kohn-Sham theory, the instability of the
nonlinearized equations under the KLI approximation and
the CEDA, and the construction of fxc, which is analytically
and numerically involved for orbital functionals, have been
overcome.

The obvious challenge that remains is to extend the present
approach beyond the KLI approximation and the CEDA into a
full time-dependent OEP scheme. Despite the progress made
in this work, this is still a formidable task. The orbital shift
terms that make the difference between, e.g., the KLI potential
and the true OEP [48], cannot be taken into account directly
within the present scheme. Further work is needed to devise,
e.g., an iterative correction scheme similar to the one that can
be used for the ground state [107]. Such future work may
then also be able to track down signatures of the KLI and
CEDA instability in the linear-response signals. The present
work thus serves as an important step towards the ultimate
goal of being able to use orbital functionals without further
approximations efficiently and reliably in the time-dependent
Kohn-Sham framework, and it already enables such use within
the KLI approximation and the CEDA, which have been
demonstrated to be rather accurate in many cases of practical
interest.
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APPENDIX A: UNOCCUPIED SUBSPACE PROJECTION

It has been noted earlier that in the construction of the
density response, the contributions to ϕ

(±)
jσ proportional to oc-

cupied GS orbitals cancel [57,58]. Therefore, if the response
of the orbitals is only needed to calculate n(+)

σ , one can work
with projections of the orbitals onto the unoccupied subspace

ϕ̃
(±)
jσ (r) := Q̂σ ϕ

(±)
jσ (r) (A1)

with the projector

Q̂σ :=
Nσ∏
j=1

Q̂ jσ = 1 −
Nσ∑
j=1

|φ jσ 〉〈φ jσ |. (A2)

In this work, however, we are dealing with quantities that
depend directly on the orbitals instead of only on the density.
For these quantities, the occupied contributions do not have to
cancel, so we actually need the full orbitals ϕ

(±)
jσ .

If we expand these with respect to the GS orbitals

ϕ
(±)
jσ (r) =

∑
k �= j

c(±)
jkσ

φkσ (r) (A3)

(where we have already exploited the orthogonality of ϕ
(±)
jσ

and φ jσ ), then the solution to the Sternheimer equations (16)
for a fixed right-hand side (i.e., in a single step of the self-
consistency iteration) is given by

c(±)
jkσ

= 〈φkσ |υ (+)
ext,σ + υ

(+)
Hxcσ |φ jσ 〉

ε jσ − εkσ ± h̄(ω + iη)
. (A4)

While in general both occupied and unoccupied GS orbitals
and eigenvalues are needed to calculate this expression, we
obviously only need the occupied Kohn-Sham spectrum to
construct the occupied contributions to ϕ

(±)
jσ . Thus, the full

orbital response can be calculated as

ϕ
(±)
jσ (r) = ϕ̃

(±)
jσ (r) +

Nσ∑
k=1
k �= j

〈φkσ |υ (+)
ext,σ + υ

(+)
Hxcσ |φ jσ 〉φkσ (r)

ε jσ − εkσ ± h̄(ω + iη)
.

(A5)
Acting with Q̂σ on Eq. (16) yields

[ĥσ − ε jσ ∓ h̄(ω + iη)]ϕ̃(±)
jσ (r)

= −Q̂σ

[
υ

(+)
ext,σ (r) + υ

(+)
Hxcσ (r)

]
φ jσ (r), (A6)

which differs from the original Sternheimer equation only in
that Q̂ jσ is replaced by Q̂σ . Finally, by construction,〈

φkσ

∣∣ϕ̃(±)
jσ

〉 = 0 ∀ k ∈ {1, . . . , Nσ }. (A7)

These equations fully determine ϕ
(±)
jσ . If we replace the Stern-

heimer equation (16) by solving the set of equations given
above in every self-consistency step, then instead of the full
response orbitals, only their unoccupied subspace projections
have to be constructed from a conjugate gradient scheme
while the occupied contributions are calculated exactly. This
can potentially lead to a higher numerical accuracy in the
resulting ϕ

(±)
jσ .

The accuracy of the response orbitals can become particu-
larly important when KLI or CEDA potentials are linearized
with the method presented in Sec. IV due to the occurrence of

terms like
n(+)

i jσ (r)

nσ (r) , where basically the response of the orbitals
is divided by the GS density. Since the density falls off
exponentially outside the system, inaccuracies in the ϕ

(±)
jσ can

easily lead to artificial divergences in the response potential.
We illustrate this for the H8 system investigated in

Sec. VI A: When solving the Sternheimer equation (16) or
(A6) with the CGsymm algorithm, we reduce the residual
norm by a factor of 10ρ . For calculations with the LDA we
often find ρ = 6 to be enough to arrive at well-converged,
physically meaningful results, but for the KLI and CEDA
potentials this convergence criterion turns out to be too weak.
Therefore, the calculations in Sec. VI A were done with ρ =
8. When we repeat these calculations with ρ = 6, we find
that the LDA results do not change at all. In Fig. 4, however,
we show that the XKLI potential response now indeed is
erroneously diverging towards the border of our simulation
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FIG. 4. Linear-response results for �υxc(r) calculated from
Eq. (64) with the XKLI potential and a weak CGSymm convergence
criterion of ρ = 6. The red solid line is based on the Sternheimer
equation (16) (designated by the projector Q̂ jσ appearing in that
equation) and the blue dashed line is based on the projector method
(A6) (Q̂σ ).

sphere, beginning at a distance of approximately 19a0 from
the system’s center.

The number of self-consistency steps needed for the full
calculation is also influenced by these inaccuracies occurring
in every single step: With ρ = 8, we usually need seven to
eight steps to converge the self-consistency iteration, inde-
pendently of whether we are using exactly vanishing or small
but finite values for ω and η and of whether we are working
with the XKLI, XCEDA, or SICKLI potential. With ρ = 6,
however, the XKLI calculation presented in Fig. 4 needed 18
steps to converge.

Both of these deficiencies are affected if we switch from
using the “original” Sternheimer equation (16) to the un-
occupied subspace projection scheme presented above [i.e.,
Eq. (A6)]. As can be seen from Fig. 4, the divergent
behavior of υ (+)

xcσ (r) is reduced but not eliminated. The po-
tential response still diverges, but less seriously, and it starts
doing so only slightly further outside the system, at approxi-
mately 22a0. More interestingly, the self-consistency process
is strongly stabilized, with the number of self-consistency
iteration steps needed to converge now being reduced again
to 8. Thus, in this case of a too-weak CGsymm convergence
criterion, the projector method is significantly more effective
than the unprojected Sternheimer scheme.

However, since the method cannot completely repair the er-
rors in the response potential that result from an inaccurate so-
lution of the Sternheimer equations in every self-consistency
step, we recommend always choosing a sufficiently strong
convergence criterion. Additionally, the projector scheme can
be applied as a safety net to ensure stability of the self-
consistency process. Also, since the results with and without
the projector can only differ if the Sternheimer equations are
not solved rigorously enough, comparing results from calcu-
lations with the two different schemes can be a useful test.
We use this to verify that the spectra presented in Secs. VI B
and VI C, calculated with ρ = 10 and ρ = 12, respectively,
are indeed accurate.

APPENDIX B: ALTERNATIVE DERIVATION OF THE
LINEARIZATION OF THE KLI AND CEDA POTENTIALS

In this appendix we discuss an alternative derivation
of Eqs. (48)–(50). We start by noting that even though
Eqs. (39) and (42) are not explicit expressions for the po-
tentials υKLI,CEDA

xcσ (r, t ), they do allow one to calculate these
potentials once the occupied orbitals are known. Therefore,
υKLI,CEDA

xcσ (r, t ) can still be seen as implicit orbital functionals
and can thus formally be linearized by means of Eq. (21). As
the orbital dependence is only implicit, the functional deriva-
tives with respect to the orbitals needed for this approach are
not calculated analytically. Instead, one can take the derivative
of Eq. (39) or (42). Since all input quantities for these equa-
tions except for the potentials themselves are known explicitly
in terms of the orbitals, this leads to equations determining the
unknown functional derivatives δυKLI,CEDA

xcσ (r, t )/δϕ jτ (r′, t ′).
It would be impractical to try to solve these equations directly
on a real-space grid since the functional derivatives depend
on two spatial variables, i.e., they would be represented by
(possibly dense) matrices on the grid. Instead, every opera-
tion that has to be performed on the functional derivatives
to construct the response potential according to Eq. (21)
(i.e., the multiplication with the orbital response, addition
of the complex conjugate, summation over the orbitals, and
integration) can be applied directly to the equations for the
derivatives. Rearranging the resulting equations and insert-
ing Eq. (21) finally leads to equations directly determin-
ing the linear response of the potentials υKLI,CEDA

xcσ (r, t ) [cf.
Eqs. (48)–(50)], which can be solved on a grid.

APPENDIX C: CHECKING THE INFLUENCE OF THE
GROUND-STATE ELECTRONIC STRUCTURE

ON THE H8 CHAIN RESPONSE

With the following test we verify that the large qualitative
differences between the �υxc(r) observed for the different
functionals for H8 are mostly due to the different functionals
used to construct υ (+)

xcσ (r) and not a consequence of differences
in the underlying GS calculation. We perform this test because
a priori one cannot rule out the possibility that at least a highly
nonlocal functional such as EXX might be quite sensitive to
small differences in the GS density and orbitals that enter the
construction of υ (+)

xcσ (r).
Thus, one could speculate that the perfect agreement be-

tween our GS and Sternheimer results might only partially be
due to our correct construction of υ (+)

xcσ (r) and in another part
simply reflect that we are using the correct GS quantities. If
that were the case, then our test of the response would not
be as stringent as hoped. However, as demonstrated here, this
possibility can be ruled out, i.e., the test reported in Fig. 1 is
stringent.

As a cross-check we perform two additional linear-
response calculations, using different xc approximations in
the GS calculation and in the construction of υ (+)

xcσ (r):
Once we combine the GS of the LDA with the XKLI response
(dubbed LDA+XKLI in Fig. 5) and once we use the opposite
combination, i.e., the XKLI GS with the potential response
of the LDA (XKLI+LDA). Figure 5 unambiguously shows
that the LDA+XKLI and XKLI+LDA results are virtually
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FIG. 5. Linear-response results for �υxc(r) calculated from
Eq. (64) using combinations of two different xc approximations in
the GS calculation and the subsequent construction of υ (+)

xcσ (r).

identical to the XKLI and LDA potentials, respectively. This
proves that the functional used to construct υ (+)

xcσ (r) is almost
exclusively responsible for its resulting spatial structure, while
the functional used in the GS calculation has only very little
influence on these results.

APPENDIX D: REFERENCE SPECTRA FOR Na5

The purpose of the calculations presented in Sec. VI C
is only to show that, with our method, stable and robust
XKLI calculations can be done even for the extreme case of
Na5, in spite of this system’s known propagation instabilities.
However, it is also useful to verify that the resulting XKLI
spectrum is physically reasonable. To that purpose, we com-
pare in this section the XKLI spectrum to other calculations
and to the experiment [108].

Our calculated spectra using the exchange-only local-
density approximation (XLDA), a combination of the XKLI
GS with the XLDA response potential (XKLI+XLDA), the
Hartree-Fock scheme (HF), and the hybrid functional PBE0
[109,110] in the generalized Kohn-Sham scheme (GKS-
PBE0) are depicted in Fig. 6 [111]. The experimental spec-
trum is rather broad and featureless and only allows to identify
the main absorption peak at approximately 2.05 eV. This is
well reproduced by the XKLI (approximately 2.11 eV), better
than, e.g., with the XLDA.

Comparing the different calculated spectra shows that the
XKLI spectrum agrees at least qualitatively rather well with
the other results. Somewhat surprisingly, the HF, which is
conceptually close to the XKLI in that it is based on the same
orbital-dependent energy expression, yields a spectrum that
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FIG. 6. Photoabsorption spectra of Na5 calculated with differ-
ent approximations: (a) exchange-only local density approximation
(XLDA) and a combination of the XKLI GS with the XLDA re-
sponse potential (XKLI+XLDA) and (b) Hartree-Fock (HF) and
the hybrid functional PBE0 in the generalized Kohn-Sham scheme
(GKS-PBE0).

differs more from the XKLI than any of the other spectra. We
carefully tested that this is not merely due to the difference
between basis sets and real-space grid-based numerics. All
spectra except the HF show three rather-well-defined peaks at
about 2.0, 2.5, and 3.0 eV and some smaller peaks in between,
with the XLDA spectrum slightly redshifted by approximately
0.2 eV compared to XKLI, XKLI+XLDA, and PBE0. The
HF spectrum also has the peak at approximately 3.0 eV but a
somewhat different structure between 2.0 and 2.5 eV.

Since the Na5 spectrum does not contain excitations of,
e.g., charge transfer character, it is not surprising that the
XKLI and XKLI+XLDA are quite similar. Slightly more
unexpected is the good agreement between XKLI and PBE0,
as the latter contains only 25% exact exchange and as the
generalized Kohn-Sham treatment of this exact exchange is
similar to the HF.
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