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We present a phase control method for a general three-mode system with closed-loop coupling that drives the
system into an entangled steady state and produces directional steering between two completely symmetric
modes via quantum interference effects. In the scheme, two modes are coupled with each other both by a
direct binary interaction and by an indirect interaction through a third intermediate damping mode, creating
interference effects determined by the relative phase between the two physical interaction paths. By calculating
the populations and correlations of the two modes, we show that, depending on the phase, two modes can be
prepared into an entangled steady state with asymmetric and directional steering even if they possess completely
symmetric decoherence properties. Meanwhile, entanglement and steering can be significantly enhanced due
to constructive interference and thus are more robust to thermal noises. This provides an active method to
manipulate the asymmetry of steering instead of adding asymmetric losses or noises to subsystems at the
cost of reducing steerability. Moreover, we show that the interference effects can also enhance and control
the correlations between other pairs of modes in the loop with opposite phase-dependent behavior, indicating
monogamy constraints for distributing correlations among multiple parties. The present model could be applied
in cavity optomechanical systems or in antiferromagnets where all components can mutually interact.
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I. INTRODUCTION

A great deal of effort has been devoted to generating
and controlling entanglement, which is the most intrinsic
feature of quantum mechanics with a variety of applications
in quantum information processing [1]. A strict subset of
entanglement called quantum steering is of particular interest
[2,3]. The concept was originally discovered by Schrödinger
[4] in response to the freaky “spooky action-at-a-distance”
predicted by Einstein, Podolsky, and Rosen (EPR) in their
famous paradox [5,6], describing how the local measurements
on one of two entangled particles can adjust (steer) the state of
the other distant particle. There has been an increasing interest
in EPR steering since it was rigorously defined by mathemat-
ical formulation from the perspective of quantum information
[7–9]; i.e., in a network one can verify the entanglement
between Alice and Bob without the requirement of trust of
Bob’s equipment used to perform local measurements at his
node by confirming the presence of steering of Alice’s system
by Bob. This feature makes quantum steering substantial to
various quantum information protocols which rely on entan-
glement by providing extra security [10], such as semisided
device-independent quantum key distribution [11–13] and
quantum secret sharing [14–16], one-way quantum computing
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[17], no-cloning quantum teleportation [18–20], subchannel
discrimination [21], and other related protocols.

A second distinctive feature, in contrast to entanglement
and Bell nonlocality, is that quantum steering implies a direc-
tion between the parties involved. The steering strengths in
two directions may not be the same [22], especially, a special
type is known as one-way EPR steering where the entangled
states show steering in one direction but not in the other
[7,23]. Asymmetric EPR steering has attracted considerable
attention recently for both theory [24–40] and experiment
[14,23,41–46]. One important method used in the above
studies to produce directional steering is making the states
asymmetric by adding different amounts of losses or noises
to the subsystems. For example, the entangled two-qubit
states which are one-way steerable have been experimentally
demonstrated by passing one party into a lossy channel with a
given probability of obtaining a qubit state [43,45]. It is impor-
tant to realize one-way steerable Gaussian continuous variable
states referred to in the original EPR argument. One-way
steering in the Gaussian regime (Gaussian states and Gaussian
measurements) was first observed by introducing additional
amounts of loss to one mode of a two-mode squeezed state
(TMSS) (vacuum is coupled to the signal by a beam splitter
with transmission efficiency η) [23] and then extended to a
multipartite optical network [14]. The direction of Gaussian
steering can be also manipulated by adding Gaussian noises
to one party of a TMSS and transmitting the TMSS in a lossy
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channel [41]. Rather than by adding asymmetric loss or noise
to subsystems which in general leads to the reduction of corre-
lation, recently, Olsen proposed a nonlinear optical apparatus
to control the asymmetry of EPR steering by controlling the
amplitude of signals injected into a nondegenerate parametric
oscillator such that the effects are intrinsic to the scheme [39].

In light of the exceptional importance of these develop-
ments, we provide in this paper a different mechanism to
prepare and control the asymmetric steering with enhanced
steerability via quantum interference effects in a general three-
mode system where all three modes are mutually coupled with
each other. We show that by engineering interference between
two different interaction paths, i.e., a direct interaction path
and an indirect interaction path induced by both being coupled
to the third intermediate damping mode, two identical modes
with symmetric decoherence properties can be driven into
an entangled steady state with asymmetric and directional
steering, meanwhile the entanglement and steerability can be
effectively enhanced due to constructive interference. This
provides an active method to create and control the direction
of asymmetric steering without the cost of reducing steer-
ability. Moreover, the steady-state entanglement and asym-
metric steering created by the interference effects appear to
be more robust against thermal noise. Finally, we have also
demonstrated the opposite interference patterns of entangle-
ment and steering between other pairs of modes in the loop,
indicating the monogamy constraints for distributing quantum
correlations among multiple parties. It is worth noticing that
new quantum interference effects arising from a closed-loop
coupling have been recently applied to study optomechani-
cal interferences and phonon correlations [47,48], the phase
effects on phonon blockade effects [47,49], the transduction
bandwidth of a radio-frequency-to-optical transducer [50],
and the optical nonreciprocal behavior [51–55] which has
been experimentally implemented [56–58].

The remainder of this paper is organized as follows. In
Sec. II, we introduce a general three-mode system with a
closed-loop coupling which creates interference effects deter-
mined by the relative phase of the coupling strengths between
two interaction paths. In Sec. III, we recall the criteria adopted
in this paper to test quantum entanglement and Gaussian steer-
ing. We then investigate in Sec. IV the creation and control
of the steady-state entanglement and quantum steering by the
interfering channels and compare their performance with the
results achieved by applying only one interaction path.
The results show the enhancement of correlations, the effec-
tive control of the asymmetric steering, and the robustness to
thermal noises via interference effects. Finally, we summarize
our results in Sec. V.

II. MODEL

We consider a three-mode system represented by the anni-
hilation operators a, b, and c, in which modes a and b interact
with each other in two distinct paths, i.e., the direct coupling
path resulting from a two-mode squeezing interaction and the
induced indirect interaction path obtained by simply coupling
to the third intermediate damping mode c. The interaction of
the system is thus described by a general form of Hamiltonian

FIG. 1. Schematic diagram of a general three-mode system with
a closed coupling loop. Modes a and b interact directly via a two-
mode squeezing interaction with strength λ; at the same time, they
are coupled to an intermediate damped mode c resulting in an indirect
interaction path between them indicated by the blue dashed curve.
The relative phase φ between two paths can be engineered to control
and improve the correlation between modes a and b.

(with h̄ = 1):

H = λeiφa†b† + λe−iφab + ga(eiφa c†a† + e−iφa ca)

+ gb(eiφbc†b + e−iφbcb†), (1)

where λ, ga, and gb are the effective coupling strengths with
individual phases φ, φa, and φb controlled by the driving laser
fields. This creates a three-mode closed-loop in the coupling,
as illustrated in Fig. 1, which will give rise to interference
effects and phase dependence of the dynamics of the modes.
Since the interference is dependent on the relative phase
between the two interaction paths, without loss of generality,
we can absorb the phases φa and φb into φ by redefining
the operators a and b. In the following we assume φa =
φb = 0 and treat φ as the relative phase in the interference
for simplicity. This coupling loop could be realized in three-
mode optomechnical systems [48] or in antiferromagnets with
magnon-photon coupling [59].

Substituting the Hamiltonian to the Heisenberg equa-
tion and taking into account the dissipation-fluctuation pro-
cesses, we get the quantum Langevin equations (QLEs) for
each mode:

ȧ = −κaa − iλeiφb† − igac† −
√

2κaain,

ḃ = −κbb − iλeiφa† − igbc −
√

2κbbin, (2)

ċ = −γcc − i(gbb + gaa†) −
√

2γccin,

where κa, κb, and γc are the damping rates of modes
a, b, and c, respectively; and ain, bin, and cin are
the input quantum noises with zero average value
which are taken to be statistically independent with
nonzero δ correlated functions: 〈ain(t )ain†(t ′)〉 = δ(t − t ′),
〈bin(t )bin†(t ′)〉 = δ(t − t ′), 〈cin(t )cin†(t ′)〉= (n̄th+ 1)δ(t− t ′),
〈cin†(t )cin(t ′)〉= n̄thδ(t− t ′), where n̄th = [exp h̄ωc

kBT − 1]−1 is
the mean thermal occupation number of the intermediate
mode c at the frequency ωc, T is the temperature of the
surrounding environment, and kB is the Boltzmann constant.
Here we assume that modes a and b are in the ordinary
zero-temperature environment (n̄tha = n̄thb = 0), whereas
the intermediate mode is in a thermal state with nonzero
temperature. We also show the influence of noises when all
three modes are thermally excited.
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We are interested in the phase-dependent effects on the
generation and control of Gaussian entanglement and steering
between modes a and b, and so we define the quadrature op-
erators of modes Xj = ( j + j†)/

√
2 and Yj = ( j − j†)/

√
2i,

and the corresponding Langevin noise operators X in
j = ( jin +

jin†)/
√

2 and Y in
j = ( jin − jin†)/

√
2i ( j = a, b, c). The QLEs

(2) can be thus written as

u̇ = Mu − 	uin, (3)

where u = (Xa,Ya, Xb,Yb, Xc,Yc)T (the superscript T de-
notes the transposition), the diagonal damping matrix 	 =
diag(

√
2κa,

√
2κa,

√
2κb,

√
2κb,

√
2γc,

√
2γc), and the corre-

sponding vector of noises uin = (X in
a ,Y in

a , X in
b ,Y in

b , X in
c ,Y in

c )T.
The 6×6 drift matrix M is the coefficient matrix of the system,
which reads

M = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

κa 0 −λ sin φ λ cos φ 0 ga

0 κa λ cos φ λ sin φ ga 0

−λ sin φ λ cos φ κb 0 0 −gb

λ cos φ λ sin φ 0 κb gb 0

0 ga 0 −gb γc 0

ga 0 gb 0 0 γc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The system is stable only when the real parts of all
the eigenvalues of matrix M are negative, and the stability
condition can be derived from the Routh-Hurwitz criterion
[60]. The general stability condition depending on the relative
phase is too complex, which can be simply given for the cases
of φ = π

2 + nπ (n ∈ Z):

κaκbγc − g2
aκb + g2

bκa − λ2γc > 0,

(κa + κb)(κa + γc)(κb + γc) − g2
a(κa + γc)

+ g2
b(κb + γc) − λ2(κa + κb) > 0. (4)

III. CRITERIA FOR ENTANGLEMENT
AND EPR STEERING

The steady state of the system is a zero-mean Gaus-
sian state because of the Gaussian nature of the input
quantum noises ain, bin, and cin and the linearized dy-
namics, which can be fully characterized by its covariance
matrix (CM) V with components Vlm = [〈ul (∞)um(∞) +
um(∞)ul (∞)〉]/2 (l, m = 1, 2, . . . , 6), where ul (t ) is the lth
quadrature component of u(t ). The steady-state CM can be
determined by solving the Lyapunov equation MV + V MT =
−D, where the diffusion matrix D characterizes the station-
ary noise correlations and is defined through 〈vl (t )vm(t ′) +
vm(t ′)vl (t )〉/2 = Dlmδ(t − t ′) (v = −	uin) [61,62], such that
here D = diag[κa, κa, κb, κb, (2n̄th + 1)γc, (2n̄th + 1)γc]. The
Lyapunov equation is a linear equation for V and can be
straightforwardly solved.

Since we are specifically interested in the entanglement
and EPR steering created between modes a and b, it is enough
to consider the reduced CM

V =
(

Va Vab

V T
ab Vb

)
, (5)

where the submatrices Va and Vb are corresponding to
the reduced states of modes a and b, respectively. In or-

der to measure the entanglement, we adopt the logarith-
mic negativity EN = max {0,− ln 2η−} [63,64], where η− ≡√

�(V ) − [�(V )2 − 4 det V ]1/2/
√

2, with �(V ) ≡ det Va +
det Vb − 2 det Vab. Therefore, a Gaussian state is entangled if
and only if η− < 1/2, and the larger value of EN implies the
stronger entanglement between modes.

To signify EPR steering, we adopt the computable mea-
sure of Gaussian steering proposed in Ref. [65] for arbitrary
bipartite Gaussian states under Gaussian measurements. The
steering in the direction from mode a to mode b (Ga→b) and
in the opposite direction (Gb→a) is quantified by

Ga→b = max {0, S(2Va) − S(2V )},
Gb→a = max {0, S(2Vb) − S(2V )}, (6)

where S(σ ) = 1
2 ln det σ is the Rényi-2 entropy. Ga→b > 0

(Gb→a > 0) implies that mode a (b) can steer mode b (a) by
Gaussian measurements, and its value quantifies the degree of
steering; i.e., the higher the value of G becomes, the stronger
the Gaussian steerability appears.

For the present system, the steady-state values 〈a2〉 =
〈b2〉 = 〈a†b〉 = 0, such that the conditions to satisfy EN > 0,
Ga→b > 0, and Gb→a > 0 can be also expressed in terms of
correlation-based inequalities, respectively [66,67],

|〈ab〉| >
√

〈a†a〉〈b†b〉,
|〈ab〉| >

√
〈b†b〉(〈a†a〉 + 1/2), (7)

|〈ab〉| >
√

〈a†a〉(〈b†b〉 + 1/2).

The steady-state solution of populations 〈a†a〉 and 〈b†b〉
and the correlation 〈ab〉 at φ = π

2 + nπ (n ∈ Z) is detailed in
Appendix A, and the derivation of the inequalities (7) is given
in Appendix B.

IV. CONTROL AND ENHANCEMENT OF QUANTUM
CORRELATIONS VIA INTERFERENCE

A. Phase-sensitive quantum entanglement
and directional steering

Both the direct two-mode squeezing interaction and the
induced indirect interaction by being coupled to the third
intermediate mode with beam-splitter-type coupling and
parametric-down-conversion-type coupling, respectively, can
create entanglement between modes a and b. Thus the super-
position of these two physical interaction paths may create
quantum interference effects which depend on the relative
phase of the coupling strengths. In the following we inves-
tigate the phase-dependent effects on the creation of quantum
entanglement and EPR steering.

The measures of entanglement (EN ) and EPR steering (G)
vary with φ, as depicted in Fig. 2. Apparently, entanglement
evolves with φ periodically (black solid curve), maximized
when phase φ = (2n + 3/2)π (n ∈ Z) by constructive inter-
ference and minimized at φ = (2n + 1/2)π by destructive
interference. Interestingly, Gaussian steering in two directions
behaves asymmetrically with phase; that is, steering from
mode a to mode b quantified by the parameter Ga→b (blue
dashed curve) exhibits the same phase-dependent behavior as
that of the entanglement measure EN , whereas steering in the
other direction measured by the parameter Gb→a (red dotted
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FIG. 2. Stationary entanglement (EN , black solid curve) and
quantum steering between two modes a and b (Ga→b, blue dashed
curve; Gb→a, red dotted curve) as a function of the relative phase
φ of interfering channels, when (a) λ = 0.4κ and (b) λ = 0.605κ .
Other parameters are κa = κb = κ , ga = 3.2κ , gb = 5κ , γc = 2κ , and
n̄th = 0. All parameters are expressed in units of κ throughout the
manuscript.

curve) behaves in a completely different way. Specifically,
steering in this direction does not exist for the case of λ =
0.4κ shown in Fig. 2(a), such that one-way steering in the
direction of a → b occurs over the whole period of φ. For the
larger value of λ = 0.605κ , Gb→a reaches a maximal value
at φ = (2n + 3/2)π as well, and we can get rich properties
of Gaussian steering, e.g., the overall state’s asymmetry is
stepwise driven through the one-way regime (Ga→b > 0 but
Gb→a = 0), no-way regime (Ga→b = 0 and Gb→a = 0), and
two-way regime (Ga→b > 0 and Gb→a > 0), and finally one-
way regime again over one period of phase, as shown in
Fig. 2(b).

For the parameters studied here, we can find that the
steerability from a to b is always larger than the steerability
from b to a. This can be understood from the inequalities (7)
and the solutions given in Eq. (A2). When the two modes
have same dissipation rates κa = κb = κ and mode c is at zero
temperature n̄th = 0, from Eq. (A2) we can see that the photon
fluctuation of mode a is always larger than that in mode b, i.e.,
〈a†a〉 > 〈b†b〉, and therefore the condition given in Eq. (7) to
confirm steering a → b is easier to satisfy than that required
for demonstrating steering b → a.

Now we come to the first important result of this paper.
Two identical modes which have completely symmetric de-
coherence κa = κb = κ and n̄th,a = n̄th,b = 0 can still be pre-

FIG. 3. The measures of entanglement (EN ) and steering (Ga→b,
Gb→a) between modes a and b versus the damping rate γc/κ for
the cases of creating correlations only by the indirect interaction
path λ = 0 (blue solid curves) and by interfering channels when
λ = 0.5κ (red dashed curves), λ = κ (black dotted curves), and
λ = 1.5κ (green dash-dotted curves). The destructive interference
and the constructive interference at phase φ = π/2 and phase
φ = 3π/2 lead to the reduction [panels (a)–(c)] and enhancement
[panels (d)–(f)] of correlations, respectively. Other parameters are
ga = 8.3κ , gb = 10κ , and n̄th = 0.

pared into an entangled state with asymmetric and directional
steering by adjusting the phase of the interfering channels.
This reveals the inherent asymmetric nature of quantum steer-
ing with respect to the two parties involved. Comparing with
the way to produce one-way steering in earlier studies by
adding losses or thermal noises to one subsystem [14,23,41]
with the cost of reducing correlation, engineering the interfer-
ence is an active method which creates asymmetric steering
and at the same time enhances the steerability.

B. Performance comparison with correlations created
by only one interaction path

To clearly indicate the performance of control and en-
hancement of entanglement and steering via interfering chan-
nels, we compare with the results achieved via only one of two
interaction paths.

First, the numerical results of the dependence of entangle-
ment and steering on the damping rate of the third interme-
diate mode γc/κ are given in Fig. 3 for different coupling
strengths of the direct interaction path λ. Blue solid curves
present the results achieved only by the indirect coupling
path, i.e., λ = 0, and other curves show the correlations
achieved by the interfering channels with phase φ = π/2
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FIG. 4. Comparison of Gaussian steering in the regime of γc
κ

achieved by the indirect path only (λ = 0, blue solid curves) and
by the interfering channels with constructive interference (λ = κ ,
φ = 3π/2, black dotted curves). Other parameters are the same as
those used in Fig. 3.

[Figs. 3(a)–3(c)] and with phase φ = 3π/2 [Figs. 3(d)–3(f)]
for λ = 0.5κ (red dashed curves), κ (black dotted curves),
and 1.5κ (green dash-dotted curves), respectively. It can be
seen that the correlations are reduced due to the destructive
interference of two interaction paths at φ = π/2. Comparing
the steering in two directions shown in Figs. 3(b) and 3(c),
increasing the value of λ leads to the stronger destructive
interference effects on reducing the correlation between two
modes, but it features one-way steering in a wider parameter
range. For instance, when λ = κ (shown by the black dotted
lines), the steering becomes possible only in one direction
a → b for almost all values of γc, while for not accounting for
the direct interaction path (λ = 0, blue solid curves), one-way
steering is possible only for a strong mechanical damping rate
of γc � κ .

When the interfering channels with phase φ = 3π/2, as
shown in Figs. 3(d)–3(f), the degree of entanglement and
the steering are remarkably enhanced due to the constructive
interference of two interaction paths compared with the result
achieved by only the indirect interaction path (λ = 0, blue
solid curves). For this case, we can get stronger two-way steer-
ing over a wider parameter range, which has been proven to be
a necessary resource required for teleporting a coherent state
with fidelity beyond the no-cloning threshold [18]. The differ-
ent degree of steerability in two directions also provides the
asymmetric guaranteed key rate achievable within a practical
one-sided device-independent quantum key distribution [65].
In the regime of γc � κ , the steering in the direction Gb→a

becomes lost. Thus, the constructive interference can also ma-
nipulate the direction of steering from asymmetric two-way to
one-way. The steady-state steering generated only by the indi-
rect interaction path has been studied in Ref. [36], where the
authors concluded that in the regime γc 
 κ the steady entan-
gled states are definitely not steerable in any direction when
two optical modes have the same damping rates, κa = κb = κ ,
while only the mode with the larger dissipation rate can be
steered by the other one. Our result, however, shows that by
applying the interfering channels the steering in both direc-
tions may be achieved in this regime due to the constructive
interference, as indicated by the black dotted curves in Fig. 4.

FIG. 5. The comparison of entanglement and steering achieved
by only one direct interaction path (blue solid curves) and by the in-
terfering channels at phases (a) φ = π/2 and (b) φ = 3π/2, respec-
tively. The entanglement EN (black dash-dotted curves) and steering
in two directions, Ga→b (red dotted curves) and Gb→a (red dashed
curves), are notably enhanced, meanwhile, the range of steady-state
solution is also remarkably broadened when two interaction paths
superpose and interference happens. Other parameters are ga = 8.3κ ,
gb = 10κ , γc = 5κ , and n̄th = 0.

Second, we compare with the results obtained when only
the direct interaction path exists. In this case, the photon
fluctuation and correlation expressions given by Eq. (A2) in
Appendix A can be simplified as

〈a†a〉 = κbλ
2

(κa + κb)(κaκb − λ2)
,

〈b†b〉 = κaλ
2

(κa + κb)(κaκb − λ2)
, (8)

〈ab〉 = κaκbλ(sin φ − i cos φ)

(κa + κb)(κaκb − λ2)
.

The conditions to confirm the presence of steering given in
Eq. (7) then reduce to

Ga→b > 0 : (κb − κa)(κaκb − λ2) > 0,

Gb→a > 0 : (κa − κb)(κaκb − λ2) > 0. (9)

We can see from Eq. (9) that it is not possible to create steer-
ing in both directions when two modes possess symmetric
dissipation rates, κa = κb. Since the stability condition of the
system for this case requires λ2 < κaκb, then Ga→b > 0 when
κb > κa, and Gb→a > 0 when κa > κb. This means that one
can only produce one-way steering from the mode with the
lower damping rate to the mode with the higher decay rate.
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FIG. 6. The influence of thermal noise on the entanglement
(EN , solid curves) and steering (Ga→b, dotted curves, and Gb→a,
dashed curves) between modes a and b at phase φ = 3π/2 when
(a) n̄th only exists on the intermediate damping mode c and (b)
n̄tha = n̄thb = n̄th. Blue (the lower solid, dotted, and dashed) curves
indicate the results achieved only by the indirect interaction path
where λ = 0, and correspondingly red (the upper solid, dotted, and
dashed) curves represent the enhanced correlations via interference
channels when λ = 1.5κ . Other parameters are ga = 8.3κ , gb = 10κ ,
and γc = 5κ .

This observation consists with the conclusion made in earlier
studies [23,34,36] that the decoherence with no thermal noise
in the steering system has an effect more substantial than that
in the steered system, such that the condition κb > κa may
destroy (preserve) steering in the direction b → a (a → b)
where mode b possessing higher decoherence acts as the
steering (steered) party, respectively.

However, for two modes possessing completely symmetric
decoherence properties we show in Fig. 5 that by apply-
ing the interfering channels one can still create asymmetric
and directional steering. Meanwhile, the degree of correla-
tions is enhanced even at phase φ = π/2 [Fig. 5(a)], which
induces destructive interference, and the enhancement is more
remarkable at phase φ = 3π/2 due to constructive interfer-
ence [Fig. 5(b)]. The blue curves in the two plots are the
entanglement achieved by the direct interaction path, while
steering in both directions cannot be produced (G = 0 is
not plotted in the figure for clarity). When we include the
other indirect coupling path, the entanglement (black dash-
dotted curves) is remarkably enhanced, and asymmetric steer-
ing in the direction Ga→b (red dotted curves) and in the
opposite direction Gb→a (red dashed curves) appear. Note

that with the destructive interference shown in Fig. 5(a),
although correlations are reduced when λ increases, it is
useful to achieve one-way steering Gb→a = 0 and Ga→b > 0.
With the constructive interference shown in Fig. 5(b), the
enhancement of entanglement and steering becomes notable,
and two-way asymmetric steering occurs for all steady-state
solutions. This observation is consistent with that shown
in Fig. 3. Moreover, the parameter range to achieve a
steady-state solution is considerably broadened via the in-
terference channel. The stability condition given in Eq. (4)
at phase φ = π

2 + nπ (n ∈ Z) requires λ2 < min{κaκb +
(g2

bκa − g2
aκb)/γc, κaκb + γc(κa + κb + γc) + [g2

b(κb + γc) −
g2

a(κa + γc)]/(κa + κb)}; for the parameters studied here, the
threshold is larger than the κaκb required by the direct inter-
action path only, that is to say, the system is more stable by
applying our interference approach.

So far we have shown how the entanglement and steering
can be enhanced and how the direction of steering can be
controlled via interference effects when three modes are not
thermal excited. In practical implementation using cavity
optomechanical systems, the third intermediate mode could
be a mechanical mode with nonzero thermal phonons, so
we show the influence of thermal noise n̄th only existing in
mode c on the correlations at phase φ = 3π/2 in Fig. 6(a). In
general, thermal noise is detrimental to correlations because it
causes decoherence; however, the entanglement (red, upper
solid curves) and steering (red, upper dotted and dashed
curves) created by the interference channels are more robust
against thermal noise when compared with the entanglement
and steering achieved only by the indirect interaction path
(blue; lower solid, dotted, and dashed curves). Even when all
three modes are in thermal excited states, it is shown again
in Fig. 6(b) that the entanglement and asymmetric steering
created by the interference channels are more robust against

FIG. 7. The phase-dependent behavior of steady-state entangle-
ment and steering between pair a and b (labelled as Eab

N ,Ga→b,
respectively) and between pair a and c (labelled as Eac

N ,Ga→c,
respectively). Note that the steering in the opposite directions Gb→a

and Gc→a are zero which are represented by the dotted curve.
When the entanglement (Eab

N > 0) and one-way steering (Ga→b >

0 and Gb→a = 0) between modes a and b reach a maximum, the
entanglement (Eac

N ) and one-way steering (Ga→c > 0 and Gc→a =
0) between modes a and c are at a minimum. Other param-
eters are κa = κb = κ , ga = 3.2κ , gb = 5κ , λ = 0.4κ , γc = 15κ ,
and n̄th = 0.
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thermal noise than the entanglement and steering achieved by
only applying the indirect interaction path.

C. The enhancement of entanglement and steering
between other two modes in the loop

We focused on the enhancement of entanglement and
the control of the asymmetric and directional steering via
interference effects between modes a and b in the previous
discussion; here, we want to point out that this could be also
realized between modes a and c, which means the method is
general. As shown by the inset plot in Fig. 7, there are two
interaction paths to create entanglement between modes a and
c, one is by the direct two-mode squeezing interaction with
coupling strength ga and the other one is by swapping the
entanglement shared by a and b to pair a and c via the beam-
splitter-type interaction between modes b and c. Two physical
interaction paths superpose with the relative phase and create
interfering channels. The phase-dependent behavior of the
entanglement (Eac

N ) and one-way steering between modes
a and c (Ga→c > 0, Gc→a = 0) is illustrated in Fig. 7. We
also notice that when the entanglement and steering between
modes a and c reach a maximum (minimum) of the interfer-
ence pattern at where the corresponding correlations between
modes a and b are a minimum (maximum), indicating that
there exists a competition to distribute entanglement and
steering between different pairs. This can be understood by
the monogamy constraints for distributing correlations among
multiple parties.

V. CONCLUSION

In summary, we propose an active method to generate and
control steady-state entanglement and asymmetric steering
between two identical modes by intriguing constructive or
destructive quantum interference effects in a general three-
mode system with closed-loop coupling. The direct interac-
tion path between two modes and the indirect interaction
path induced by both coupling to the intermediate damping
mode superpose and act as an interfering channel with a
tunable phase, which can create phase-dependent correlations.
We show that the interference effects can not only enhance the
degree of the entanglement and steerability but also produce
asymmetric steering when two modes possess completely
symmetric decoherence properties. Instead of introducing dif-
ferent amounts of losses or noises to subsystems, this provides

inspiration for manipulating the direction of the asymmetric
quantum steering with enhanced steerability. In addition, the
entangled steady states created by the interference channel
are more robust against thermal noises. Furthermore, using
the interfering channels to entangle the other pair of modes in
the loop is also discussed, and the opposite phase-dependent
behavior indicates the monogamy constraints for distributing
entanglement and steering among multiple parties. This work
opens up new perspectives for the experimental production
and application of EPR steering as a precious resource for
secure quantum communication technologies.
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APPENDIX A: THE STEADY-STATE SOLUTION

To signify the entanglement and Gaussian steering between
modes a and b by the measure of logarithmic negativity EN

and the quantities Ga→b and Gb→a, we need to give out the
steady-state solution of covariance matrix V

V =

⎛
⎜⎜⎜⎝

V (Xa) 0 V (Xa, Xb) V (Xa, Pb)

0 V (Pa) V (Pa, Xb) V (Pa, Pb)

V (Xb, Xa) V (Xb, Pa) V (Xb) 0

V (Pb, Xa) V (Pb, Pa) 0 V (Pb)

⎞
⎟⎟⎟⎠,

(A1)

where the variances are defined V (A) = 〈A2〉 − 〈A〉2 and
V (A, B) = 〈AB + BA〉/2 − 〈A〉〈B〉. By solving the Lyapunov
equation MV + V MT = −D [61,62], where the drift matrix
M and the diffusion matrix D are given in main text, we can
get the steady-state solution of all components in V .

For Gaussian systems, 〈Xa〉 = 〈Pa〉 = 〈Xb〉 = 〈Pb〉 = 0,
such that 〈a†a〉 = [V (Xa) + V (Pa) − 1]/2, 〈b†b〉 =
[V (Xb) + V (Pb) − 1]/2, and 〈ab〉 = [V (Xa, Xb) −
V (Pa, Pb) + iV (Xa, Pb) + iV (Pa, Xb)]/2. Specifically, for
φ = π

2 + nπ (n ∈ Z), V (Xa, Pb) = V (Pa, Xb) = 0; then the
steady-state solutions of mode populations and correlation
terms are obtained as follows:

〈a†a〉 = {
g2

ag2
b(κa + κb + γc)κb + g2

aγc(n̄th + 1)
[
κag2

b − κbg2
a + κb(κb + γc)(κa + κb)

]
+ λ2

{
κb

[
κag2

b − κbg2
a + γc(κa + γc)(κb + γc)

] + γc(n̄th + 1)
[
(κa + κb + γc)g2

b − γcg2
a

]}
− λ4κbγc − 2λn̄thκbγcgagb(κa + κb + γc) sin φ

}/
De,

〈b†b〉 = {
g2

ag2
b(κa + κb + γc)κa + g2

bγcn̄th
[
κag2

b − κbg2
a + κa(κa + γc)(κa + κb)

]
+ λ2

{
κa

[
κag2

b − κbg2
a + γc(κa + γc)(κb + γc)

] + γcn̄th
[
(κa + κb + γc)g2

a − γcg2
b

]}
− λ4κaγc − 2λ(n̄th + 1)κaγcgagb(κa + κb + γc) sin φ

}/
De,
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〈ab〉 = −{
gagbκa

[
κbg2

a + (κb + γc)
(
g2

b + κbγc
)] + gagbγcn̄th

[
κag2

b − κbg2
a + κaκb(κa + κb + 2γc)

]
+ λ sin φ

[
κ2

b κag2
a − κa

(
g2

b + κbγc
)
(κa + γc)(κb + γc) − γcn̄th(κa + κb + γc)

(
κag2

b + κbg2
a

)]
+ λ3 sin φκaκbγc + λ2gagbγc[κa(n̄th + 1) + κbn̄th]

}/
De,

De = (
κbg2

a − κag2
b − γcκaκb + γcλ

2
){

(κa + γc)g2
a − (κb + γc)g2

b + [λ2 − (κa + γc)(κb + γc)](κa + κb)
}
, (A2)

where sin φ = +1 and sin φ = −1 for destructive and
constructive interference when φ = (2n + 1/2)π and φ =
(2n + 3/2)π , respectively.

APPENDIX B: THE DERIVATION OF THE
ENTANGLEMENT AND STEERING CONDITIONS

GIVEN IN EQ. (7)

In this part we simply derive the equivalence between the
measures of entanglement EN > 0 and the Gaussian steering
Ga→b > 0 and Gb→a > 0 and the inequalities given in Eq. (7).

In the present scheme, we have V (Xa)=V (Pa)= na,
V (Xb) = V (Pb) = nb, V (Xa, Xb) = −V (Pa, Pb) = c1, and
V (Xa, Pb) = V (Pa, Xb) = c2, and therefore the CM of modes
a and b at any phase φ can be expressed as

V =

⎛
⎜⎜⎜⎝

na 0 c1 c2

0 na c2 −c1

c1 c2 nb 0

c2 −c1 0 nb

⎞
⎟⎟⎟⎠. (B1)

The logarithmic negativity EN > 0 to confirm entangle-
ment requires η−≡

√
�(V )− [�(V )2− 4 det V ]1/2/

√
2 < 1/2,

which is equivalent to

[
c2

1 + c2
2 − (

na + 1
2

)(
nb + 1

2

)]
× [

c2
1 + c2

2 − (
na − 1

2

)(
nb − 1

2

)]
< 0. (B2)

Noting that the Cauchy-Schwarz inequality implies
that |〈ab〉|2 � 〈a†a〉(〈b†b〉 + 1), i.e., c2

1+ c2
2� (na− 1/2)

(nb+ 1/2), we find that c2
1 + c2

2 < (na + 1/2)(nb + 1/2) must
be true, and then the above entanglement condition reduces to

|〈ab〉| >
√

〈a†a〉〈b†b〉. (B3)

This criterion was directly provided by Hillery and Zubairy
[66] for two-mode states by examining uncertainty relations,
and the derivation from the logarithmic negativity in the Gaus-
sian regime (with the condition 〈a2〉 = 〈b2〉 = 〈a†b〉 = 0) has
been shown in Ref. [36].

In analogy to what was done for entanglement, we can
also derive the measure of Gaussian steering G in terms of
population and correlations. The steering from mode a to
mode b occurs iff Ga→b > 0, which is equivalent to[

c2
1 + c2

2 − na
(
nb + 1

2

)][
c2

1 + c2
2 − na

(
nb − 1

2

)]
< 0. (B4)

The Cauchy-Schwarz inequality implies that c2
1 + c2

2 �
(na − 1/2)(nb + 1/2) < na(nb + 1/2); then the above steer-
ing condition reduces to

|〈ab〉| >
√

〈b†b〉(〈a†a〉 + 1/2). (B5)
Similarly, the condition Gb→a > 0 reduces to

|〈ab〉| >
√

〈a†a〉(〈b†b〉 + 1/2). (B6)

Note that this criteria for bipartite and multipartite steering
have been directly developed in Ref. [67] and can be also
derived from the Reid criterion in terms of variances in the
Gaussian regime (with the condition 〈a2〉 = 〈b2〉 = 〈a†b〉 =
0) [36].
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