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Open and closed spin chains as multiprocessor wires: Optimal engineering and reachability
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We consider the perfect transfer of a state between arbitrary nodes of one-dimensional spin-1/2 chain with
optimally engineered couplings. Motivated by the fact that such a system could be used as a data bus for
connecting multiple quantum processors, we derive two necessary and sufficient conditions that have to be met
in order to perfectly transfer a state between any two nodes and we employ them to examine both open and
closed geometries. Analytical calculations and numerical optimizations are performed for both cases in order to
determine the reachability of certain target states and to provide optimal values for the couplings which ensure
perfect fidelity. An important finding is that even-sized closed chains allow for perfect transfer between any pair
of sites and therefore are a promising platform for the implementation of data bus protocols.
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I. INTRODUCTION

The ability to faithfully transfer quantum states in a net-
work of quantum processors is a crucial task that needs to
be addressed in order to construct an efficient platform for
quantum computation [1]. In the seminal paper by Bose [2],
a one-dimensional spin chain was proposed to act as a data
bus for the reliable transfer of a quantum state over short dis-
tances. There are two main advantages of the aforementioned
scheme: (i) First, there is no need for dynamical control since
the system evolves freely to the desired state. (ii) Since the bus
geometry and the quantum processor are built up by the same
ingredients, we avoid mapping the quantum state to photons,
which so far seem to be the most promising candidates for
long-distance quantum communication. Both the mapping
and the dynamical control are responsible for errors that arise
during the transfer process.

Bose’s initial proposal considered a spin chain with uni-
form couplings between nearest neighbors. In this scenario,
the maximum length of the chain that can support transfer
with fidelity equal to unity, which is commonly referred as
perfect state transfer (PST), is N = 3. For longer chains,
information transfer still surpasses the classical limit but it is
not perfect. However, further studies [3,4] showed that when
the fixed couplings between adjacent sites are engineered in
a suitable manner, then the quantum state can be perfectly
transferred from one end to the other for chains of arbitrary
length. The optimal profile for the couplings has also been
obtained when studying the coherent transport of an electron
in a chain of coupled quantum dots [5]. A recursive formula
for constructing the optimal profile for the couplings has been
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introduced in [6]. Besides, it has been analytically demon-
strated that a periodic profile of the couplings together with
a constraint on the energy spectrum of the Hamiltonian are
the sufficient and necessary conditions for PST between the
end sites of the chain [7]. Moreover, it has been shown that
PST is in general possible between mirror symmetric sites of
the spin chain [8]. Finally, experimental results supporting the
efficiency of the protocol have been obtained by employing
evanescently coupled waveguides [9–11].

In the current study, we consider one-dimensional spin
chains with nearest neighbor Heisenberg interactions for open
and closed geometries. Instead of considering the end nodes
of the chain as initial and target sites, we aim to construct
a data bus that can perfectly transfer a state from any initial
to any target site, assuming all are connected to a quantum
processor. From further analytical calculations we perform,
it is clear that the two conditions we have derived cannot be
met simultaneously for every initial and target site that we
pick. For open chains, we can firmly exclude certain cases of
short-distance transfer and for odd-sized chains cases where
the state is transferred from a site with an even index to an
odd one or vice versa. For cases where both conditions can
be met, we provide both an analytical scheme and numerical
calculations to access the optimal profile for the couplings,
which, in general, is not periodic. For closed chains, which
are essentially one-dimensional circular ring geometries, we
have opposite behavior for odd- and even-sized systems.
For odd-sized chains (N > 3), independent of the initial and
target sites, no PST is possible. On the contrary, we have
observed that for even-sized chains there is always an optimal
configuration that can support PST between arbitrary initial
and target sites. Conclusively, we highlight the advantage of
an even-sized ring geometry for connecting multiple quantum
processors to each other.
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II. A ONE-DIMENSIONAL DATA BUS

We consider the one-dimensional XX Heisenberg spin-1/2
chain of length N , described by a Hamiltonian matrix as
follows:

H = 1

2

N−1∑
i=1

Ji
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
, (1)

where Ji’s correspond to the couplings between adjacent
sites and Si’s to the spin operators on each lattice site. We
have assumed that the Ji’s are real and positive, h̄ = 1, the
interaction takes place only between nearest neighbors, and
that the magnetic field is absent. Without loss of generality,
one may also have a homogeneous magnetic field with equal
strength on each lattice site. The Heisenberg Hamiltonian of
Eq. (1) expressed in the site basis can be represented as a block
diagonal matrix, where each of the N + 1 blocks corresponds
to a fixed number of up spins. The protocol we will consider
starts with an initial state that has only one spin pointing
up and our aim is to perfectly transfer this excitation to an
arbitrary lattice site. Since the block corresponding to one
spin up is not connected to the others, the time evolution
operator, up to a phase, only affects this block. Thus, we can
restrict ourselves to the one-excitation subspace where the
Hamiltonian is represented by a real symmetric matrix that
takes the following form:

HN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 J1 0 . . . JN

J1 0 J2
...

0 J2 0
. . .

...
. . .

. . .
JN−1

JN . . . JN−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

For open chains, we must set JN = 0, so that the first and
the last site get disconnected. It is worth noting here that
our results hold for every Hamiltonian that can be reduced to
this particular matrix form. Even if we start from a different
Hamiltonian describing the spin interaction, e.g., XY Z or
XY model, since only the one-excitation subspace evolves
nontrivially, irrespective of the initial Hamiltonian we always
end up with the above matrix describing a single spin moving
along the chain [2,3,7]. Also, without loss of generality, the
initial state may be a superposition between the one-excitation
state and the nonexcited state where all spins are down. These
two states are completely decoupled. Therefore, one transfers
the “superposition” or an arbitrary qubit state, just by ensuring
that the one-excitation state will be transferred perfectly.

III. PERFECT STATE TRANSFER

Two key notions are important to define in order to set
the frame of our study: reachability and fidelity. The problem
of reachability is to define sets of quantum states (initial and
target) that are connected through time evolution. This means
that we can transfer the initial state fully to the target one in a
finite time, if we design a specific time-evolution operator—
which can be time dependent or time independent—within the

conditions and restrictions of the problem. Here we restrict
ourselves to time-independent Hamiltonians of the form of
Eq. (1), with finite J values. Fidelity measures how faithfully
we can transfer a quantum state, in a finite amount of time t ,
that is initially localized on one lattice site |m〉 to another |n〉,
where m, n = 1, . . . , N denote the site basis vectors:

F = |〈n|e−itHN |m〉|2. (3)

For m = n, we retrieve the probability of revival, where the
system returns to its initial state. Revivals in this system are
always possible due to the quantum recurrence theorem [12].

Fidelity is a function of the couplings Ji and time t, F =
f (Ji, t ), where i = 1, .., N − 1 for open chains. The idea of
tuning the couplings to achieve PST can be seen as a pro-
cess, where, in this N-dimensional (N + 1 for closed chains)
parametric space, we try to identify the set of values such that
F = 1. A straightforward ab initio approach, followed here,
is to use a numerical optimization search algorithm in order to
find the parameter set that maximizes fidelity. For a chain of
fixed length, when we want to transfer a quantum state that is
initially localized on one lattice site to another, with F = 1,
we quickly notice that no matter how extensively we search
at the parametric space at some cases we are unable to do
so. At this point, two are the main questions that need to be
addressed: First, which are the reachability criteria that have
to be met for a PST to occur? Second, why can these criteria
not be met in several cases even thought the parametric space
seems vast?

A. Reachability criteria

To answer the aforementioned questions, we will derive
the necessary and sufficient criteria for PST. In contrast to
previous studies, the criteria that will be presented here are
general and do not only hold for transferring an excitation
between mirror-symmetric lattice sites but also for arbitrary
initial and target sites.

The Hamiltonian matrix (2) has a discrete symmetric non-
degenerate spectrum and the eigenvalue equation is written as
follows:

HNvi = Eivi, (4)

where Ei’s are the eigenenergies and vi’s are the N-component
eigenvectors vi = (vi1, vi2, . . . , viN ), with i = 1, . . . , N . Sup-
pose that the system is initially prepared in state |m〉 and we
want to transfer the excitation to a state |n〉 in a finite amount
of time. Since the system evolves freely, the probability am-
plitude of finding the system on site n after time τ , in terms of
the eigenvector components, is given by

〈n|e−iτHN |m〉 =
N∑

i=1

vimvine−iφi , (5)

where φi = τEi. In order for this sum to be equal to 1, it is
required that |vim| = |vin|. This is the first criterion for reach-
ability and its mathematical proof is given in Appendix A.
Furthermore, the phases φi have to be such that they pro-
duce an overall plus or minus sign to the N terms of
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the sum:

φi =
{

niπ

(2ni + 1)π
2

, ni = 0, 1, 2, . . . . (6)

Thus, the demand that PST occurs in a finite time results in
a constraint on the energy spectrum. Namely, we get that the
fraction of two eigenvalues always has to be a rational number.
This constitutes the second reachability criterium. Henceforth,
we will refer to the latter as the “rationality” criterium.

B. Open chains

To address the second question, i.e., when the reachability
criteria can be met, we will now explicitly demonstrate that
for certain cases the two criteria for PST cannot be met
simultaneously. To do so, we first focus our study on open
chains. The eigenvalue condition [Eq. (4)] is a linear system
of N equations, where each eigenvector component is defined
up to an arbitrary sign si j :

J1si2|vi2| = Eisi1|vi1|,
J1si1|vi1| + J2si3|vi3| = Eisi2|vi2|,
...
JN−2siN−2|viN−2| + JN−1siN |viN | = EisiN−1|viN−1|,
JN−1siN−1|viN−1| = EisiN |viN |.

(7)

To deduce whether PST between the first and the mth site
is possible, we will exploit the first m − 1 equations of the
linear system, Eq. (7). By doing so, we can express |v jm| as a
function of |v j1| as follows:

|vim|=En−1−En−3
n�3

∑n−2
j J2

j +En−5
n�5

∑n−2
j �=k J2

j J2
k +· · ·

s1m
∏n−1

j J j

|vi1|,

(8)

where s1m is the relative sign between the first and the mth
component of v j . Then, by employing the first reachability
criterion, we can set |vim|/|vi1| = 1 and we end up with two
energy polynomials, corresponding to the plus or minus sign
of the product in the denominator. The number of the real
roots of the two energy polynomials added together has to
be greater than or equal to the total number of the system’s
eigenvalues; otherwise, PST cannot be achieved.

Based on this counting argument, it is straightforward
to deduce that PST from the first site to any target site n,
when n � N/2 for even-sized and n � (N + 1)/2 for odd-
sized chains, is forbidden. Additionally, since an open chain
is mirror symmetric around the axis that passes from its
center, two mirror symmetric transfer processes have the same
properties. For example, when we consider the transfer from
the first to the third site of a six-site chain, based on the above,
we have two second-degree polynomials that can give four
roots. Thus, PST cannot be made possible, since we ought to
have at least six roots. By invoking the mirror symmetry of
the chain, the same holds for the transfer between the fourth
and sixth sites of the chain.

Moreover, specifically for odd-sized chains, because the
spectrum of the Hamiltonian is symmetric, there will always
be a zero-energy eigenvalue. If we want to examine whether
PST can occur from the nth to the mth site, we can use Eq. (8)

for |vin| and |vim|. Using these two relations, we can expunge
|vi1| and express |vim| as a function of |vin|, and then by setting
them equal we again end up with an energy polynomial. For
the special case where m is even and n is odd, or the other
way around, the constant term of the polynomial is a product
of the couplings. Since all the eigenvalues have to satisfy
the polynomial equation, the zero energy has to do so too.
However, this would mean that at least one of the couplings
has to be equal to zero and consequently that the chain gets
disconnected. In conclusion, for odd-sized chains, no PST is
possible between even and odd sites.

Things get more involved when we try to rule out other
PST’s that do not fall into the two cases we have mentioned
so far. To this purpose, the second reachability criterion has
to be employed. We will explicitly demonstrate an analytical
scheme that can be used for these cases by considering a
specific example. Namely, we will rule out a PST between
the first and the fourth site of a six-site chain. The energy
polynomial in this case, when we set |vi4| equal to |vi6|, is

E3 − (
J2

1 + J2
2

)
E + s14J1J2J3 = 0, (9)

where s14 = ±1. By using Descartes’ rule, we can deduce
the maximum number of the polynomial’s positive roots de-
pending on the sign of the constant term. In this particular
case, since we are dealing with a six-site chain and two
third-degree polynomials, all the roots have to be eigenener-
gies of the system. For s14 = +1, the polynomial can have
two real positive roots (E1, E2) and one negative (E3). For
s14 = −1, we get one real positive (E4) and two negative
(E5, E6). Because of the symmetry of the spectrum, we also
get that E6 = −E1, E5 = −E2, and E3 = −E4. Considering
the above, it is straightforward to see that Eq. (5) becomes a
sum of sines:

〈4|e−iH6τ |1〉 = −2|v11|2 sin E1τ − 2|v21|2 sin E2τ

+ 2|v31|2 sin E3τ . (10)

Because of Eq. (6), we get that φi = Eiτ = (2ni + 1)π
2 . On

the other hand, employing Vieta’s formula, the following
equality holds for the three roots of the polynomials:

E1 = −(E2 + E3). (11)

Multiplied by τ , the above equation implies that the sum
of two odd integers is an odd integer. This proves by con-
tradiction that the two reachability criteria cannot be met
simultaneously and PST is not possible for this transfer.

The main point we want to highlight can be stated as
follows: When the number of roots of the energy polynomials
is greater than the number of the eigenvalues, the second
criterion can be used in order to prove that some of these roots
cannot satisfy the two reachability criteria simultaneously.
It is also clear that as the length of the chain grows the
number of these cases is increased, since we are forced to
deal with polynomials of greater degree. We have analytically
examined open chains up to 10 sites and the optimization
algorithm we have used comes in complete agreement with
our analytical findings. Even though the properties of the
eigenvalues of Jacobi matrices have been studied extensively
[13–15], the mathematical task to prove that a number of
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FIG. 1. PST between sites 1 and 3. Probability for each lattice
site as a function of time. Time is depicted in units of 1/Jmax,
where Jmax is an arbitrary unit of energy. We have set J1 = Jmax and
subsequently the optimal values for the time and the couplings are
found to be J2 = 0.6Jmax, J3 = 0.8Jmax, and τ = 4.967/Jmax.

roots of an energy polynomial of arbitrary degree cannot
satisfy the rationality criterium to our knowledge has not yet
been properly addressed. As a result, there is no universal
analytical procedure that can be followed to deduce whether
PST between two states is possible. It follows that in general
each case has to be studied separately, which is something that
at first sight seems discouraging. Nevertheless, the power of
the analytical approach we just presented here is that it can be
applied with small modifications for each case, and in order to
demonstrate this fact more transparently, we have included in
Appendix B one more example.

To sum up, the following general statements can be made
for open chains of arbitrary length. PST is always possible
between mirror symmetric sites and this has been rigorously
proven for the transfer between 1 and N [7]. In addition,
transfers where both the initial and target sites are located at
the first half of the chain cannot support PST. The same holds
for their mirror-symmetric counterparts. Finally, for odd-sized
chains, we have proved that no PST is realized between even
and odd sites. To these statements, we will also add one that is
based on our numerical results. Having examined open chains
of length up to N = 20 sites, we have numerical evidence
which supports that for even-sized chains PST between the
first and N − 1 site is always possible. The rest of the cases
have to be studied separately. If we are unable to prove by
contradiction that PST is not supported, we have to search the
parametric space and find the suitable profile for the J’s that
extremizes the fidelity in a finite amount of time.

This can be done numerically via an optimization algo-
rithm or by using yet again the linear system of Eq. (7) to
analytically extract the optimized profile for the Ji’s. For the
sake of illustration and to gain a more intuitive picture of
the physical system under consideration, we will present an
indicative example for both cases.

The first example considers the transfer from the first to
the third lattice site of an open chain of length N = 4. This
example highlights the fact that the profile of the couplings
does not have to be necessarily periodic, as in the case of
mirror symmetric lattice sites. In Fig. 1, we have plotted the
probability for each of the four states on the lattice basis as
a function of time, obtained by running the optimizatio algo-
rithm. The system starts at the first site and then gradually the

probability spreads out all over the chain, until the whole wave
function gets localized on the third site at the retrieval time. At
this point, we demonstrate that the method we suggest here
to examine reachability is also very powerful for designing
the optimal profile in reachable cases. By employing the
linear system of Eq. (7) for a four-site chain together with
the first reachability criterion, we obtain the following energy
polynomial:

E2 − J2
1 + s13J1J2 = 0. (12)

The system has four eigenenergies that are symmetric around
zero, that is, ±E1 and ±E2. It is clear that the s13 = +1 gives
the pair of eigenenergies with the minimum absolute value,
say, ±E1, while s13 = −1 corresponds to ±E2. Having in
mind the above, it is straightforward to see that

〈3|e−iτHN |1〉 = 2|v11|2 cos (E1τ ) − 2|v21|2 cos (E2τ ). (13)

The first pair of eigenenergies that gives an overall sign to the
sum is E1τ = π and E2τ = 2π . If we multiply the equations
of the linear system Eq. (7) with the retrieval time τ , all
quantities become dimensionless. After doing so, we can
solve the linear system in terms of the couplings and time
and obtain the same values as those produced by running the
optimization algorithm.

C. Closed chains

For closed geometries, the introduction of the coupling
between the first and last sites changes the system’s behavior
in a drastic manner. The linear system in this case takes the
following form:

J1si2|vi2| + JN siN |viN | = Eisi1|vi1|,
J1si1|vi1| + J2si3|vi3| = Eisi2|vi2|,
...
JN si1|vi1| + JN−1siN−1|viN−1| = EisiN |viN |.

(14)

Let us consider PST between an arbitrary pair of sites for a
closed chain of fixed length. Following the same procedure
as we did for the open chains, we express the eigenvector
component of the initial site as a function of the eigenvector
component of the target site and we extract two energy poly-
nomials. Because of the cyclic symmetry of the closed system,
the degree of the energy polynomials is the same, independent
of the choice of the initial and target sites. Namely, the highest
degree polynomial for a circular chain of length N is N − 2 for
even-sized chains and N − 1 for the odd ones.

From this perspective, it should come as no surprise that
our numerical and analytical findings support the following
statement: For any closed chain of fixed length, if we can
find an optimal profile for the couplings that supports PST
between a particular pair of sites, then an optimal profile
that supports PST between an arbitrary pair of sites always
exists. Similarly, if PST is not possible for a pair of sites, then
the same holds for all pair of sites. Note here that we have
assumed different initial and target sites. We do not take into
consideration the case of quantum revivals, which are always
reachable.
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In addition to the aforementioned facts, the even or odd
length of the chain turns out to play a crucial role to the
reachability of a transfer. In particular, all odd-sized chains
with the exception of N = 3 do not support PST. In contrast,
for even-sized chains of arbitrary length, we can always obtain
an optimal profile for the couplings that makes the transfer
between any particular pair of states reachable.

The N = 3 closed chain is the only odd geometry in which
PST is possible between all pairs of sites. We will impose
the first reachability criterion on the linear system for the
transfer between a pair of sites. Without loss of generality,
we pick the first and third sites. Then, depending on which
equations we use, we can either obtain a second-degree
polynomial,

E2 − s13J3E − J1(J1 + s13J2) = 0, (15)

or a first-degree polynomial,

(J2 − s13J1)E + J3(J1 − s13) = 0. (16)

In Eq. (15), we expect that one choice of the sign s13 will give
one eigenvalue and two more will come from the other. On
the other hand, by observing Eq. (16) we could immediately
state that since two first-degree polynomials cannot give three
solutions, PST is not possible. This, however, is not the case
here. For s13 = −1, we get that E1 = −J3 but for s13 = +1 we
can pick J1 = J2, which gives an infinite number of solutions
and thus we can avoid the contradiction. In conclusion, PST
is realized in this system as long as E1 = −J3 and J1 = J2.
The N = 3 closed geometry is the only case where a specific
choice of the couplings can lead to an omission of the highest
order term in the energy polynomial. For all the other odd
closed chains (N > 3), PST is not supported. To analytically
demonstrate this fact, we can demand that the energy polyno-
mials, obtained from the linear system (14), possess as roots
the system’s eigenvalues, arriving this way to a contradiction.
For the even-sized closed chains, the optimal profile for the
couplings that makes a PST between a particular pair of
states reachable can be obtained by the same scheme that was
developed in the previous section.

Nonetheless, the optimization algorithm, as the system’s
length grows, remains our strongest tool for obtaining the
optimal profile for the couplings. Thus, it is worth highlighting
a property, that besides its physical importance, enables us
to make the optimization algorithm more efficient. When
running the algorithm, we obtain many solutions for the
coupling’s profile in reachable cases. Of particular importance
is the fact that, there always exists a solution which is locally
symmetric on the two different “paths” (clockwise, anticlock-
wise) leading from the initial to the target site. To make this
point clear, we will consider a specific example.

In Fig. 2, we show the probability for each lattice site
for an engineered profile of the couplings that supports PST
between the first and third sites of a six-site closed chain. By
observing the values of the couplings, we can easily notice
that for the path that goes clockwise from the first to third
lattice sites, J1 = J2. For the anticlockwise path, the profile is
again parity symmetric (J3 = J6 and J4 = J5). Therefore, by
imposing such symmetries on the couplings, we can drasti-
cally reduce the dimensions of the parametric space in which
the optimization algorithm searches for solutions.

FIG. 2. PST between site 1 and 3. Probability for each lattice site
as a function of time. Time is depicted in units of 1/Jmax. We have
set J1 = Jmax and subsequently the optimal values for the time and
the couplings are found to be J2 = Jmax, J3 = J6 = 0.369Jmax, J4 =
J5 = 0.547Jmax, and t = 8.494/Jmax.

IV. CONCLUDING REMARKS

In this paper, we have derived two reachability criteria that
have to be satisfied for perfectly transferring a state between
two arbitrary lattice sites of a one-dimensional spin-1/2 chain.
For open chains of arbitrary length, we have provided a mathe-
matical framework to deduce when PST is possible depending
on the size of the chain. For the cases in which this was
not straightforward, we have developed a scheme that sheds
light on the mathematical complexity of the problem which
increases with the chain’s size. Our results are supported by
the numerical implementation of an optimization algorithm
from which we can extract the profile of the couplings. By
considering closed geometries, we highlighted the ability of
even-sized chains to support PST between any pair of sites.
This makes them promising candidates for the realization of
an efficient quantum circuit. Our work paves the way toward
the completion of a solid mathematical framework for dealing
analytically with chains of arbitrary size. In addition, it opens
the prospect of suitably constructing an optimized profile for
the couplings that will enable us to create quantum logic gates
for performing operations upon the states.
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APPENDIX A: PROOF OF THE FIRST CRITERIUM

Because of the standard normalization condition, it
holds that

N∑
i=1

|vim|2 = 1. (A1)
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Using the Lagrange multipliers method, we want to examine
under which conditions the quantity

∑N
i=1 |vim||vin| is extrem-

ized. Thus, we get

Q =
N∑

i=1

|vim||vin| + 2 − λ1

N∑
i=1

|vim|2 − λ2

N∑
i=1

|vin|2.

(A2)

Taking the partial derivatives with respect to |vim| and |vin| and
setting them to be zero yields

|vim| − 2λ1|vin| = 0 = |vin| − 2λ2|vim|, (A3)

which results in 4λ1λ2 = 1. Moreover,

N∑
i=1

|vim|2 = 4λ2
2

N∑
i=1

|vin|2, (A4)

which, by taking into account Eq. (A1), results in λ2 = ±1/2.
Thus, λ1 = λ2 = 1/2, in order for Q to take its maximum
values, which means, according to Eq. (A3), that |vim| = |vin|.

APPENDIX B: EXCLUSION SCHEME EXAMPLE

We will consider the transfer between the first and fifth
sites of a seven-site open chain. Using the linear system
of Eq. (7), we express |vi5| in terms of |vi1|. Setting them
equal, we obtain two energy polynomials corresponding

to s15 = ±1:

E4 − (
J2

1 + J2
2 + J2

3

)
E2 + J2

1 J2
3 + s15J1J2J3J4 = 0. (B1)

For s15 = +1, we find four real roots, ±E1 and ±E2, while
for s15 = −1 double roots E4 = 0 and E2

3 = J2
1 + J2

2 + J2
3 are

obtained. Taking into account the above facts, the probability
amplitude of finding the wave function localized at the fifth
site after time τ is given by

〈5|e−iH7τ |1〉 = |v11|2e−iE1τ + |v21|2e−iE2τ − |v31|2e−iE3τ

− |v41|2 − |v51|2eiE3τ

− |v61|2eiE2τ + |v71|eiE1τ . (B2)

Because of the symmetry of the energy spectrum, it also
holds that |v11| = |v71|, |v21| = |v61| and |v31| = |v51|. Thus,
it follows that

〈5|e−iH7τ |1〉 =2|v11|2 cos E1τ + 2|v21|2 cos E2τ

− 2|v31|2 cos E3τ − |v41|2.
(B3)

For the amplitude to get its maximum values, an overall minus
sign has to be produced from the cosines. This means that
E1τ, E2τ have to be odd multiples of π , while E3τ is even.
However, from Eq. (B1), if we multiply with τ and employ
Vieta’s formula, we get

(E1τ )2 + (E2τ )2 = τ 2
(
J2

1 + J2
2 + J2

3

) = (E3τ )2. (B4)

Since the sum of the squares of two odd integers cannot be the
square of an integer, we have proved by contradiction that the
transfer under consideration is not reachable.
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