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Relativistic chiral qubits, their time evolution, and correlations
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We introduce and discuss the concept of chiral relativistic qubit as an irreducible amount of quantum
information related to a one-half spin relativistic chiral elementary system (carrier particle). We propose a
Lorentz-covariant time evolution of the qubit which on the level of the density matrix is unitary. Next we
investigate behavior of the Bloch vector as a function of time during the relativistic uniformly accelerated
motion of the carrier particle. In particular, we select the same special evolutions which correspond to the
hyperbolic, rotational, and structurally unstable motion. Finally, we consider two-qubit systems. We extend the
proposed Lorentz-covariant and unitary evolution on this case in a way preserving tensor product structure of
the two-particle space of states. We also discuss a correlation function in an Einstein-Podolsky-Rosen type
experiment with uniformly accelerating particles; as an example we calculate correlations in the evolving Bell
state.
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I. INTRODUCTION

Relativistic quantum information theory has been attract-
ing growing attention during the past two decades (see, e.g.,
Refs. [1–14] and references therein). This is partially con-
nected with some new potential applications in areas where
the relativistic effects should be taken into account (see, e.g.,
Ref. [15]). However, the main reason lies in some fundamental
unsolved questions on the border of the two pillars of the con-
temporary physics: quantum mechanics and relativity theory.
One of such questions is the nature of the quantum nonlocality
and its relation to the relativity [16]. From the experimental
point of view, these problems are usually investigated with
the use of photons [17–20]. However, as we know, helicity
correlations of photons are momentum independent like spin
correlations in nonrelativistic quantum mechanics. In contrast,
the investigation of quantum correlations of relativistic mas-
sive spinning particles may offer some opportunities to deepen
our understanding of the character of quantum nonlocality.
The reason is that spin correlation functions in Einstein-
Podolsky-Rosen (EPR) experiments with relativistic massive
particles differs from its nonrelativistic counterparts—due
to Wigner rotation they are usually momentum dependent
[1,7,10,21–23]. These effects up to now have not been tested
experimentally, although some preliminary steps in this direc-
tion were undertaken [24–26]. The last of these experiments
was performed by Sakai et al. [26] at the RIKEN Accelerator
Research Facility where the proton-proton spin correlations
were measured with the proton energy ∼=135 MeV (v ∼= 0.5c).
In all these experiments correlation functions were measured
only for some special configurations and the results were in
agreement with the nonrelativistic quantum mechanics predic-
tions. Our arguments [7,21] show that a clear effect should
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appear when the kinetic energy of the EPR particles is at
least of the order of the particles’ rest mass. The experiments
[24–26] did not meet this condition [27].

Analysis of quantum correlations of relativistic massive
spinning particles is highly nontrivial and demands use of the
full machinery of quantum field theory. Therefore, a notion
of relativistic qubit could be a useful tool in analysis of
correlation experiments taking into account the space-time
degrees of freedom. One of the first findings in relativistic
quantum information theory was the observation that the
canonical model of a qubit—spin states of spin-1/2 particle—
is inadequate in the relativistic case [28]. The reason is quite
obvious: Lorentz transformations mix spin and space-time
degrees of freedom. As a consequence, the standard definition
of a reduced spin density matrix based on tracing over the
space-time degrees of freedom from the full density matrix
leads to an object with ill-defined transformation properties
under Lorentz boosts. This issue has been discussed in many
papers (see, e.g., Refs. [29–32]) but none of the proposed
solutions is completely satisfactory.

In this paper we propose an approach to this problem. First
of all we introduce a concept of a relativistic chiral qubit as an
irreducible amount of quantum information related to a one-
half spin relativistic chiral elementary system (carrier particle)
in a sharp momentum state which can be treated classically.
In the definition of relativistic qubits we employ SL(2,C)
chiral spinors as simplest objects with definite transformation
properties under Lorentz transformations. Next we propose a
model of the time evolution for such qubits. This evolution is
unitary and Lorentz covariant and corresponds to relativistic
uniformly accelerated motion of a carrier particle. We also
extend our formalism to systems of qubits. Our approach can
be used as a tool in further investigations of correlations in
systems of qubits that undergo different evolutions.

We should mention here that there exists a vast literature
on quantum information theory in noninertial frames of refer-
ence; see, e.g., Refs. [33–36] and references therein. In these
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works authors consider correlations, discord, etc. in a scenario
when at least one observer is uniformly accelerated. Notice
that it is a passive point of view when the system (usually
modes of a free quantum field) is observed by accelerated ob-
servers. On the contrary, in our approach observers are inertial
but the quantum system (particles) is uniformly accelerated.

II. NONRELATIVISTIC QUBITS

In nonrelativistc quantum mechanics a qubit is represented
by density matrices ρ belonging in the endomorphism’s space
of a two-dimensional complex Hilbert space C2. We can
“equip” the qubit with space-time characteristics by iden-
tification of the qubit space C2 with a sharp momentum
subspace of the entire Hilbert space spanned by fixed mo-
mentum eigenstates of the momentum operator. Such state has
the momentum-dependent polarization vector ξ = ξ(k) and
transforms covariantly according to the law

G � g : ρ ′(k′) = 1
2 [I + ξ′(k′) · σ], ξ′ = Rξ, k′ = gk.

(1)

We can treat the particle momentum as an external parameter
characterizing the kinematical state of the carrier particle of
the qubit provided that we do not measure any observables
which do not commute with the momentum.

III. RELATIVISTIC CHIRAL QUBIT

In relativistic quantum theory a complete one-particle
density matrix ρ given in the momentum representation in
the spin basis transforms under Lorentz group according to
the rule

ρ ′(�r,�p) = W(A, r)ρ(r, p)W†(A, p), (2)

where in the case of spin one-half ρ(r, p) = [ρ(r, p)σλ],
σ, λ = ± 1

2 is a 2 × 2 momentum-dependent matrix satisfy-
ing the hermiticity condition ρ(r, p)∗σλ = ρ(p, r)λσ , spectrum
(ρ) � 0, Tr ρ = 1, and trace is given also over momentum
variables (r, p). Here W(A, k) = L−1

�kALk is the Wigner-
Thomas matrix; Lk is the Lorentz boost defined by the re-
lation LkqσL†

k = kσ , where kσ = kμσμ, k2 = m2, and qσ =
mσ0 = mI . Finally, A ∈ SL(2,C) and the Lorentz group ele-
ments � = �(A) are obtained via canonical homomorphism
from SL(2,C). The explicit form of the boost matrix is the
following:

Lk = 1√
2
(
1 + k0

m

)
(

I + kσ

m

)
. (3)

Taking into account the momentum-dependent transformation
rule (2) one can show [28] that the reduction procedure is
inadequate to this case: the reduced density matrix is not
Lorentz covariant. This suggests the use of the sharp momen-
tum densities ρ(r, p) = 4r0 p0δ3(r − k)δ3(p − k)ρ(k). Con-
sequently, the only nonzero part of the matrix ρ(r, p) is ρ(k)
located in the sharp momentum subspace H(k) ∼ C2 of the
entire Hilbert space H and thus ρ(k) has the form

ρ(k) = 1
2 [I + σ · ξ(k)] ≡ ρ(k, ξ) (4)

with the unitary transformation law

ρ ′(�k, ξ′) = W(A, k)ρ(k, ξ)W†(A, k). (5)

Taking into account the form of ρ(k, ξ) we obtain that the
polarization vector transforms according to the rule ξ′(�k) =
R(�(A), k)ξ(k), where R(�, k) is the Wigner rotation.

Now, the spin operator Ŝ has in the spin basis the standard
form S = 1

2σ, while its average value 〈S〉 = 1
2ξ(k). We ob-

serve that the transformation rule (5) of the density ρ(k, ξ)
is not a manifestly Lorentz-covariant one. Moreover, it is
nonlocal in the configuration representation because of the
momentum dependence of the Wigner matrix W. Fortunately,
we can omit the above difficulty with help of the so-called
intertwining operators connecting the transformation law (5)
with spinor representations of the Lorentz group. As is well
known there exists two fundamental complex-conjugated chi-
ral representations of the group SL(2,C), left handed (L) and
right handed (R) (for details see [37] and references therein).

The corresponding chiral spinors, say wave functions ψLα

and ψRβ̇ , α = 1, 2 and β̇ = 1̇, 2̇, transform under the SL(2,C)
group action according to the law ψ ′

L = AψL and ψ ′
R = A∗ψR,

where we follow the Van der Waerden formalism [37]. Be-
cause chiral representations are conjugated it is enough to
find only one intertwining matrix denoted here as s(k)ασ . We
postulate the relationship of ρ(k, ξ) (given in the spin basis)
with its counterpart θ (k, ξ) (given in the spinorial basis), in
the following form:

θ (k, ξ) = s(k)ρ(k, ξ)s†(k), (6)

and we will assume the following Lorentz-covariant transfor-
mation law for θ (k, ξ):

θ ′(k′, ξ′) = Aθ (k, ξ)A†. (7)

The transformation rules (5) and (7) are compatible only if the
Weinberg consistency condition [38] holds for the intertwin-
ing matrix s(k)

As(k) = s(�k)W(A, k). (8)

The solution to the condition (8) has, up to a factor, the simple
form

s(k) = Lk. (9)

Notice that the Weinberg condition (8) reduces to the defini-
tion of the Wigner-Thomas matrix. The complex conjugated
matrix s∗(k) = L†T

k connects the spin and the right-handed
bases. We remark that Lk as matrix is Hermitian; however, its
above form expresses change of the undotted into dotted index
via the complex conjugation.

By means of (4), (6), and (9) we finally obtain the surpris-
ingly simple covariant form of the relativistic qubit as

θ (k, ξ) = (kμ + 2wμ)σμ, (10)

where the spacelike four-vector

wμ(k, ξ) =
{
w0 = k · ξ

2
, w = m

2

(
ξ + (k · ξ)k

m(m + k0)

)}
(11)

is the classical counterpart of the Pauli-Lubanski pseu-
dovector and is known as polarization four-vector [39].
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Now, taking into account that underparity operation ξπ = ξ,
kπμ = (k0,−k) we get the dual qubit:

θπ (kπ , ξπ ) = σ2θ (kπ , ξ)σ2 = (kμ − 2wμ)σμ. (12)

As in the nonrelativistic case we will treat the four-momentum
kμ as an external kinematical attribute of the carrier particle;
quantumness is affiliated to the spin degrees of freedom only.

To calculate the average value of an observable we can use
a matrix ρ(k, ξ) or θ (k, ξ) but we should remember that, due
to the nonunitarity of the matrix s(k) [Eq. (9)], the chiral basis
is nonorthogonal. Consequently, calculating averages with the
help of matrices in chiral basis we have to insert a Gram
matrix under trace. For example, for a spin observable we have

〈Ŝ〉 = Tr
[
ρ(k, ξ)

σ

2

]
= Tr[(s(k)s†(k))−1θ (k, ξ)Sc], (13)

where Sc = s(k) σ
2 s−1(k) is a matrix of a spin observable

in the chiral basis, while the term (s(k)s†(k))−1 = L−2
k =

1
m (kπσ ) is the Gram matrix.

IV. LORENTZ-COVARIANT EVOLUTION

There exists a simple way of introducing an interesting
Lorentz covariant, unitary dynamics of the above qubit, and
its carrier particle. Below we use the proper time τ of the
spinning particle as the evolution parameter. Let us consider
one parameter subgroup of the SL(2,C) group of the form

K(τ ) = exp [−iτ (h · σ + ie · σ)], (14)

with fixed real vectors h and e. By means of (7) and with the
initial conditions kμ(0) = κμ, wμ(0) = wμ(κ, ξ0) we define
the Lorentz-covariant proper time evolution of the qubit by
the formula

θ (k(τ ), ξ(τ )) = K(τ )θ (κ, ξ0)K(τ )†. (15)

Taking into account the form (10) of the qubit we have

k(τ )μσμ = K(τ )[κμσμ]K(τ )†, (16)

w(τ )μσμ = K(τ )[w(κ, ξ0)μσμ]K(τ )†. (17)

Therefore, the evolution of four-momentum and polarization
four-vector is given by

kμ(τ ) = K (τ )μνκ
ν, wμ(τ ) = K (τ )μνw

ν (κ, ξ0), (18)

where K (τ ) = �(K(τ )). Now, by means of (6) and (15) the
unitary evolution of the original density matrix ρ(k, ξ) reads

ρ(k(τ ), ξ(τ )) = W(K(τ ), κ )ρ(κ, ξ0)W†(K(τ ), κ ), (19)

where the Wigner matrix has the form

W(K(τ ), κ ) = L−1
k(τ )K(τ )Lκ . (20)

Thus the relativistic qubit ρ(k, ξ) evolves according to the
unitary time evolution while evolution of its chiral counterpart
θ (k, ξ) guarantees Lorentz covariance. Indeed, the SL(2,C)
transformations K′(τ ) = AK(τ )A† are inner automorphisms
of the SL(2,C), which leads to the Lorentz covariance of
the above time evolution. Furthermore, the values of Casimir
invariants C1 = e2 − h2 and C2 = e · h of those transforma-
tions determine the character of the motion of the qubit carrier

particle and a classification of possible evolutions [40–42].
Finally, interpretation of the four-momentum kμ(τ ) as the
classical parametrization of a qubit enables us to calculate
four-coordinates xμ(τ ) by integration of the four-velocity
kμ(τ )/m as well as four-acceleration by its differentiation. It is
easy to prove that the obtained class of motions correspond to
the constant square acceleration [containing also hyperbolic
(Rindler) motion]. In particular, from the variety of possible
evolution, we can distinguish the following special classes of
motions.

(1) h = 0, e 
= 0 (C1 > 0, C2 = 0)—hyperbolic motion. In
this case the trajectory is in a plane determined by the initial
momentum q and the vector e. The end of the polarization
vector describes a fragment of a circle on the Bloch sphere. It
is interesting that in this case it is possible to arrange initial
conditions in such a way that the quantum spin state does not
change during the evolution. Such a situation takes place when
the initial momentum q is parallel to the vector h.

(2) h 
= 0, e = 0 (C1 < 0, C2 = 0)—circular motion. In
this case the trajectory in general is a helix, except the special
case q ⊥ h when the trajectory is a circle. The end of the
Bloch vector moves on a circle on a Bloch sphere. Let us
notice that when the initial momentum q = 0 the particle stays
at rest but the Bloch vector rotates.

(3) |h| = |e| 
= 0, h ⊥ e (C1 = C2 = 0)—structurally un-
stable [43] polynomial in time motion. This case is struc-
turally unstable, i.e., infinitesimal change of any of the pa-
rameters changes the character of the motion. In this case
the trajectory is not plain; the end of the polarization vector
describes a fragment of a circle on the Bloch sphere.

The case e = 0, h = 0 corresponds to a free motion. The
general evolution corresponds to arbitrary values of C1 and
C2. In Fig. 1 we present an exemplary evolution in the general
situation that does not fall in any of the above cases.

It is worth stressing that (18) represents a class of solutions
of the Bargmann-Michel-Telegdi equations [44]. Indeed, by
the differentiation of (18) with respect to the proper time we
obtain that

dkμ

dτ
= f μ

νkν,
dwμ

dτ
= f μ

νw
ν, (21)

where f0i = − fi0 = ei and fi j = εi jkhk . Thus the SL(2,C)
group generator h · σ + ie · σ plays the role analogous to an
external homogenous electromagnetic field. The Bargmann-
Michel-Telegdi equation of the above form describes motion
of a one-half spin charged particle without radiation-reaction
forces and with magnetic moment equal to 2. Thus the dis-
cussed evolution of chiral qubit can be experimentally realized
by such a carrier particle.

V. TWO-PARTITE STATES

The density operator describing two particles, say A and
B, with sharp momenta k and p can be defined in the spin
or chiral basis. The corresponding matrices ρAB(k, p) and
θAB(k, p) are related via the equation

θAB(k, p) = [s(k) ⊗ s(p)]ρAB(k, p)[s†(k) ⊗ s†(p)]. (22)

Properties of the original density matrix ρAB(k, p)
imply, by means of (9) and (26), that θAB(k, p) is
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JAKUB REMBIELIŃSKI AND PAWEŁ CABAN PHYSICAL REVIEW A 99, 022320 (2019)

FIG. 1. In (a) we present the trajectory of a carrier particle and in (b) the evolution of the Bloch vector. We assume the following
parametrization: m = 1, qμ = (

√
1 + q2, 0, 0, q), h = |h|(sin α, 0, cos α), e = |e|(sin γ sin α + cos α cos β sin γ , sin β sin γ , cos α cos γ −

cos β sin α sin γ ), and ξ = (cos � sin �, sin � sin �, cos �), with q = −6, |h| = 0.7, |e| = 0.4, α = 2π/5, β = 4π/5, γ = 2π/5, � =
2π/5, and � = 11π/10. The curve is drawn for the proper time τ ∈ 〈0, 12〉; exemplary Bloch vectors correspond to τ = 0, τ = 4, and
τ = 8. We use natural units with h̄ = c = 1.

Hermitian, Tr[((kπσ ) ⊗ (pπσ ))θAB(k, p)] = m2, and
equation det[m2θAB(k, p) − λ(kσ ) ⊗ (pσ )] = 0 has
nonnegative solutions for λ. Hermiticity of ρAB(k, p) and
θAB(k, p) allows us to write

ρAB(k, p) =
∑
μ,ν

R(k, p)μνσμ ⊗ σν (23)

and

θAB(k, p) =
∑
μ,ν

�(k, p)μνσμ ⊗ σν (24)

with real R(k, p)μν and �(k, p)μν . Moreover, from Eqs. (9)
and (26) it follows that

�(k, p) = L(k)R(k, p)L(p)T , (25)

where L(k) is a four-dimensional standard boost taking (m, 0)
to k, i.e., L(k) = �(Lk ).

Under Lorentz transformations the matrix θAB(k, p) trans-
forms according to

θ ′
AB(k′, p′) = (A ⊗ A)θAB(k, p)(A† ⊗ A†). (26)

In general, each particle from a two-particle state can
evolve according to a different rule (for example, we can
consider a situation when only one particle is accelerating
while the second one moves with a constant velocity). In
such a case evolution parameters are proper times τA and τB

of corresponding particles. However, proper times τA and τB

depend on the same coordinate time t . Indeed, as we have
mentioned before, k(τA) and p(τB) can be integrated and in
result we obtain parametric equations of classical trajectories
xμ

A (τA) and xμ
B (τB). Therefore, solving equations x0

A(τA) =
x0

B(τB) = t , we can express τA and τB by a single coordinate

time t . We write k(t ) instead of k(τA(t )) and analogously for
other quantities. Thus

θ ′
AB(k(t ), p(t ), t ) = [K1(t ) ⊗ K2(t )]θ in

AB[K†
1(t ) ⊗ K†

2(t )],

(27)

where θ in
AB = θAB(k(0), p(0), 0).

On the level of density matrices ρAB(k, p) the manifestly
covariant evolution (27) corresponds to unitary transformation

ρ ′
AB(k(t ), p(t ), t )

= [W(K1(t ), k(0)) ⊗ W(K2(t ), p(0))]

× ρ in
AB[W†(K1(t ), k(0)) ⊗ W†(K2(t ), p(0))], (28)

where ρ in
AB = ρAB(k(0), p(0), 0).

It should be stressed here that (28) is a local unitary
transformation; therefore, it preserves entanglement and other
quantum correlations (like quantum discord). Thus we have a
unique model of unitary (on the level of the matrix ρAB) and
manifestly Lorentz-covariant (on the level of the matrix θAB)
evolution of two spin-1/2 particles preserving entanglement
of the quantum spin state. At the same time in our model the
carrier particles undergo uniformly accelerated motion.

VI. EINSTEIN-PODOLSKY-ROSEN CORRELATIONS

Let Alice and Bob measure spin components along vectors
a and b, respectively. Then the correlation function reads

CρAB (a, b) = Tr[ρAB(a · σ ⊗ b · σ)]. (29)

Now, assuming that the state ρAB is the state ρ ′
AB(k(t ), p(t ), t )

evolving according to the rule (28) we get for the correlation
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FIG. 2. Correlation function in the Bell state evolving
in the following way: one particle stays at rest while the
second one moves according to rules given in the caption of
Fig. 1. We have utilized the following parametrization: b =
(cos ϕ sin ψ, sin ϕ sin ψ, cos ψ ) and a = (cos α cos ϕ cos ψ sin θ +
cos θ cos ϕ sin ψ− 1

2 sin α sin ϕ[sin θ+2 sin(θ+φ) − sin(θ + 2ψ )],
cos ϕ sin α sin θ+ sin ϕ(cos α cos ψ sin θ+ cos θ sin ψ ), cos θ cos ψ

− cos α sin θ sin ψ ), with α = π/10, ϕ = π/3, and ψ = π/4. θ is
an angle between a and b. t = x0(τ ) denotes coordinate time. In
the considered motion x0(τ = 4) = 47.76, x0(τ = 8) = 143.12, and
x0(τ = 10.5) = 299.32.

function the following formula:

Cρ ′
AB (k(t ),p(t ),t )(a, b, t ) = Cρ in

AB
(a(t ), b(t )). (30)

Here a(t ) = RT (K1(t ), k(0))a and b(t ) = RT (K2(t ), p(0))b,
where R(K1(t ), k(0)) and R(K2(t ), p(0)) are rotations corre-
sponding to W(K1(t ), k(0)) and W(K2(t ), p(0)), respectively.

As an example let us consider two particles that are
initially in the Bell (rotational singlet) spin state ρ in

AB =
ρBell(k(0), p(0), 0). Therefore, the correlation function in
EPR experiment in this state reads CρBell(k(0),p(0),0)(a, b) =

−a · b. Now, let us assume that one particle stays at rest
while the second one evolves in a way we have considered
in Fig. 1. The correlation function, according to (30), is equal
to Cρ ′

Bell(k(0),p(t ),t )(a, b) = −a · b(t ), where b(t ) is defined after
Eq. (30). We have presented this function in Fig. 2. As we can
see the strength and form of correlations depend on the motion
of the carrier particles—acceleration influences correlations
significantly.

VII. CONCLUSIONS

We have introduced the notion of a relativistic chiral qubit
and described its unitary and Lorentz-covariant evolution dur-
ing relativistic uniformly accelerated motion of the carrier par-
ticle. We have also indicated the connection of our evolution
model with the Bargmann-Michel-Telegdi equation to point
out possible physical realization of the proposed evolution.
In our model the kinematical state of the carrier particles
can be controlled during an experiment. This allows us to
consider qualitatively and quantitatively different scenarios
with distant observers sharing entangled particles like, e.g.,
the EPR-type experiment discussed above. Our model deals
with sharp momentum states but in realistic experiments the
prepared states (usually created in scattering processes) are
almost sharp in the momentum. Moreover, the influence of
the particle localization on the correlation function can be
neglected when localization regions are larger than tens of
the Compton wavelength. The detectors (pixel arrays) used
in such experiments are able to localize particles in regions of
linear size ∼100λe (the electron Compton wavelength). See
[45] for an exhaustive discussion of this problem.

Let us stress that the presented formalism employs a uni-
fied framework that applies also equally well to Dirac and
Majorana qubits. We believe that the presented results open
possibilities in the description of experiments with observers
in a relative motion (including accelerated ones).
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