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Coherence measure: Logarithmic coherence number
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We introduce a measure of coherence which is extended from the coherence rank via the standard convex
roof construction; we call it the logarithmic coherence number. This approach is parallel to the Schmidt measure
in entanglement theory. We study some interesting properties of the logarithmic coherence number and show
that this quantifier can be considered as a proper coherence measure. We find that the logarithmic coherence
number can be calculated exactly for a large class of mixed states. We also discuss the relationships between
the logarithmic coherence number and other coherence quantifiers, e.g., the relative entropy of coherence, the l1-
norm coherence, and average fidelity coherence. We give the relationship between coherence and entanglement
in a bipartite system, and our results can be generalized to multipartite settings. Finally, we give that the creation
of entanglement with bipartite incoherent operations is bounded by the logarithmic coherence number of the
initial system during the process.
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I. INTRODUCTION

The fundamental quality that distinguishes quantum states
from classical states is quantum coherence, which is the
most basic characteristic of quantum mechanics. Quantum
coherence plays an important role in the study of quantum
information and quantum multipartite systems. Baumgratz
et al. proposed a theoretical framework for quantitative study
of quantum coherence from the perspective of resource the-
ory [1]. Various ways have been presented to develop the
resource-theoretic framework for understanding quantum co-
herence; we refer to [2,3] for more discussions of resource
theory of coherence.

Analogously to the Schmidt rank in entanglement theory
[4,5], Killoran et al. presented a framework for the con-
version of nonclassicality (including coherence) into entan-
glement; they introduced the coherence rank [6]. A concept
related to the coherence rank was also discussed by Levi
and Mintert [7]. Soon afterwards, Chin introduced a discrete
coherence monotone named the coherence number, which is
a generalization of the coherence rank to mixed states [8,9].
Regula et al. also discussed coherence number of mixed states;
they presented a general formalism for the conversion of
nonclassicality into multipartite entanglement [10]. Theurer
et al. employed a natural generalization of the coherent rank
to superposition with respect to a finite number of linear
independent basis [11]. The coherence number is proved to be
a discrete coherence monotone but it is not a proper coherence
measure because it does not satisfy convexity [9,12,13]. To
resolve this issue, in this paper we try to extend the coherence
rank to mixed states via the standard convex roof construction;
this approach is parallel to the Schmidt measure in [5]. We
can prove that it is not only a coherence monotone but also a
proper coherence measure.
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The paper is organized as follows. In Sec. II we review
some basic concepts about the resource theory of coherence.
In Sec. III we discuss the coherence rank and give a property
about it. In Sec. IV, we introduce a coherence measure, which
is the so-called the logarithmic coherence number, and give
some interesting properties. In Sec. V we discuss the relation-
ships between the logarithmic coherence number and other
coherence quantifiers, and give some interesting relations. In
Sec. VI we focus on the relationships between coherence and
entanglement in bipartite and multipartite settings. In Sec. VII
we discuss the interplay between coherence consumption
and creation of entanglement. We summarizes our results in
Sec. VIII.

II. BASIC CONCEPTS OF COHERENCE MEASURE

We introduce some concepts about coherence measure
which can be used for our main results [1–3]. Given a d-
dimension Hilbert space H with a fixed orthogonal basis
O = {|i〉}d−1

i=0 , we denote the set of all density operators acting
on H by D(H). The density operators which are diagonal in
this fixed basis are called incoherent; we denote the set of all
incoherent states by I, and I ⊂ D(H). Any incoherent state
δ is of the form

δ =
d−1∑
i=0

δi|i〉〈i|, (1)

where δi are probability distribution. Any state which cannot
be written in the above form is defined as a coherent state,
which means the coherence is basis dependent.

The incoherent operation is to map the incoherent states
to incoherent states. The definitions of incoherent operations
are not unique and different choices [2]. In this paper, we
only consider the incoherent operation in [1]. The incoherent
operation (IO) is a completely positive and trace preserving
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(CPTP) map � that admit a Kraus operator representation

�(ρ) =
∑

n

KnρK†
n , (2)

where all the Kraus operators Kn must satisfy KnIK†
n ⊆ I

with
∑

n K†
n Kn = I . In general, the Kraus operator can always

be represented as

Kn =
∑

i

ci| f (i)〉〈i|, (3)

where f is a function in the index set and ci ∈ [0, 1] [14].
Baumgratz et al. proposed that any proper measure of the

coherence C must satisfy the following conditions [1]:
(C1) Non-negativity. C(ρ) � 0 for all quantum states ρ,

and C(ρ) = 0 if and only if ρ is incoherent.
(C2) Monotonicity. C(ρ) is unincreasing under incoherent

operation �, i.e., C(ρ) � C[�(ρ)].
(C3) Strong monotonicity. C(ρ) does not increase on av-

erage under selective incoherent operations, i.e.,
∑

n qnC(ρn)
� C(ρ), where ρn = KnρK†

n /qn, and qn = Tr(KnρK†
n ).

(C4) Convexity. C(ρ) is a convex function of quan-
tum states, i.e.,

∑
i piC(ρi ) � C(

∑
i piρi ), for any ensemble

{pi, ρi}.
Following standard notions of entanglement theory, we

call a quantifier C which fulfills conditions (C1) and either
condition (C2) or (C3) (or both) a coherence monotone. A
quantifier C is further called a coherence measure if it satisfies
the four conditions: (C1)–(C4). We also know that conditions
(C3) and (C4) automatically imply condition (C2) [2].

III. COHERENCE RANK

For a pure state on Hilbert space H with the fixed orthogo-
nal basis O, one can define the coherence rank

RC (|ψ〉) = min

⎧⎨
⎩|Ô|‖ψ〉 =

∑
| j〉∈Ô

λ j | j〉, Ô ⊆ O

⎫⎬
⎭, (4)

where λ j are nonzero complex coefficients. �
We note that the coherence rank given in Eq. (4) character-

izes the minimal number of the incoherent states in the fixed
orthogonal basis O in such a decomposition of |ψ〉. This is
also equivalent to the fact that the coherence rank RC (|ψ〉) =
k if exactly k of the coefficients λ j are nonzero. Thus we say
that the definition of the coherence rank given in Eq. (4) is
equivalent to the definition introduced in Refs. [6,7,9–11].
Clearly, we have 1 � RC (|ψ〉) � d and all coherent pure
states should have RC (|ψ〉) � 2. We know that the coherence
rank is nonincreasing under incoherent operations �, that is,

RC[�(|ψ〉)] � RC (|ψ〉). (5)

In particular, following the results in [6,14], we know that
there exists a unitary incoherent operation Uin on a pure state
|ψ〉 such that the coherence rank of Uin|ψ〉 is equal to the
coherence rank of |ψ〉, i.e.,

RC (Uin|ψ〉) = RC (|ψ〉), (6)

where Uin = ∑
j eiθ j | j〉〈 j| with some phases θ j . Therefore, we

say that the coherence rank is a coherence monotone.

We also consider the coherence rank of superposition of
two coherent states. The following result will give the lower
and upper bounds of the coherence of superposition.

Proposition 1. Let |φ〉 = a|ψ〉 + b|ϕ〉 with |a|2 + |b|2 = 1,
we have

|RC (|ψ〉) − RC (|ϕ〉)| � RC (|φ〉) � RC (|ψ〉) + RC (|ϕ〉). (7)

Proof. By the definition of coherence rank, there exist two
sets Ôψ and Ôϕ such that RC (|ψ〉) = |Ôψ |, RC (|ϕ〉) = |Ôϕ|,
and one has

|ψ〉 =
∑

| j〉∈Ôψ

ψ j | j〉, |ϕ〉 =
∑

|k〉∈Ôϕ

ϕk|k〉. (8)

Then, we will consider three cases as follows.
Case 1. If Ôψ ⊥ Ôϕ , by definition, we directly obtain

RC (φ〉) = RC (|ψ〉) + RC (|ϕ〉). (9)

Case 2. If Ôψ ∩ Ôϕ 
= ∅, without loss of generality, we
take Õ = Ôψ ∩ Ôϕ , and

|φ〉 = a
∑

| j〉∈Ôψ\Õ
ψ j | j〉 +

∑
| j〉∈Õ

(aψ j + bϕ j )| j〉

+ b
∑

|k〉∈Ôϕ\Õ
ϕk|k〉. (10)

Then, we have

RC (|φ〉) � |Ôψ\Õ| + |Ôϕ\Õ| + |Õ|
= |Ôψ | + |Ôϕ| − |Õ|
� RC (|ψ〉) + RC (|ϕ〉). (11)

Case 3. If Ôψ ⊆ Ôϕ , then we have

|φ〉 =
∑

| j〉∈Ôψ

(aψ j + bϕ j )| j〉 + b
∑

|k〉∈Ôϕ\Ôψ

ϕk|k〉. (12)

By the definition, we obtain

RC (|φ〉) � RC (|ϕ〉) − RC (|ψ〉). (13)

Similarly, if Ôϕ ⊆ Ôψ , we have

RC (|φ〉) � RC (|ψ〉) − RC (|ϕ〉). (14)

Thus, we obtain our desired result. �
The coherence rank has been generalized to mixed states in

[6,9,10]; it is the so-called coherence number, which is defined
as

RC (ρ) = min
{pi,|ψi〉}

max
i

[RC (|ψi〉)]. (15)

The coherence number is the smallest possible maximal co-
herence rank in any decomposition of the mixed states, and for
pure states the coherence rank equals the coherence number.
The coherence number only satisfies conditions (C1), (C2),
and (C3), but it does not satisfy condition (C4) [9], so it is only
a coherence monotone. In the following section, we apply the
standard convex roof construction to the mixed states.
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IV. LOGARITHMIC COHERENCE NUMBER

In this section, we can define logarithmic coherence rank,
the same way as for the Schmidt rank in [5]. Note that Theurer
et al. used this approach to describe the superposition in [11].

Definition 2. For any pure state |ψ〉, the logarithmic coher-
ence rank is defined as

LC (|ψ〉) = log2 RC (|ψ〉). (16)

Obviously, the logarithmic coherence rank inherits some
properties of coherence rank. The logarithmic coherence rank
is non-negative, that is, LC (|ψ〉) � 0 for any pure state |ψ〉.
In particular, for the maximally coherent states

|ψM〉 = 1√
d

d−1∑
j=0

eiθ j | j〉, (17)

where θ j ∈ [0, 2π ), we have

LC (|ψM〉) = log2 d. (18)

In addition, we find that the logarithmic coherence rank is also
monotone, unitarily invariant, and so on. The logarithmic co-
herence rank can be extended to mixed states by the standard
convex roof construction.

Definition 3. For any mixed state ρ, the logarithmic coher-
ence number is defined as

LC (ρ) = min
{pi,|ψi〉}

∑
i

piLC (|ψi〉), (19)

where the minimum is taken over all pure state decomposi-
tions of ρ = ∑

i pi|ψi〉〈ψi|.
Note that the minimization is taken by the average over all

pure states |ψi〉 rather than a maximization, because the latter
is only a coherence monotone [12,13,15]. In subsequent para-
graphs we will show that the logarithmic coherence number is
a proper coherence measure in the sense of Refs. [1,2].

Proposition 4. The logarithmic coherence number LC is a
coherence measure which satisfies the conditions (C1)–(C4).

Proof. Obviously, condition (C1) follows immediately
from the definition.

To show that LC satisfies condition (C3), let ρ =∑
i pi|ψi〉〈ψi| be the optimal decomposition of ρ belonging

to the minimum in Eq. (19), and we take the mark [11] and
define

|ψ̂i,n〉 = Kn|ψi〉√
qn

, (20)

where qn = Tr(K†
n Knρ), and Kn are incoherent Kraus opera-

tors. Then, every final state ρn in an incoherent Kraus operator
Kn can be represented as

ρn = KnρK†
n

qn
=

∑
i

pi|ψ̂i,n〉〈ψ̂i,n|. (21)

Since the coherence rank can never increase under the action
of an incoherent Kraus operator, then we have

LC (ρn) �
∑

i

piLC (|ψ̂i,n〉)

�
∑

i

piLC (|ψi〉)

= LC (ρ). (22)

Thus, we have ∑
n

qnLC (ρn) � LC (ρ). (23)

To show (C4) we take

ρ = λ1ρ1 + λ2ρ2, (24)

where λ1, λ2 ∈ [0, 1]. Let ρ1 = ∑
j μ j |φ j〉〈φ j | and ρ2 =∑

k ηk|ϕk〉〈ϕk| be the two decompositions for which the re-
spective minima in Eq. (19) are attained. Then the con-
vex combinations λ1

∑
j μ j |φ j〉〈φ j | + λ2

∑
k ηk|ϕk〉〈ϕk| are a

valid decomposition of ρ, but it is not necessarily the optimal
one. Thus, we have

LC (λ1ρ1 + λ2ρ2) � λ1

∑
j

μ jLC (|φ j〉) + λ2

∑
k

ηkLC (|ϕk〉)

= λ1LC (ρ1) + λ2LC (ρ2). (25)

We know that the condition (C2) can be derived from
conditions (C3) and (C4), so we say the logarithmic coherence
number LC satisfies conditions (C1)–(C4). �

This shows that the logarithmic coherence number can
indeed be used as a coherence measure quantifying the co-
herence of a quantum system. Not just these nice properties,
we find that the logarithmic coherence number is additive as
follows.

Proposition 5. The logarithmic coherence number LC is
additive.

Proof. Let us consider the case of pure states first. From
the definition of the coherence rank, we have

RC (|ψ1〉 ⊗ |ψ2〉) = RC (|ψ1〉)RC (|ψ2〉). (26)

Thus, we obtain

LC (|ψ1〉 ⊗ |ψ2〉) = log2(RC (|ψ1〉)RC (|ψ2〉)

=LC (|ψ1〉) + LC |ψ2〉). (27)

Then we consider the case of mixed states. Without loss of
generality, the pure state decomposition of ρ ⊗ σ is of the
form

ρ ⊗ σ =
∑

a

pa|ψa〉〈ψa| ⊗
∑

b

pb|φb〉〈φb|. (28)

Then we have

LC (ρ ⊗ σ ) = min
∑
a,b

pa pbLC (|ψa〉 ⊗ |φb〉)

= min
∑

a

paLC (|ψa〉) ⊗ min
∑

b

pbLC (|φb〉)

= LC (ρ) + LC (σ ). (29)

This completes the proof of the proposition. �
From this result, for n copies of the same state |ψ〉, we

have

LC (|ψ〉⊗n) = nLC (|ψ〉). (30)

In particular, let δ be an incoherent state where we then
have

LC (δ⊗n ⊗ |ψ〉〈ψ |⊗n) = nLC (|ψ〉). (31)
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If the states |ψ1〉 and |ψ2〉 satisfy ||ψ1〉 − |ψ2〉| < ε, we
may ask whether the logarithmic coherence number also sat-
isfies |LC (|ψ1〉) − LC (|ψ2〉)| < ε, where | · | is trace distance
[16]. Let

|ψ1〉 = √
1 − ε|0〉 +

√
ε

d − 1

d−1∑
i=1

|i〉, (32)

and |ψ2〉 = |0〉. When ε → 0, it means |ψ1〉 → |ψ2〉, but we
know that

|LC (|ψ1〉) − LC (|ψ2〉)| = log2 d. (33)

Thus, we claim that the logarithmic coherence number is not
continuous.

Although we define the coherence measure of a mixed
state via a minimization over all possible realizations of the
state, it can be calculated exactly for some states. In order
to calculate the logarithmic coherence number of a mixed
state, the minimization over decompositions of the state is
necessary. The value of LC can be fully evaluated for some
states. We first consider a family of noisy maximally coherent
states

ρλ = λ|ψM〉〈ψM | + (1 − λ)
I

d
(34)

where λ ∈ (0, 1). Without loss of generality, the identity op-
erator I can be represented with the pure states |ψi〉 as

I =
∑

i

αi|ψi〉〈ψi|, (35)

where αi � 0. Then, the pure state decomposition of ρλ is of
the form

ρλ = λ|ψM〉〈ψM | + 1 − λ

d

∑
i

αi|ψi〉〈ψi|. (36)

Using the definition (19), we get

LC (ρλ) = min
{αi,|ψi〉}

[
λ log2 d + 1 − λ

d

∑
i

αiLC (|ψi〉)

]
. (37)

Minimizing the right-hand side of Eq. (40) over all pure state
decompositions, we immediately see that the minimum is
achieved for every i, LC (|ψi〉) = 0. Thus, we obtain a closed
expression of the logarithmic coherence number for the state
ρp, i.e.,

LC (ρλ) = λ log2 d. (38)

We then consider a class of more general mixed states, the
pseudomixed state, which is of the form

ρp = p|ψ〉〈ψ | + (1 − p)δ, (39)

where p ∈ (0, 1), the state |ψ〉 is any coherent state, and δ ∈
I.

From definition (19), we claim that the minimum over all
pure state decompositions reduced to all incoherent states, and
then we have

LC (ρp) = min
δ∈I

[pLC (|ψ〉) + (1 − p)LC (δ)]

= pLC (|ψ〉). (40)

Note that the state (34) is a special case of the pseudomixed
state (34). Even so, in the following section we find that there
is a considerable difference from the l1 norm of coherence.

V. THE RELATIONS WITH THE OTHER
COHERENCE QUANTIFIERS

In this section, we will discuss the relationships between
the logarithmic coherence number and other coherence quan-
tifiers, e.g., the relative entropy of coherence, the l1-norm
coherence, and average fidelity coherence. The definitions of
the first two quantifiers are original defined in [1]; the latter
we define here.

A. The relative entropy of coherence

In the framework resource theory of coherence, we know
that one of the interesting coherence measures is the relative
entropy of coherence [1], which is defined as

Cr (ρ) = min
δ∈I

S(ρ||δ), (41)

where S(x||y) = Tr(x log2 x − x log2 y) is quantum relative
entropy [16].

The relative entropy of coherence fulfills conditions C1–
C4; it is a proper coherence measure [1]. The relative entropy
of coherence can be also interpreted as the minimal amount
of noise required for fully decohering states [17] and has
been applied in many fields [2,12,14,15,17–26]. We know that
the relative entropy of coherence has a closed expression [1],
that is,

Cr (ρ) = S[�(ρ)] − S(ρ), (42)

where �(ρ) = ∑
i〈i|ρ|i〉|i〉〈i| is a completely dephasing op-

eration [1,2]. Then the following result shows that the relative
entropy of coherence is upper bounded by the logarithmic
coherence number.

Proposition 6. For any mixed state ρ, we have

Cr (ρ) � LC (ρ). (43)

Proof. We first consider pure states. Without loss of gen-
erality we suppose that pure state |ψ〉 with RC (|ψ〉) = r and
let

|ψ〉 =
r∑

i=1

λi|i〉. (44)

Since we have

S[�(|ψ〉〈ψ |)] = −
r∑

i=1

λ2
i log2 λ2

i � log2 r, (45)

for any pure state |ψ〉, we obtain

Cr (|ψ〉) � LC (|ψ〉). (46)

Next, we can generalize this result to the mixed states. Let
ρ = ∑

i pi|ψi〉〈ψi| be the optimal decomposition of ρ belong-
ing to the minimum in Eq. (19). Then from the convexity of
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the relative entropy of coherence, we have

Cr (ρ) �
∑

i

piCr (|ψi〉)

�
∑

i

piLC (|ψi〉)

= LC (ρ). (47)

This completes the proof of the proposition. �
Intuitively, the logarithmic coherence number can give a

tighter upper bound of the relative entropy of coherence. This
also gives a nice operational expression for the logarithmic
coherence number.

B. The l1-norm coherence

The l1-norm coherence is another interesting coherence
measure [1], which is formally defined as

Cl1 (ρ) = min
δ

||ρ − δ||l1 =
∑
i 
= j

|ρi j |. (48)

The l1-norm coherence captures the simple intuitive idea
that on the level of density matrix description of quantum
states, superposition coherence corresponds to off-diagonal
matrix elements with respect to the fixed basis [27] and an
operational interpretation is given in this reference.

For any pure state, we can give a relation between the
logarithmic coherence number and the l1-norm coherence.

Proposition 7. For any pure state |ψ〉, we have

log2(Cl1 (|ψ〉) + 1) � LC (|ψ〉). (49)

Proof. We suppose that the pure state |ψ〉 with RC (|ψ〉) =
r, from Eq. (44). We then have

Cl1 (|ψ〉) + 1 =
(

r∑
i=1

|λi|
)2

. (50)

Using Lagrange multipliers to implement the constraint∑r
i=1 |λi|2 = 1, we can obtain(

r∑
i=1

|λi|
)2

� r. (51)

Combining Eq. (50) with Eq. (51), by taking the logarithm,
we obtain the desired result. �

From the proof, we find that if the pure state |ψ〉 with the
coherence rank RC (|ψ〉) = r, then the l1-norm coherence is
upper bounded by the coherence rank, i.e.,

Cl1 (|ψM〉) � RC (|ψM〉) − 1. (52)

In particular, if we require RC (|ψ〉) > 1 (or LC (|ψ〉) > 0),
then the upper bound in Eq. (49) is saturated if and only if the
states are the maximally coherent states |ψM〉, and we have

log2(Cl1 (|ψM〉) + 1) = LC (|ψM〉). (53)

For the mixed states, the situation becomes complicated,
and it is hard to get a clear relation. From the inspiration
in [13,27], we first consider the qubit system. The following
result gives a relation between the logarithmic coherence
number and the l1-norm coherence.

Proposition 8. All qubit states ρ with a given l1-norm
coherence Cl1 (ρ) = 2b satisfy

LC (ρ) � log2(Cl1 (ρ) + 1). (54)

Proof. From the proof of Proposition 1 in Ref. [27], let

ρ =
(

a b
b 1 − a

)
(55)

be a state with given l1-norm coherence 2b > 0, where 0 <

b � 1
2 and

1 − √
1 − 4b2

2
� a � 1 + √

1 − 4b2

2
. (56)

In fact, we can always rewrite the statement above as

ρ = 2b|+〉〈+| + (a − b)|0〉〈0| + (1 − a − b)|1〉〈1|. (57)

Thus, for a given fixed b, using the definition of the
logarithmic coherence number, we obtain

LC (ρ) = 2b � log2(2b + 1) = log2[Cl1 (ρ) + 1]. (58)

This completes the proof the proposition. �
Note that for general mixed states on H with the dimension

d > 2, it is difficult to obtain sharp interrelations between
them. We take two examples to expound this situation. Let
us first consider the state ρλ. It is easy to see that its l1-norm
coherence is

Cl1 (ρλ) = (d − 1)λ. (59)

Using Eq. (38), we obtain

LC (ρλ) � log2[Cl1 (ρλ) + 1]. (60)

By the result [27] and Proposition 6, we obtain

Cr (ρ) � LC (ρλ) � log2[Cl1 (ρλ) + 1]. (61)

This shows that the logarithmic coherence number is a tighter
upper bound of the relative entropy of coherence, and it also
gives another lower bound of the l1-norm coherence.

Next, we consider the pseudomixed state; without loss of
generality, we suppose that RC (|ψ〉) = r > 2. Using Eq. (52)
together with the definition of the l1-norm coherence, we
obtain

Cl1 (ρp) + 1 = pCl1 (|ψ〉) + 1 � p(r − 1) + 1. (62)

It is easy to see that the inequality log2[p(r − 1) + 1] �
p log2 r is true, but we cannot give the following relation:

LC (ρp) � log2[Cl1 (ρp) + 1]. (63)

This is because we know that the quantity p(r − 1) + 1 is
very coarse bound in Eq. (62). If we use the pure state (32)
to replace the pure state in the pseudomixed state and take
ε = 1

d−2 , we can obtain

Cl1 (ρp) =
(

1 + 2
√

(d − 1)(d − 3)

d − 2

)
p < 3p. (64)

When d > 16, we have

log2[Cl1 (ρp) + 1] < log2(3p + 1) < LC (ρp). (65)

But we also know that the logarithmic coherence number is
possibly too high compared to log2[Cl1 (ρp) + 1] such that
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the logarithmic coherence number LC (ρp) is not a better
upper bound for the function log2[Cl1 (ρp) + 1]. Then, if the
equations (65) hold, from the result in [27], we obtain

Cr (ρp) � log2[Cl1 (ρp) + 1] < LC (ρp). (66)

This shows that there is not a fixed order relation between the
logarithmic coherence number and the l1-norm coherence for
all mixed states.

C. Average fidelity coherence

The ensemble notion of a quantum source leads to a def-
inition of ensemble average fidelity, which captures the idea
that the source is well preserved under the action of a noisy
channel [16]. This is one of our motivations for considering
the average fidelity coherence. In addition, we know that
any state |ψ〉 with a distillable coherence of c1 cobits can
be asymptotically converted into any other state |φ〉 with a
distillable coherence of c2 cobits at a rate c1/c2 [14]. In the
one-shot scenario, the authors use the fidelity between the
resource states and the maximally coherent states to describe
the distillable conditions [15,22–25]. From these settings and
the result in [4], we give the definition of the average fidelity
coherence.

Definition 9. Suppose that the state ρ depends on the pure
ensemble {pi, |ψi〉}, i.e., ρ = ∑

i pi|ψi〉〈ψi|, the average fi-
delity coherence is then defined as

F (ρ) =
∑

i

piF (|ψi〉), (67)

where

F (|ψi〉) = − log2 F (|ψi〉, |ψM〉)2, (68)

where F (x, y) = Tr
√√

xy
√

x is fidelity [16].
Note that this quantifier is not a coherence quantifier, and

it is also not different from the min-relative entropy [28–30].
Obviously, 0 � F (ρ) � log2 d , and provided F (ρ) = 0 if and
only if for every i, the state |ψi〉 is a maximally coherent
state. For all incoherent states, we have F (δ) = log2 d . This
is to say, although the average fidelity coherence F is not a
coherence quantifier, it is viewed as a coherence witness. We
say that if the state ρ satisfies F (ρ) 
= log2 d , then the state is
coherent. We can give an uncertainly relation between the log-
arithm coherence number and the average fidelity coherence
as follows:

Proposition 10. For any quantum state ρ, we have

log2 d � F (ρ) + LC (ρ). (69)

Proof. For any pure state |ψ〉 with coherent rank r, we have

〈ψM |ψ〉 = 1√
d

r∑
j

λ je
i(ω j−θ j ), (70)

where |ψ〉 = ∑r
j=1 λ jeiω| j〉 with real numbers λ j and ω ∈

[0, 2π ). It follows that

|〈ψM |ψ〉|2 � 1

d

⎛
⎝ r∑

j=1

λ j

⎞
⎠

2

. (71)

Using Lagrange multipliers to implement the constraint∑
j |λ j |2 = 1, we can obtain that

1

d

⎛
⎝ r∑

j=1

λ j

⎞
⎠

2

� r

d
. (72)

Thus, we have

F (|ψ〉) � log2 d − log2 r. (73)

Next, we consider the mixed states. Let ρ = ∑
i pi|ψi〉〈ψi|

be a pure state decomposition for which the minimum in
Eq. (19) is attained, and we denote ri = RC (|ψi〉). Then we
have

F (ρ) =
∑

i

piF (|ψi〉)

� log2 d −
∑

j

pi log2 ri

= log2 d − LC (ρ). (74)

This completes the proof the proposition.
This shows that the smaller the logarithmic coherence rank,

the larger the average fidelity coherence, that is to say, the
amount of coherence distilled by some operations is possible
to decrease. �

VI. MULTIPARTITE SCENARIO

Let HS and HA be two d-dimensional Hilbert spaces
and HA be the Hilbert space of an ancillary system with
HS ∼= HA. Without loss of generality, we take the orthogonal
basis {|i〉}d−1

i=0 and {| j〉}d−1
j=0 as two fixed bases on HS and

HA, respectively. Then their tensor product {|i〉 ⊗ | j〉} can
be viewed as an incoherent basis for compound system SA.
Thus, the corresponding logarithmic coherence rank and the
logarithmic coherence number can be defined as in (16) and
(19). We are particularly interested in the relationship between
the total coherence and coherence contained in each individ-
ual subsystem. In the following proposition, we prove that
the logarithmic coherence number in the bipartite quantum
states is no less than the sum between two subsystems. This
relation can be viewed as the superadditivity for the logarithm
coherence number.

Proposition 11. For any bipartite quantum state ρSA on SA,
we have

LC (ρS ) + LC (ρA) � LC (ρSA), (75)

where ρS and ρA are reduced states on S and A, respectively.
Proof. First, we consider the case of pure states. Let

|ψSA〉 =
rS−1∑
i=0

rA−1∑
j=0

ai j |iS〉| jA〉 (76)

be the optimal decomposition of |ψSA〉 belonging to the
minimum in Eq. (16). It follows then that

RC (|ψSA〉) = rS × rA. (77)
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Further, the matrix M of complex numbers ai j can be repre-
sented as

M =
(

NrS×rA O
O O

)
, (78)

where NrS×rA = (ai j )rS×rA , and O are zero matrices. Using
the singular value decomposition, M = U�V , where � is a
diagonal matrix with non-negative elements λm, which are the
singular values of M, and U and V are unitary matrices. Thus,
it is always possible to write |ψSA〉 in the following way,

|ψSA〉 =
r−1∑
m=0

λm|mS〉|mA〉, (79)

where r is the Schmidt number of the state |ψSA〉, and

|mS〉 =
rS−1∑
i=0

uim|iS〉, |mA〉 =
rA−1∑
j=0

vm j | jA〉. (80)

Here the complex numbers uim and vm j are matrix elements of
unitary matrices U and V . It is easy to see that the coherence
rank of states |mS〉 and |mA〉 cannot exceed the numbers rS

and rA, respectively. This means that for every m the following
inequalities hold:

LC (|mS〉) � log2 rS, LC (|mA〉) � log2 rA. (81)

For the subsystem S, we know that ρS = ∑
m λ2

m|m〉S〈m| is a
valid decomposition of ρS . Then we obtain

LC (ρS ) �
∑

m

λ2
mLC (|mS〉)

�
∑

m

λ2
m log2 rS

= log2 rS, (82)

and similarly, that

LC (ρA) � log2 rA. (83)

The above inequalities together with Eq. (77) imply the fol-
lowing inequality:

LC (ρS ) + LC (ρA) � LC (|ψSA〉). (84)

For any mixed state ρSA, let ρSA = ∑
i pi|ψi〉SA〈ψi| be the

optimal decomposition of |ψSA〉 belonging to the minimum in
Eq. (19), where we then have

LC (ρSA) =
∑

i

piLC
(∣∣ψSA

i

〉)
. (85)

Combining Eqs. (84) and (85), we obtain

LC (ρSA) =
∑

i

piLC
(∣∣ψSA

i

〉)
�

∑
i

piLC
(
ρS

i

) +
∑

i

piLC
(
ρA

i

)
� LC (ρS ) + LC (ρA). (86)

This completes the proof of the proposition. �

From the proof of the proposition, we immediately see that
the Schmidt number r does not exceed the numbers rS and rA,
i.e.,

r � min{rS, rA}. (87)

Thus, we can obtain an interesting relation between entangle-
ment and coherence as follows:

max{LC (ρS ),LC (ρA)} + LE (|ψSA〉) � LC (|ψSA〉), (88)

where LE (|ψSA〉) is the Schmidt number, which is defined
in [5], and LE (|ψSA〉) = log2 r. Note that the equality in the
above inequality holds if and only if the matrix M is a diagonal
matrix.

This relation shows that the sum between the entanglement
and coherence contained in one subsystem cannot be more
than the total coherence. This relation can be generalized to
the mixed states, so for any bipartite mixed state ρSA, we
have

max{LC (ρS ),LC (ρA)} + LE (ρSA) � LC (ρSA). (89)

Here, LE (ρSA) is the Schmidt number of a mixed state, which
is defined as [5]

LE (ρSA) = min
{pi,|ψSA

i 〉}

∑
i

piLE
(∣∣ψSA

i

〉)
, (90)

where the minimum is taken over all pure state decomposi-
tions of ρSA = ∑

i pi|ψi〉SA〈ψi|.
In fact, our results (75) and (89) are also generalized to

the multipartite setting. Let ρSA1...AN be an N + 1-partite state.
Then by the repeated use of superadditivity, we have

LC (ρS ) +
N∑

i=1

LC (ρAi ) � LC (ρA1...AN ). (91)

Combining Eqs. (89) and (91), we have

LE (ρS|A1...AN ) +
N∑

i=1

LC (ρAi ) � LC (ρA1...AN ), (92)

where LE (ρS|A1...AN ) is the Schmidt number with the bipartite
cut S|A1 . . . AN .

Finally, it is interesting to compare the logarithmic co-
herence number with the Schmidt number. We consider a
quantum-incoherent state which has the following form:

χSA =
∑

i

pi|i〉S〈i| ⊗ ρA
i , (93)

where ρA
i are arbitrary quantum states on A, and the states

|iS〉 belong to the local incoherent basis of S [20]. For
any quantum-incoherent state, we can easily obtain that the
Schmidt number is zero, i.e.,

LE (ρSA) = 0. (94)

Meanwhile, we can obtain the following relation, i.e.,

LC (χSA) �
∑

i

piLC
(
ρA

i

)
. (95)

We note that the minimum in LC (χSA) depends only on the
pure decomposition of ρA

i , so without loss of generality, let
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χSA = ∑
i j piq j |i〉S〈i| ⊗ |ψi j〉A〈ψi j | be the optimal decompo-

sition of χSA belonging to the minimum in Eq. (19). We then
have

LC (χSA) =
∑

i j

piq jLC (|ψi j〉A〈ψi j |)

=
∑

i

pi

∑
j

q jLC (|ψi j〉A〈ψi j |)

�
∑

i

piLC

⎛
⎝∑

j

q j |ψi j〉A〈ψi j |
⎞
⎠

=
∑

i

piLC
(
ρA

i

)
. (96)

Combining Eqs. (95) and (96), we have

LC (χSA) =
∑

i

piLC
(
ρA

i

)
. (97)

VII. CONVERTING COHERENCE TO ENTANGLEMENT

In this section, using the logarithmic coherence number, we
discuss the relation between the coherence of a mixed state
ρS in an initial system S with the entanglement generated
from ρS by attaching an ancilla system A and taking an
incoherent operation �SA on the bipartite system SA. Based
on different measures, some authors have been investigated as
well [6,10,31,32].

Proposition 12. The entanglement generated from a state
ρS via an incoherent operation �SA is bounded above by the
logarithmic coherence number, i.e.,

LC (ρS ) � LE (�SA(ρS ⊗ |0〉A〈0|)). (98)

Proof. Let |0〉〈0|A be an incoherent state on A. Then we
have

LC (ρS ) = LC (ρS ⊗ |0〉〈0|A)

� LC[�SA(ρS ⊗ |0〉〈0|A)]

=
∑

k

λkLC (|φ〉SA)

�
∑

k

λkLE (|φ〉SA)

= LE [�SA(ρS ⊗ |0〉〈0|A)], (99)

where the second equality comes from the fact that �SA(ρS ⊗
|0〉〈0|A) = ∑

k λk|φk〉SA〈φk| is an optimal pure states decom-
position of �SA(ρS ⊗ |0〉〈0|A) belonging to the minimum in
Eq. (19), and the second inequality depends on the fact that
the coherence rank is greater than or equal to the Schmidt
rank. �

From the results in [6,9,10,31], we know that a unitary
operation which makes the coherence rank and the Schmidt
number equal is given by

U =
d−1∑
i=0

d−1∑
j=i

|i〉S〈i| ⊗ |i ⊕ ( j − 1)〉A〈 j|, (100)

where ⊕ means an addition modula d . Let |ψS〉 = ∑
i λi|iS〉

be a pure state on S; then the unitary operation can map the
state |ψS〉 ⊗ |0A〉 to the state

U (|ψS〉 ⊗ |0A〉) =
∑

i

λi|iS〉|iA〉. (101)

Then we easily obtain

LC (|ψS〉) = LE [U (|ψS〉 ⊗ |0A〉)]. (102)

Similar to the result in [10], we can extend the above result to
the general case of mixed states as follows.

Proposition 13. There exists an isometry W : HS →
HS ⊗ HA such that for any state ρS on S, we have

LC (ρS ) = LE (W ρSW †). (103)

Proof. Let {|i〉} be an orthonormal basis and |0〉 be any
state in HA; from the result [33], one can define

W =
∑

i

Ki ⊗ |i〉〈0|, (104)

where W †W = I ⊗ |0〉〈0|, and there exists a unitary operation
U such that W = U (I ⊗ |0〉〈0|). In particular, we take the
unitary operation given in Eq. (100). Let ρ = ∑

i λ
∗
i |ψ∗

i 〉〈ψ∗
i |

be a decomposition for which the minima in Eq. (19) is
attained. Since the operation I ⊗ |0〉〈0| does not effect the
Schmidt number, for any state |ψ∗

i 〉, using Eq. (102), we have

LC (|ψ∗
i 〉) = LE (W |ψ∗

i 〉). (105)

We know that there exists a one-to-one correspondence be-
tween the pure states decompositions of ρ and the de-
compositions of ρ ′ = W ρW † for given W . Then we obtain
{λ∗

i ,W |ψ∗
i 〉} and will form an optimal pure state decomposi-

tion of ρ ′, and

LC (ρ) =
∑

i

λ∗
i LC (|ψ∗

i 〉)

=
∑

i

λ∗
i LE (W |ψ∗

i 〉)

= LE (W ρSW †). (106)

This completes the proof of the proposition. �

VIII. CONCLUSIONS

We have introduced a measure of coherence, the loga-
rithmic coherence number, which is generalized from the
Schmidt measure and coherence rank. We have shown that the
logarithmic coherence number is a proper coherence measure.
We have also proved the logarithmic coherence number is
additive but not continuous. In particular, we have found
that the logarithmic coherence number is computable for a
large class of states. We have shown that the logarithmic
coherence number is a better upper bound for the relative
entropy of coherence; this gave an operational expression
for the logarithmic coherence number. At the same time,
we also discussed the relationships between the logarithmic
coherence number and the l1-norm coherence. By introduc-
ing average fidelity coherence, we obtained an uncertainty
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relation between them. We have shown that the logarithmic
coherence number satisfies the superadditivity and obtained
the relationship between coherence and entanglement via
our presented measures. The results can also be extended
to multipartite settings. We have shown that the creation of
entanglement with bipartite incoherent operations is bounded
by the logarithmic coherence number of the initial system dur-
ing the process. Some interesting results are given. We hope
this measure of coherence will improve the understanding of
quantum resource theory.
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