
PHYSICAL REVIEW A 99, 022327 (2019)

Efficient generation of the triplet Bell state between coupled spins
using transitionless quantum driving and optimal control
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We consider a pair of coupled spins with Ising interaction in the z direction and study the problem of generating
efficiently the triplet Bell state. We initially analyze the transitionless quantum driving shortcut to adiabaticity
method and point out its limitations when the available duration approaches zero. In this short time limit we
explicitly calculate the fidelity of the method and find it to be much lower than unity, no matter how large the
available control fields become. We find that there is a lower bound on the necessary time to complete this
transfer, set by the finite value of the interaction between the spins. We then use numerical optimal control to
find bang-bang pulse sequences, as well as, smooth controls, which can generate high levels of the target Bell
state in the minimum possible time. The results of the present work are not restricted only to spin systems, but
are expected also to find applications in other physical systems which can be modeled as interacting spins, for
example, coupled quantum dots.
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I. INTRODUCTION

A prototype quantum system which plays a central role
in quantum information processing consists of two spins
interacting through Ising coupling in the z direction. This
system has been used in the early demonstrations of quantum
algorithms using nuclear magnetic resonance (NMR) exper-
iments [1,2] and can serve as a building block for quantum
computation.

An important problem related to this system is the efficient
creation of the triplet Bell state 1√

2
(|↓〉1|↑〉2 + |↑〉1|↓〉2) when

starting from the spin-down state |↓〉1|↓〉2 [3], which has
recently attracted considerable attention [4–6]. This transfer
is interesting not only theoretically but also for practical
purposes. For example, in the case of two coupled quantum
dots, a system described by a similar Hamiltonian with two
coupled spins [7], this transfer corresponds to the creation
of the single-exciton symmetric state when starting from the
vacuum state [7,8]. For the efficient generation of the triplet
Bell state in such a pair of spins, a technique based on rapid
adiabatic passage [9] has been proposed [3], according to
which a suitably chosen time-dependent external field drives
the pair adiabatically from the spin-down state to the target
Bell state. The advantage of the adiabatic passage method is
its robustness against system imperfections, for example, field
inhomogeneities. Its inherent drawback is the long necessary
time to complete the transfer, which becomes particularly
important in the presence of dissipation.

In order to speed up adiabatic quantum dynamics, a series
of closely related methods have been proposed over the past
few years [10–15]. These techniques are collectively referred
as “shortcuts to adiabaticity.” The main idea behind them
is that the system arrives at the same final state as with
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a slow adiabatic process, but it doesn’t necessarily follow
the instantaneous adiabatic eigenstates at intermediate times.
These methods have been exploited to accelerate quantum
adiabatic evolution in a wide range of applications. These
include the fast cooling and transport of atoms [13,16,17],
Bose-Einstein condensates [18] and trapped ions [19], the
efficient manipulation of two-, three-, and four-level quantum
systems [20–23], the effective generation of entanglement
between ultracold gases [24,25] and exciton-polaritons [26],
the design of waveguides and photonic lattices [27,28], the
optimization of quantum heat engines [29–33], the fast op-
tomechanical cooling [34] and quantum computation [35,36],
and even the control of mechanical systems [37]. Several
studies have also been devoted to the control of spin dynam-
ics [4–6,38–40]. For the efficient generation of the triplet Bell
state in a pair of Ising coupled spins, two shortcut methods
have been used. The first is transitionless quantum driving
(TQD) [4], where an extra term is added to the Hamiltonian so
the system follows the instantaneous eigenstates of the origi-
nal Hamiltonian [10,11], and the second is Lewis-Riesenfeld
invariant (LRI) inverse engineering [4–6], where the system
evolves along the eigenstates of a motion invariant [20,41].

In the present article, we initially reexamine the TQD
method and identify its limitations. Specifically, we show
that when the available duration approaches zero, the fi-
delity of the target Bell state approaches the constant value
sin2 (π/

√
2)/2 ≈ 0.3166. Consequently, the fidelity of this

transfer cannot achieve values close to unity in arbitrarily
short times, as claimed in Ref. [4], despite the fact that one
of the controls actually becomes a delta pulse in the short
time limit. The short time behavior that we derive here for
the TQD shortcut is analogous to that of the LRI shortcut
obtained in Ref. [5]. There is a lower bound on the necessary
time to complete this transfer, set by the finite value of the
interaction between the spins. Having determined the limits
of the TQD method, we next use numerical optimal control
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to find bang-bang pulse sequences, as well as smooth controls
which can generate high levels of the desired Bell state in the
minimum possible time. The current work follows a series
of analytical and numerical studies on the optimal control
of spin dynamics [42–59]. Yet the results of the present
research is expected also to find applications in other physical
systems which can be modeled as interacting spins, for exam-
ple, coupled quantum dots [7,8,60–62], because the resulted
Hamiltonian can also occur in these systems as well.

The structure of the paper is as follows. In the next section
we present the model of two Ising interacting spins and briefly
discuss the rapid adiabatic passage method for generating the
triplet Bell state. In Sec. III we consider the TQD shortcut and
point out its limitations, while in Sec. IV we use numerical
optimal control to create sufficient levels of the target state
within short times. Section V concludes this work.

II. A SPIN PAIR WITH ISING COUPLING
IN A TIME-DEPENDENT MAGNETIC FIELD

We consider a pair of spin- 1
2 particles with an Ising interac-

tion along the z axis, which is embedded in a time-dependent
magnetic field B(t ) = [Bx(t ), By(t ), Bz(t )]. The correspond-
ing Hamiltonian is [3]

Ĥ (t ) = 4ξ Ŝ1zŜ2z + μB(t ) · (Ŝ1 + Ŝ2), (1)

where ξ > 0 denotes the strength of the Ising coupling, μ is
the gyromagnetic ratio, and Ŝi = (Six, Siy, Siz ) is the spin op-
erator for the ith particle, i = 1, 2, with elements proportional
to the Pauli matrices.

A suitable orthonormal basis consists of the triplet

|ψ�〉 = |↓〉1|↓〉2, (2a)

|ψ+
↓↑〉 = 1√

2
(|↓〉1|↑〉2 + |↑〉1|↓〉2), (2b)

|ψ�〉 = |↑〉1|↑〉2 (2c)

and the singlet

|ψ−
↓↑〉 = 1√

2
(|↓〉1|↑〉2 − |↑〉1|↓〉2) (3)

states, where |↑〉, |↓〉 denote the spin-up and spin-down states,
respectively. It can be easily verified that the singlet state, with
total spin 0, is decoupled from the triplet states, characterized
by total spin 1. Within the triplet manifold, Hamiltonian (1)
can be expressed in matrix form as [3]

Ha(t ) =

⎡
⎢⎣

ξ − βz
1√
2
(βx + iβy) 0

1√
2
(βx − iβy) −ξ 1√

2
(βx + iβy)

0 1√
2
(βx − iβy) ξ + βz

⎤
⎥⎦,

(4)

where β = μB. Observe that the triplet states are coupled
through the transverse xy-magnetic field. The corresponding
probability amplitudes a(t ) = [a1(t ), a2(t ), a3(t )]T obey the
Schrödinger equation (h̄ = 1)

i
d

dt
a(t ) = Ha(t )a(t ). (5)

We consider that initially the system is in the unentangled
spin-down state |ψ�〉, and our goal is to find the appropriate
magnetic field which drives it efficiently to the maximally
entangled Bell state |ψ+

↓↑〉.
Following Ref. [3] we choose a rotating transverse mag-

netic field:

βx(t ) = �(t ) cos ωt, (6a)

βy(t ) = �(t ) sin ωt . (6b)

Under this field, the transformed probability amplitudes
c1(t ) = a1(t )e−i(ω+ξ )t , c2(t ) = a2(t )e−iξ t , and c3(t ) =
a3(t )ei(ω−ξ )t obey the equation

i
d

dt
c(t ) = Hc(t )c(t ), (7)

where

Hc(t ) =

⎡
⎢⎣

�(t ) 1√
2
�(t ) 0

1√
2
�(t ) 0 1√

2
�(t )

0 1√
2
�(t ) 4ξ − �(t )

⎤
⎥⎦, (8)

and the detuning �(t ) is defined as [3]

�(t ) = 2ξ + ω − βz(t ). (9)

Observe from (8) that the transverse field �(t ) couples both
|ψ�〉, |ψ+

↓↑〉 and |ψ+
↓↑〉, |ψ�〉. In order to efficiently achieve

the desired transfer |ψ�〉 → |ψ+
↓↑〉, while simultaneously sup-

pressing the undesirable transfer |ψ+
↓↑〉 → |ψ�〉, the authors

of Ref. [3] employed an adiabatic rapid passage technique.
They used βz(t ) = At , i.e., a linear variation of the detuning,
and a Gaussian �(t ) centered at the point where |ψ�〉, |ψ+

↓↑〉
become degenerate, while |ψ�〉 is far detuned. With this adi-
abatic method the desired transfer is accomplished in a robust
way, but it requires a sufficient amount of time, which might
be a drawback in the presence of dissipation. In the following
sections we use two methods to reduce the necessary transfer
time: TQD and optimal control.

III. TRANSITIONLESS QUANTUM DRIVING

Following Refs. [3–6], we derive the TQD shortcut to
adiabaticity for the two-level system describing the interac-
tion between the states |ψ�〉, |ψ+

↓↑〉 and than test it for the
full three-level system described by Hamiltonian (8). From
Eq. (8) and after a simple unitary transformation we obtain
the following Hamiltonian for the two-level interaction:

H0(t ) = 1

2

[
�(t )

√
2�(t )√

2�(t ) −�(t )

]
⇒

Ĥ0(t ) = �(t )Ŝz +
√

2�(t )Ŝx, (10)

where Ŝx, Ŝz are proportional to the Pauli spin matrices. The
goal is to transfer the population from the initial to the final
state following the adiabatic paths of Hamiltonian (10). But
the eigenstates of this Hamiltonian are time-dependent, thus
a transformation to the adiabatic basis leads to nondiagonal
diabatic terms which can be neglected only in the adiabatic
(long-time) limit, and this is the case where the system follows
the instantaneous eigenstates. The idea behind TQD is to add
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an extra term Ĥcd (t ) to the Hamiltonian to cancel the diabatic
effects, so the system can follow the instantaneous eigenstates
of the reference Hamiltonian Ĥ0(t ) even for arbitrarily short
times. In order to find the counterdiabatic term, we find first
the instantaneous eigenvalues and eigenstates of the two-level
Hamiltonian (10).

If we parametrize �,� as

�(t ) = E0 cos θ, (11a)

�(t ) = E0√
2

sin θ, (11b)

with time-dependent E0(t ), θ (t ), then

H0 = E0

2

(
cos θ sin θ

sin θ − cos θ

)
, (12)

with instantaneous eigenvalues

E± = ±E0

2
(13)

and normalized eigenvectors

|φ+(t )〉 =
(

cos θ
2

sin θ
2

)
, (14a)

|φ−(t )〉 =
(

sin θ
2

− cos θ
2

)
. (14b)

If Ĥ0(t ) is varied slowly, then the system follows the approxi-
mate adiabatic solutions

|ψ0
±(t )〉 = eiξ±(t )|φ±(t )〉, (15)

where the phases are

ξ±(t ) = −
∫ t

0
dt ′E±(t ′) + i

∫ t

0
dt ′〈φ±(t ′)|φ̇±(t ′)〉

= −
∫ t

0
dt ′E±(t ′), (16)

since the inner product term in Eq. (16) is zero.
The counterdiabatic Hamiltonian is given by [10,11]

Ĥcd (t ) = i
∑
n=±

[|φ̇n(t )〉〈φn(t )| − 〈φn(t )|φ̇n(t )〉|φn(t )〉〈φn(t )|]

= i
∑
n=±

|φ̇n(t )〉〈φn(t )|

= θ̇ Ŝy, (17)

since the inner product term in Eq. (17) is zero. Under the total
Hamiltonian

Ĥ (t ) = Ĥ0(t ) + Ĥcd (t ), (18)

the state |ψ〉 of the system, which satisfies the Schrödinger
equation

i
∂

∂t
|ψ (t )〉 = Ĥ (t )|ψ (t )〉, (19)

follows exactly the adiabatic solutions (15) of the reference
Hamiltonian Ĥ0(t ), no matter how short is the duration T of
the evolution.

The introduction of the extra term Ĥcd = θ̇ Ŝy in system’s
Hamiltonian is in generally undesirable. However, there is an
alternative method to implement the shortcut with a Hamil-
tonian of the same form as Ĥ0 [63,64]. Consider the unitary
transformation

|ψ ′(t )〉 = Û †(t )|ψ (t )〉 (20)

with

U (t ) = e−ib(t )Ŝz , (21)

where b(t ) is a real function of time to be determined. The
transformed state obeys the alternative dynamics

i
∂

∂t
|ψ ′(t )〉 = Ĥ ′(t )|ψ ′(t )〉, (22)

with the modified Hamiltonian

Ĥ ′(t ) = Û †(t )Ĥ (t )Û (t ) − iÛ †(t )
d

dt
Û (t )

= (E0 cos θ − ḃ)Ŝz + (E0 sin θ cos b + θ̇ sin b)Ŝx

+ (θ̇ cos b − E0 sin θ sin b)Ŝy. (23)

The choice

tan b = θ̇

E0 sin θ
(24)

eliminates the undesirable extra term proportional to Ŝy in
Eq. (23), and we finally get

Ĥ ′(t ) = �′(t )Ŝz +
√

2�′(t )Ŝx, (25)

which has the same form as Eq. (10) but with modified
controls [64]

�′(t ) = E0 cos θ − ḃ = E3
0 sin2 θ cos θ + Ė0θ̇ sin θ + E0(2θ̇2 cos θ − θ̈ sin θ )

E2
0 sin2 θ + θ̇2

, (26a)

�′(t ) = E0 sin θ cos b + θ̇ sin b√
2

=
√

E2
0 sin2 θ + θ̇2

2
. (26b)

We first derive the shortcut for the modified dynamics (22) of
the transformed state |ψ ′(t )〉 and then explain why it is also a
shortcut for the original dynamics (19) of state |ψ (t )〉. We find

the appropriate functions of time θ (t ), E0(t ) which determine
the reference adiabatic path. In order to satisfy the initial and
final conditions of the transfer, from Eq. (14) it is evident that
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the evolution should take place along the adiabatic solution
|ψ0

+(t )〉 with boundary conditions for θ

θ (0) = 0, (27a)

θ (T ) = π. (27b)

The smoothness conditions

θ̇ (0) = θ̇ (T ) = 0 (28)

also imply that Hcd (0) = Hcd (T ) = 0, i.e., the extra term in
the counterdiabatic Hamiltonian (17) vanishes at the boundary
times. In Ref. [64] the extra condition

θ̈ (T ) = 0 (29)

is used, which is actually not necessary for the population
inversion that we want to accomplish here. Using a poly-
nomial to interpolate the function θ (t ) at intermediate times
and imposing on it the above boundary conditions, we find
(s = t/T )

θs(s) = πs2(3 − 2s), (30a)

θns(s) = πs2(3s2 − 8s + 6), (30b)

where θs satisfies only the symmetric boundary condi-
tions (27) and (28), which lead to θs(T/2) = π/2, while θns

additionally incorporates the nonsymmetric condition (29). In
order to make the control fields vanish at the boundary times,
we impose the conditions

E0(0) = E0(T ) = 0. (31)

The simple polynomial

E0(s) = es(1 − s), (32)

where e is some constant, satisfies the above conditions and
also ensures that E0(T/2) �= 0. In Fig. 1(a) we plot both θs(s)
(blue solid line) and θns(s) (red dashed line), as well as E0(s)
(black dashed-dotted line) with e = 0.1ξ .

We next show that the shortcut derived above inverts the
populations also in the original picture described by state
|ψ (t )〉. We find the unitary transformation connecting the
states |ψ (t )〉, |ψ ′(t )〉 at the boundary times t = 0, T . Using
Eqs. (30) and (32) in (24), we can evaluate the boundary
values of b(t ) in the limits s → 0, 1:

b(0) = b(T ) = π

2
. (33)

From Eqs. (21) and (33) we obtain

U (0) = U (T ) =
(

e−iπ/4 0

0 eiπ/4

)
, (34)

thus |ψ ′(0)〉 = eiπ/4|ψ (0)〉 and |ψ ′(T )〉 = e−iπ/4|ψ (T )〉, and
obviously the counterdiabatic shortcut inverts the population
also in the original picture. Working analogously we can also
find

ḃ(0) = ḃ(T ) = 0, (35)

which, along with the boundary conditions for θ, θ̇ , imply
that Ĥ ′(tb) = Ĥ (tb) = Ĥ0(tb), where tb = 0, T . The bottom
line of the above analysis is that, if we apply the modified
controls (26) in the two-level Hamiltonian Ĥ0 (10), then
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FIG. 1. Red dashed line corresponds to the nonsymmetric short-
cut (30b), blue solid line to the symmetric one (30a). (a) Reference
angle θ (left vertical axis) for the two shortcuts and common E0 (right
vertical axis, black dashed-dotted line), as functions of normalized
time s = t/T . (b) Fidelity as a function of duration T for the two
shortcuts. In the limit T → 0 the fidelity approaches the value given
in Eq. (37). (c) Detuning �(t ) for duration T = 10ξ−1. (d) Rabi
frequency �(t ) for T = 10ξ−1. (e) Time evolution of populations
for the nonsymmetric shortcut when T = 10ξ−1. The final fidelity is
0.9991. (f) Time evolution of populations for the symmetric shortcut
when T = 10ξ−1. The final fidelity is 0.9993.

the desired population inversion is accomplished along the
adiabatic path |ψ0

+(t )〉 (15). This transfer can in principle be
completed in arbitrarily short times T . In the rest of this sec-
tion we drop the prime from the left-hand side of Eq. (26) and
use the symbols �(t ),�(t ) to denote the modified controls.

We now move to evaluate the performance of the method
when applied to the three-level system (7) described by
Hamiltonian (8). In Fig. 1(b) we plot the fidelity |c2(T )|2 as a
function of duration T , for both the symmetric (blue solid line)
and the nonsymmetric (red dashed line) TQD shortcuts given
in Eq. (30), when the corresponding controls (26) are applied
in the three-level Hamiltonian Hc. Observe that, as T → 0,
the fidelity approaches a value much less than 1. A similar
behavior has been observed for shortcuts designed using LRIs
(see Fig. 7 in Ref. [5]), and it is attributed to the finite value of
the coupling ξ . We can actually calculate explicitly the short
time fidelity limit. Note that the time derivative of a function
f (t ) can be expressed as ḟ = df /dt = (1/T ) df /ds = f ′/T ,
where f ′ = df /ds denotes the derivative with respect to
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normalized time s = t/T . Using this recipe, it is not hard
to show that in the short time limit T → 0 the controls (26)
become

�(t ) = E ′
0θ

′ sin θ + E0(2θ ′2 cos θ − θ ′′ sin θ )

θ ′2 , (36a)

�(t ) = 1

T
√

2

dθ

ds
. (36b)

Observe that �(t ) becomes a delta pulse as T → 0, while
�(t ) remains finite. In this limit thus we can keep only the
terms proportional to � in Hamiltonian Hc (8). Under this
approximation, we integrate Schrödinger equation (7) starting
from c(0) = (1, 0, 0)T and find

c2(T ) = −i√
2

sin

[∫ T

0
�(t ) dt

]
.

But from Eq. (36b) we have∫ T

0
�(t ) dt =

∫ 1

0

1

T
√

2

dθ

ds
T ds = 1√

2

∫ π

0
dθ = π√

2
,

and the fidelity limit is

|c2(T )|2 = 1

2
sin2

(
π√

2

)
≈ 0.3166, (37)

which agrees with the numerical value obtained from simula-
tion. Note that this limit is the same for both the symmetric
and nonsymmetric shortcuts, since in both cases angle θ

changes by π .
The conclusion is that the TQD method requires several

units of time (ξ−1) in order to achieve acceptable levels of
fidelity. The necessary duration is definitely lower than the
time Ta ≈ 30ξ−1 needed by the simple adiabatic method [3]
to obtain comparable fidelity levels (see Fig. 5 in Ref. [4]),
but it obviously cannot be reduced to the 1% of Ta reported in
Ref. [4]. For T = 10ξ−1 = Ta/3, the fidelities for the sym-
metric and nonsymmetric shortcuts are 0.9993 and 0.9991,
respectively. In Figs. 1(c) and 1(d) we plot the controls for the
two shortcuts, while in Figs. 1(e) and 1(f) the corresponding
evolution of populations |c1(t )|2 (solid line), |c2(t )|2 (dashed
line), and |c3(t )|2 (dashed-dotted line).

IV. OPTIMAL CONTROL

In this section we follow an optimal control approach in
order to obtain acceptable fidelity levels in shorter times. We
use the freely available optimal control solver BOCOP [65]
to numerically solve a series of optimal control problems
for the three-level system (7) and (8), with various dura-
tions T and objective the maximization of |c2(T )|2, the final
population of the triplet Bell state |ψ+

↓↑〉. In the BOCOP
software package, the continuous-time optimal control prob-
lem is approximated by a finite-dimensional optimization
problem, using time discretization. The resultant nonlinear
programming problem is subsequently solved using the non-
linear solver Ipopt. For the current problem we use a time
discretization of 1000 points. Note that various numerical
optimal control algorithms, in both the time and frequency
domains, have been successfully employed in quantum con-
trol; see, for example, Refs. [45,55,58,66]. The state of the

art solver BOCOP that we use here presents several advan-
tages. First, since it implements a direct method there is no
need to analytically calculate gradients, which is the case
for gradient-based methods [45,55,58,66]. Second, it provides
several capabilities which facilitate important optimization
tasks. For example, equality and inequality constraints on
the state and control variables can be easily incorporated
in this framework. Furthermore, the BOCOP program can
automatically compute the optimal coefficients when using a
trigonometric or polynomial series form for the control; we
will exploit this feature later in this section. We intend to
further use this powerful computational tool to find control
inputs for systems with more qubits, and we believe that
its capabilities can be exploited for the implementation of
quantum technologies.

We initially fix the detuning to the constant value � =
0 and optimize the Rabi frequency �(t ). Throughout this
section we consider the bounds

−ξ � �(t ) � ξ . (38)

In Fig. 2 we plot the optimal �(t ) and the corresponding time
evolution of populations for various values of the duration
T . Observe that the optimal Rabi frequency has the bang-
bang form, where the signal alternates between the boundary
values. For short durations the optimal control is a simple
bang pulse [Fig. 2(a)] while for larger time intervals more
bangs are introduced in order to further increase the fidelity
[Figs. 2(c), 2(e), and 2(g)]. The fidelity as a function of
duration T is displayed in Fig. 3(b) (blue solid line). Observe
that here, contrary to the TQD case, the fidelity vanishes as
T approaches zero. This happens because now the control is
bounded [see Eq. (38)], while in the TQD case it becomes a
delta pulse for small T .

The more complicated switching structures shown in
Fig. 2, which are necessary in order to increase the fidelity
of the final state, might be difficult to accurately implement
experimentally. In order to reach the same fidelity levels with
more tractable controls, we follow alternative approaches.
One simple idea is to try constant values of detuning different
than � = 0 used before, and optimize �(t ) for them. In
Fig. 3(a) we plot the fidelity as a function of detuning �,
when � is kept constant in time and the Rabi frequency is
optimized, for various durations T = 2.5ξ−1 (red solid line),
T = 2ξ−1 (cyan dashed line), T = 1.5ξ−1 (green dashed-
dotted line). Observe that in all the depicted cases the best
efficiency is obtained for � < 0. This can be intuitively
understood by inspection of Eq. (8), where obviously a small
negative � increases the detuning 4ξ − � of the undesirable
transfer |ψ+

↓↑〉 → |ψ�〉 while is it affects less the desired
transfer |ψ�〉 → |ψ+

↓↑〉. In Fig. 3(b) we plot the fidelity as a
function of duration T for fixed detuning � = −0.11ξ (red
dashed line). The inset demonstrates that now a very good
efficiency is obtained faster, compared to the case where
� = 0 (blue solid line). In Fig. 3(c) we depict the optimal
�(t ) for fixed � = −0.11ξ and duration T = 2.5ξ−1, the case
highlighted with a red circle in Figs. 3(a) and 3(b), while
Fig. 3(d) displays the corresponding evolution of populations.
Observe that the optimal pulse sequence contains only one
negative bang, in analogy with the same duration case shown
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FIG. 2. Optimal Rabi frequency �(t ) for zero detuning � = 0
and various durations: (a) T = 2ξ−1, (c) T = 2.5ξ−1, (e) T = 3ξ−1,
(g) T = 3.6ξ−1. The corresponding evolution of populations is dis-
played in panels (b,d,f,h). The fidelities for the depicted cases are
0.9416, 0.9928, 0.9990, 1.

in Fig. 2(c) for � = 0, but the obtained fidelity is much larger,
0.9995 compared to 0.9928. It is actually comparable with the
fidelity obtained with the more complicated pulse sequence
shown in Fig. 2(g) for a longer duration T = 3.6ξ−1.

Note that Fig. 3(a) actually displays a reasonable robust-
ness to variations of the detuning �, and thus to the associated
decoherence. Specifically, in the upper red curve the fidelity
drops from 0.9995 (top red circle) to 0.9928 (lower blue
circle) when the detuning changes by δ� = 0.11ξ . On the
other hand, Fig. 3(b) demonstrates a reasonable robustness to
the duration of the pulse sequence, when this duration exceeds
a certain threshold.

We next move to find smooth optimal controls, probably
more relevant for a possible experimental implementation,
which can achieve comparable fidelity within the same time

FIG. 3. (a) Fidelity as a function of detuning �, when � is kept
constant and the Rabi frequency is optimized, for various durations
T = 2.5ξ−1 (red solid line), T = 2ξ−1 (cyan dashed line), T =
1.5ξ−1 (green dashed-dotted line). The blue circle corresponds to the
case with � = 0 depicted in Figs. 2(c) and 2(d), while the red circle
correspond to the case depicted in Figs. 3(c) and 3(d). (b) Fidelity
as a function of duration for optimized Rabi frequency and � = 0
(blue solid line), � = −0.11ξ (red dashed line). The inset shows that
the case with negative detuning achieves the maximum efficiency
faster. (c) Optimal Rabi frequency for the optimal constant detuning
� = −0.11ξ when T = 2.5ξ−1. (d) Corresponding evolution of
populations. The final fidelity is 0.9995.

interval T = 2.5ξ−1. For this purpose we exploit a BOCOP
feature which allows us to seek optimal controls in a trigono-
metric series form, namely,

�(t ) = a0 +
p∑

k=1

(a2k−1 cos kt + a2k sin kt ), (39a)

�(t ) = b0 +
p∑

k=1

(b2k−1 cos kt + b2k sin kt ). (39b)

In order to test the method, we first fix the detuning to the
previously obtained optimal constant value � = −0.11ξ and
optimize �(t ) under constraints (38) and (39a) for duration
T = 2.5ξ−1. In Fig. 4(a) we plot the optimal control ob-
tained using p = 200 harmonics in Eq. (39a), while Fig. 4(b)
shows the corresponding evolution of populations. Observe
the similarity to the case with a single negative bang displayed
in Figs. 3(c) and 3(d), while the obtained fidelity is about
the same, 0.9995. The necessary number of harmonics to
reach this fidelity is quite large. In order to overcome this
problem, we allow the time variation of the detuning and seek
optimal �(t ),�(t ) in the form (39a) and (39b), under the
constraint (38) and a similar one for �(t ):

−ξ � �(t ) � ξ . (40)

Figure 4(c) shows the fidelity achieved with this approach
as a function of the number of harmonics used in the se-
ries (39a) and (39b). Observe that, when both �(t ),�(t ) are
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FIG. 4. (a) Optimal Rabi frequency �(t ) of the trigonometric
form with p = 200 harmonics, for fixed � = −0.11ξ and duration
T = 2.5ξ−1. Observe that it approaches the optimal bang-bang form
of Fig. 3(c). (b) Corresponding evolution of populations, similar to
Fig. 3(d). (c) Fidelity as a function of the number of harmonics when
both �(t ),�(t ) have the trigonometric form and are optimized for
duration T = 2.5ξ−1. (d) Optimal trigonometric �(t ) with p = 3
harmonics and T = 2.5ξ−1. (e) Optimal trigonometric �(t ) with
p = 3 harmonics and T = 2.5ξ−1. (f) Corresponding evolution of
populations.

optimized, a very good efficiency is already obtained with
only two harmonics. In Figs. 4(d) and 4(e) we display the
optimal �(t ),�(t ), respectively, when p = 3, and in Fig. 4(f)
the corresponding evolution of populations. A nearly perfect

TABLE I. Optimal coefficients for the trigonometric se-
ries (39a), (39b) when p = 3 and the duration is set to T = 2.5ξ−1.

ak bk

4.88177 − 8.67328
−3.02932 0.800026
−5.61925 14.4413
−1.64576 8.33812
2.79904 − 1.43694
0.784017 − 1.41904
−0.0724018 − 3.07217

fidelity is obtained with these smooth controls. The optimal
coefficients ak, bk for the series (39a) and (39b) with p = 3
are given in Table I.

We close this section by pointing out that the optimal con-
trol approach presented above can also be used to maximize
general quantum entanglement in system (1), starting from the
spin-down state. For this goal we need to use as objective
function the concurrence 2|c1c3 − c2

2/2| [67], instead of the
population |c2|2 of the triplet Bell state.

V. CONCLUSION

In this article, we studied the problem of efficient genera-
tion of the triplet Bell state in a system of two spins with Ising
interaction. We started with the TQD method and showed that
its fidelity cannot approach unity in arbitrarily short times,
as usually happens for shortcut to adiabaticity methods. Then
we used numerical optimal control to obtain bang-bang pulse
sequences and smooth controls which can create a sufficient
amount of this state in the shortest possible time. The current
results are not restricted only to spin systems, but are also
expected to find applications in other physical systems, which
can be modeled as interacting spins, for example, coupled
quantum dots.
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