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We investigate unambiguous discrimination between given quantum states with a sequential measurement,
which is restricted to local measurements and one-way classical communication. If the given states are binary
or each of their individual state spaces is two dimensional, then it is in some cases known whether a sequential
measurement achieves a globally optimal unambiguous measurement. In contrast, for more than two states each
of whose individual systems is more than two dimensional, the problem becomes extremely complicated. This
paper focuses on symmetric ternary separable pure states each of whose individual systems is three dimensional,
which include phase shift keyed (PSK) optical coherent states and a lifted version of “double trine” states. We
provide a necessary and sufficient condition for an optimal sequential measurement to be globally optimal for
the bipartite case. A sufficient condition of global optimality for multipartite states is also presented. One can
easily judge whether these conditions hold for given states. Some examples are given, which demonstrate that,
despite the restriction to local measurements and one-way classical communication, a sequential measurement
can be globally optimal in quite a few cases.
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I. INTRODUCTION

Discrimination between quantum states as accurately as
possible is a fundamental issue in quantum information the-
ory. It is a well-known property of quantum theory that per-
fect discrimination among nonorthogonal quantum states is
impossible. Then, given a finite set of nonorthogonal quantum
states, we need to find an optimal measurement with respect to
a reasonable criterion. Unambiguous discrimination is one of
the most common strategies to distinguish between quantum
states [1–3]. An unambiguous measurement achieves error-
free (i.e., unambiguous) discrimination at the expense of
allowing for a certain rate of inconclusive results. Finding an
unambiguous measurement that maximizes the average suc-
cess probability for various quantum states has been widely
investigated (e.g., [4–12]).

When given quantum states are shared between two or
more systems, measurement strategies can be classified into
two types: global and local. A local measurement is performed
by a series of individual measurements on the subsystems
combined with classical communication. In particular, se-
quential measurements, in which the classical communication
is one-way only, have been widely investigated under several
optimality criteria (e.g., [13–22]). Although the performance
of an optimal sequential measurement is often strictly less
than that of an optimal global measurement even if given
states are not entangled, a sequential measurement has the
advantage of being relatively easy to implement with cur-
rent technology. As an example of a realizable sequential
measurement for optical coherent states, a receiver based on
a combination of a photon detector and a feedback circuit,
which we call a Dolinar-like receiver, has been proposed [23]
and experimentally demonstrated [24]. Also, unambiguous
discrimination using Dolinar-like receivers has been studied
[25–27].

Several studies on optimal unambiguous sequential mea-
surements have also been carried out [28–31]. For binary pure
states with any prior probabilities, it has been shown that an
optimal unambiguous sequential measurement can achieve the
performance of an optimal global measurement [28,29]. For
the sake of brevity, we say that a sequential measurement can
be globally optimal. As for more than two states, in the case
in which each of the individual systems is two dimensional,
whether a sequential measurement can be globally optimal
has been clarified for several cases [30,31]. However, in the
case in which individual systems are more than two dimen-
sional, the problem becomes extremely complicated. Due to
the restriction of local measurements and one-way classical
communication, it would not be surprising if a sequential mea-
surement cannot be globally optimal except for some special
cases. It is worth mentioning that, according to Ref. [32], in
the case of a minimum-error measurement, which maximizes
the average success probability but sometimes returns an
incorrect answer, an optimal sequential measurement does not
seem to be globally optimal for any ternary phase shift keyed
(PSK) optical coherent states.

In this paper we focus on symmetric ternary separable pure
states each of whose individual systems is three dimensional.
These states include PSK optical coherent states, which have
equally spaced phases at constant amplitude, and a lifted
version of “double trine” states [33]. We provide a necessary
and sufficient condition that a sequential measurement can
be globally optimal for the bipartite case, using which one
can easily judge whether global optimality is achieved by a
sequential measurement for given states. We use the convex
optimization approach reported in Ref. [34] to derive the
condition. We also give a sufficient condition of global opti-
mality for the multipartite case. Some examples of symmetric
ternary separable pure states are presented, which show that
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a sequential measurement can be globally optimal in quite a
few cases. One of the examples shows that the problem of
whether a sequential measurement for bipartite ternary PSK
optical coherent states can be globally optimal is completely
solved analytically, while its minimum-error measurement
version has been solved only numerically [32]. Moreover, we
show that a Dolinar-like receiver for any ternary PSK optical
coherent states cannot be a globally optimal unambiguous
measurement.

The paper is organized as follows. In Sec. II we formulate
the problem of finding an optimal unambiguous measurement
and its sequential-measurement version as convex program-
ming problems. In Sec. III we present our main theorem.
Using this theorem, we derive a necessary and sufficient
condition for an optimal sequential measurement for bipartite
symmetric ternary separable pure states to be globally opti-
mal. A sufficient condition of global optimality for multipar-
tite symmetric ternary separable pure states is also derived.
In Sec. IV we provide some examples to demonstrate the
usefulness of our results. Finally, we prove the main theorem
in Sec. V.

II. OPTIMAL UNAMBIGUOUS SEQUENTIAL
MEASUREMENTS

In this section we first provide an optimization problem
of finding optimal unambiguous measurements. Then, we
discuss a sequential-measurement version of the optimization
problem. We also provide a necessary and sufficient condition
for an optimal sequential measurement to be globally optimal.
Note that this condition is quite general but requires extra
effort to decide whether global optimality is achieved by a
sequential measurement for given quantum states. In Sec. III
we will use this condition to derive a formula that is directly
applicable to symmetric ternary separable pure states.

A. Problem of finding optimal unambiguous measurements

We here consider unambiguous measurements without re-
striction to sequential measurements. Consider a quantum
system prepared in one of R quantum states represented
by density operators {ρ̃r}r∈IR on a complex Hilbert space
H, where IR := {0, 1, . . . , R − 1}. The density operator ρ̃r

satisfies ρ̃r � 0 and Tr ρ̃r = 1, where Â � 0 denotes that Â
is positive semidefinite (similarly, Â � B̂ denotes Â − B̂ � 0).
To unambiguously discriminate the R states, we can consider a
measurement represented by a positive-operator-valued mea-
sure (POVM), �̂ := {�̂r}R

r=0, consisting of R + 1 detection
operators, onH, where �̂r satisfies �̂r � 0 and

∑R
r=0 �̂r = 1̂

(1̂ is the identity operator on H). The detection operator
�̂r with r < R corresponds to the identification of the state
ρ̃r , while �̂R corresponds to the inconclusive answer. Any
unambiguous measurement �̂ satisfies Tr(ρ̃r�̂k ) = 0 for any
k ∈ IR\{r}, where \ denotes set difference. Given possible
states {ρ̃r} and their prior probabilities {ξr}, we want to find an
unambiguous measurement maximizing the average success
probability, which we call an optimal unambiguous measure-
ment or just an optimal measurement for short. Reference [6]
shows that the problem of finding an optimal measurement
can be formulated as a semidefinite programming problem,

which is a special case of a convex programming problem.
For analytical convenience, instead of the formulation of
Ref. [6], we consider the following semidefinite programming
problem:

PG : maximize P(�̂) := lim
λ→∞

R−1∑
r=0

Tr[(ρ̂r − λν̂r )�̂r]

subject to �̂ : POVM,

(1)

where ρ̂r := ξr ρ̃r and ν̂r := ∑
k∈IR\{r} ρ̂k . Since P(�̂) = −∞

holds if there exists r ∈ IR such that Tr(ν̂r�̂r ) �= 0 (i.e., �̂

is not an unambiguous measurement), any optimal solution
to problem PG is guaranteed to be an unambiguous mea-
surement. The optimal value, which is the average success
probability of an optimal measurement, is larger than zero
if and only if at least one of the operators ρ̂r has a nonzero
overlap with the kernels of ν̂r [35].

The dual problem to problem PG can be written as1

DPG : minimize Tr ẐG

subject to �̂G(r, ẐG) � 0 (∀r ∈ IR),
(2)

where

�̂G(r, ẐG) := lim
λ→∞

ẐG − ρ̂r + λν̂r (3)

and ẐG is a (bounded) positive semidefinite operator on
H. The optimal values of problems PG and DPG are the
same. Note that �̂G(r, ẐG) is obviously unbounded. For an
unbounded operator Â, Â � 0 holds if and only if 〈c|Â|c〉 � 0
holds for any vector |c〉 in the domain of Â. Since the domain
of �̂G(r, ẐG) is Ker ν̂r , �̂G(r, ẐG) � 0 is equivalent to the
following:

〈c|(ẐG − ρ̂r )|c〉 � 0, ∀|c〉 ∈ Ker ν̂r . (4)

B. Problem of finding optimal unambiguous sequential
measurements

Now, let us assume that H is a bipartite Hilbert space,
H = HA ⊗HB, and let us restrict our attention to a sequential
measurement from Alice to Bob. In a sequential measurement,
Alice performs a measurement on HA and communicates
her result to Bob. Then he performs a measurement on HB,
which can depend on Alice’s outcomes, and obtains the final
measurement result. This sequential measurement can be con-
sidered from a different point of view [32]. Let ω be an index
associated with Bob’s measurement B̂(ω) := {B̂(ω)

r }R
r=0, and 	

be the entire set of indices ω. Alice performs a measurement
Â := {Â(ω)}ω∈	, with continuous outcomes, and sends the
result ω ∈ 	 to Bob. Then he performs the corresponding
measurement B̂(ω), which is uniquely determined by the re-
sult ω. This sequential measurement is denoted as �̂(Â) :=
{�̂(Â)

r }R
r=0 with

�̂(Â)
r :=

∫
	

Â(dω) ⊗ B̂(ω)
r , (5)

1One can obtain this problem from Eq. (12) in Ref. [36] with M =
R + 1, J = 0, ĉm = ρ̂m − λν̂m (m < R), ĉR = 0, and λ → ∞.

022316-2



LOCAL UNAMBIGUOUS DISCRIMINATION OF SYMMETRIC … PHYSICAL REVIEW A 99, 022316 (2019)

which is uniquely determined by Alice’s POVM Â.
The problem of finding an unambiguous sequential mea-

surement maximizing the average success probability, which
we call an optimal unambiguous sequential measurement or
just an optimal sequential measurement, can be formulated as
the following optimization problem:

P : maximize P[�̂(Â)]
subject to Â ∈MA,

(6)

with Alice’s POVM Â, whereMA is the entire set of Alice’s
continuous measurements {Â(ω)}ω∈	. Compared to problem
PG, this problem restricts �̂ to the form �̂ = �̂(Â). We can
easily see that this problem is a convex programming problem
and obtain the following dual problem [34]:

DP : minimize Tr X̂
subject to �̂(ω; X̂ ) � 0 (∀ω ∈ 	),

(7)

with a Hermitian operator X̂ , where

�̂(ω; X̂ ) := lim
λ→∞

X̂ −
R−1∑
r=0

TrB
[
(ρ̂r − λν̂r )B̂(ω)

r

]
. (8)

TrB is the partial trace over HB. The optimal values of
problems P and DP are also the same. Note that �̂(ω; X̂ ) � 0
is equivalent to the following:

〈c|X̂ −
R−1∑
r=0

TrB
[
ρ̂r B̂(ω)

r

] |c〉 � 0,

∀|c〉 ∈ Ker
R−1∑
r=0

TrB
[
ν̂r B̂(ω)

r

]
. (9)

C. Condition for sequential measurement to be globally optimal

Let Ẑ

G be an optimal solution to problem PG and X̂ 


G :=
TrB Ẑ


G. Also, let

�̂
(ω) := �̂(ω; X̂ 

G). (10)

We now want to know whether a sequential measurement
can be globally optimal, i.e., whether an optimal solution to
problem P is also optimal to problem PG. To this end, we
utilize the following lemma.

Lemma 1. A sequential measurement �̂(Â) (Â ∈MA) is
an optimal unambiguous measurement if and only if it satisfies

�̂
(ω)Â(ω) = 0, ∀ω ∈ 	. (11)

Proof. Assume that X̂ 

G is a feasible solution to problem

DP, i.e., �̂
(ω) � 0 holds for any ω ∈ 	. It is known that
�̂(Â) and X̂ are, respectively, optimal solutions to problems
P and DP if and only if �̂(ω; X̂ ) � 0 and �̂(ω; X̂ )Â(ω) = 0
hold for any ω ∈ 	 (see Theorem 2 of Ref. [34]).2 Thus,
�̂(Â) and X̂ 


G are, respectively, optimal solutions to problems
P and DP if and only if Eq. (11) holds. If Eq. (11) holds, then,
since P[�̂(Â)] = Tr X̂ 


G = Tr Ẑ

G is equal to the optimal value

2We here consider the case of M = R + 1, J = 0, ĉm = ρ̂m −
λν̂m (m < R), ĉR = 0, and λ → ∞.

of problem PG, �̂(Â) is globally optimal. Therefore, to prove
this lemma, it suffices to show that X̂ 


G is a feasible solution to
problem DP.

Multiplying [B̂(ω)
r ]1/2 on both sides of the constraint of

problem DPG and taking the partial trace overHB gives

lim
λ→∞

TrB
[
Ẑ


GB̂(ω)
r

]− TrB
[
(ρ̂r − λν̂r )B̂(ω)

r

]
� 0. (12)

Therefore, we have

lim
λ→∞

R−1∑
r=0

TrB
[
Ẑ


GB̂(ω)
r

]−
R−1∑
r=0

TrB
[
(ρ̂r − λν̂r )B̂(ω)

r

]
� 0. (13)

Also, from X̂ 

G = TrB Ẑ


G, we have

X̂ 

G =

R∑
r=0

TrB
[
Ẑ


GB̂(ω)
r

]
�

R−1∑
r=0

TrB
[
Ẑ


GB̂(ω)
r

]
, (14)

From these equations and Eq. (8), �̂
(ω) � 0 holds for any
ω ∈ 	, and thus X̂ 


G is a feasible solution to problem DP. �
We will further investigate Alice’s POVM Â satisfying

Eq. (11). Let

Kω := Ker
R−1∑
r=0

TrB
[
ν̂r B̂(ω)

r

]
. (15)

Let us consider |γ 〉 ∈ supp Â(ω). Suppose that Eq. (11)
holds; then, from Eqs. (8) and (15), |γ 〉 ∈ Kω and
P̂ω[X̂ 


G −∑R−1
r=0 TrB[ρ̂r B̂(ω)

r ]]|γ 〉 = 0 hold, where P̂ω is the
projection operator onto Kω. Conversely, if these two equa-
tions hold for any |γ 〉 ∈ supp Â(ω), then Eq. (11) holds.
Therefore, Eq. (11) is equivalent to the following equations:

supp Â(ω) ⊆ Kω,

P̂ω

[
X̂ 


G −
R−1∑
r=0

TrB
[
ρ̂r B̂(ω)

r

]]
Â(ω) = 0. (16)

Let us consider the case in which each state ρ̂r is separable,
i.e., it is in the form of

ρ̂r = ξr âr ⊗ b̂r, (17)

where âr and b̂r are, respectively, density operators onHA and
HB. Then Eq. (8) reduces to

�̂(ω; X̂ ) = lim
λ→∞

X̂ −
R−1∑
r=0

p(ω)
r ξr âr + λ

R−1∑
r=0

e(ω)
r ξr âr, (18)

where p(ω)
r := Tr[b̂r B̂(ω)

r ] is the probability of Bob correctly
identifying the state b̂r and e(ω)

r := ∑
k∈IR\{r} Tr[b̂r B̂(ω)

k ] is the

probability of Bob misidentifying the state b̂r . Also, it follows
from Kω = Ker

∑R−1
r=0 e(ω)

r ξr âr that the first line of Eq. (16)
can be expressed as

Tr[âr Â(ω)] = 0, ∀r �∈ T (ω), (19)

where T (ω) is the entire set of indices r ∈ IR such that Bob’s
measurement never gives incorrect results, i.e.,

T (ω) := {
r ∈ IR : e(ω)

r = 0
}
. (20)
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Equation (19) implies that, for any r ∈ IR and ω ∈ 	 such
that the state b̂r will be incorrectly identified by Bob’s mea-
surement B̂(ω) (i.e., e(ω)

r �= 0), Alice’s outcome must not be ω

for the state âr (i.e., Tr[âr Â(ω)] = 0). Thus, Eq. (19) ensures
that the measurement �̂(Â) never gives erroneous results.

III. SEQUENTIAL MEASUREMENTS FOR SYMMETRIC
TERNARY SEPARABLE PURE STATES

Lemma 1 is useful in determining whether a sequential
measurement can be globally optimal. Concretely, it is pos-
sible to decide whether a sequential measurement can be
globally optimal by examining whether there exists Â ∈MA

satisfying Eq. (11). However, in general, it is quite difficult to
examine this for all continuous values ω ∈ 	. In this section
we consider sequential measurements for bipartite symmetric
ternary separable pure states and derive a formula that can
directly determine whether a sequential measurement can be
globally optimal. Extending our results to the multipartite case
enables us to obtain a sufficient condition that a sequential
measurement can be globally optimal.

A. Main results

Let us consider bipartite ternary separable pure states
{|�r〉 := |ar〉 ⊗ |br〉}2

r=0, which are the special case of
Eq. (17) with âr = |ar〉〈ar | and b̂r = |br〉〈br |. Assume that
{|ar〉} and {|br〉}, respectively, span three-dimensional Hilbert
spaces HA and HB. Note that unambiguous discrimination is
possible if and only if the pure states are linearly independent
[37]; there exist unambiguous measurements for the partial
states {|ar〉} and {|br〉}. Also, assume that {|�r〉} is symmetric
in the following sense: the prior probabilities are equal (i.e.,
ξr = 1/3) and there exist unitary operators V̂A on HA and V̂B

onHB satisfying

|ar⊕1〉 = V̂A|ar〉, |br⊕1〉 = V̂B|br〉, (21)

where ⊕ denotes addition modulo 3. These states are char-
acterized by the inner products KA := 〈a0|a1〉 and KB :=
〈b0|b1〉, which are generally complex values. For any r ∈ I3,
we have

〈ar |ar⊕1〉 = KA, 〈br |br⊕1〉 = KB. (22)

|ar〉 and/or |br〉 can be PSK optical coherent states, pulse
position modulated (PPM) optical coherent states, and lifted
trine states [33]. If {|ar〉} or {|br〉} is mutually orthogonal
(i.e., KA = 0 or KB = 0), then an optimal sequential mea-
surement perfectly discriminates {|�r〉}, and thus is globally
optimal. So, assume that neither {|ar〉} nor {|br〉} is mutually
orthogonal.

We shall present a theorem that can be used to determine
whether a sequential measurement can be globally optimal for
given bipartite symmetric ternary separable pure states. Let us
consider the following set with seven elements:

	
 := {ω1, j, ω2, j, ω3 : j ∈ I3}, (23)

where
(1) B̂(ω1, j ) is the measurement that always returns j, i.e.,

B̂
(ω1, j )
r = δr, j 1̂B, where δr, j is the Kronecker delta and 1̂B is the

identity operator onHB.

FIG. 1. Schematic diagram of an optimal sequential measure-
ment �̂(Â
 ).

(2) B̂(ω2, j ) is an optimal unambiguous measurement for
binary states {|b j⊕1〉, |b j⊕2〉} with equal prior probabilities of
1/2.

(3) B̂(ω3 ) is an optimal unambiguous measurement for
ternary states {|br〉}2

r=0 with equal prior probabilities of 1/3.
For simpler notation, we write ωk for ωk,0 for each k ∈

{1, 2}.
When a sequential measurement can be globally optimal,

there can exist a large (or even infinite) number of optimal
sequential measurements. However, as we shall show in the
following theorem, if a sequential measurement can be glob-
ally optimal, then there always exists an optimal sequential
measurement in which Alice never returns an index ω with
ω �∈ 	
 (proof in Sec. V).

Theorem 2. Suppose that, for bipartite symmetric ternary
separable pure states {|�r〉 := |ar〉 ⊗ |br〉}2

r=0, a sequential
measurement can be globally optimal. Also, suppose that
{|ar〉} and {|br〉} respectively span three-dimensional Hilbert
spaces. Then, there exists an optimal sequential measurement
�̂(Â
 ) with Â
 ∈MA such that

Â
(ω) = 0, ∀ω �∈ 	
. (24)

The measurement �̂(Â
 ) is schematically illustrated in Fig. 1.
Due to the definition of ω1, j, ω2, j, ω3 ∈ 	
, T (ω), defined
by Eq. (20), satisfies T (ω1, j ) = { j}, T (ω2, j ) = { j ⊕ 1, j ⊕ 2},
and T (ω3 ) = {0, 1, 2}. From Eq. (19), Tr[âr Â
(ω1, j )] = 0 must
hold for any distinct r, j ∈ I3. Thus, if Alice returns the index
ω1, j , then the given state must be |� j〉. (In this case, the
given state is uniquely determined before Bob performs the
measurement.) Also, from Eq. (19), Tr[â j Â
(ω2, j )] = 0 holds
for any j ∈ I3, which indicates that if Alice returns the index
ω2, j , then the state |� j〉 is unambiguously filtered out. In this
case, Alice’s measurement result does not indicate which of
the two states |� j⊕1〉 and |� j⊕2〉 is given. If Alice returns the
index ω3, then Alice’s result provides no information about
the given state.

Using Theorem 2, we can derive a simple formula for
determining whether a sequential measurement can be glob-
ally optimal. Before we state this formula, we shall give
some preliminaries. Let τ := exp(i2π/3), where i := √−1.
Also, let |φn〉 and |φ′

n〉, respectively, denote the normalized
eigenvectors corresponding to the eigenvalues τ n (n ∈ I3) of
V̂A and V̂B. Moreover, let

xn := |〈φn|a0〉|, yn := |〈φ′
n|b0〉|. (25)
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Note that xn, yn > 0 holds for any n ∈ I3. By selecting appro-
priate global phases of |ar〉 and |br〉 and permuting |�1〉 and
|�2〉 as a preprocessing step if necessary, we may assume

x0 > x2, x1 � x2, y0 � y1 � y2, y0 �= y2. (26)

We keep the same notation {|ar〉} and {|br〉} before and after
the preprocessing step. Also, by selecting global phases of
|φn〉 and |φ′

n〉 such that 〈φn|a0〉 and 〈φ′
n|b0〉 are positive real

numbers, |ar〉 and |br〉 are written as

|ar〉 =
2∑

n=0

xnτ
rn|φn〉, |br〉 =

2∑
n=0

ynτ
rn|φ′

n〉. (27)

xn and yn are uniquely determined by KA and KB. Let K ′
A :=

〈a0|a1〉 and K ′
B := 〈b0|b1〉, where |ar〉 and |br〉 are prepro-

cessed vectors, which is expressed by Eqs. (26) and (27); then
we have

xn =
√

1 + τ 2nK ′
A + τ n(K ′

A)∗

3
,

(28)

yn =
√

1 + τ 2nK ′
B + τ n(K ′

B)∗

3
,

where ∗ designates complex conjugate. Note that since KA and
K ′

A are, respectively, defined as 〈a0|a1〉 with the unprepro-
cessed and preprocessed vectors {|ar〉}, KA �= K ′

A generally
holds (the same is true for KB). However, we can easily see
that |KA| = |K ′

A| and |KB| = |K ′
B| always hold. Let

η := 1
3 (1 − |K ′

B|). (29)

3η = 1 − |K ′
B| equals the average success probability of the

optimal unambiguous measurement B̂(ω2 ) for binary states
{|b1〉, |b2〉} with equal prior probabilities of 1/2. From
Eq. (28) we have |K ′

B|2 = 1 − 3χ , where

χ := y2
0y2

1 + y2
1y2

2 + y2
2y2

0. (30)

Thus, η is expressed by

η = 1
3 (1 −

√
1 − 3χ ). (31)

We get the following corollary (proof in Appendix A).
Corollary 3. For bipartite symmetric ternary separable

pure states {|�r〉 := |ar〉 ⊗ |br〉}2
r=0 expressed by Eqs. (26)

and (27), the following two statements are equivalent.
(1) A sequential measurement can be globally optimal.
(2) Either y1 = y2 or

x2z0 − x1z1 � 0,

2∑
k=0

x2
k

(
z−2

1�k − z−2
3�k

)
� 0 (32)

holds, where zk := y2
k − η and � denotes subtraction

modulo 3.
Using this corollary, we can easily judge whether a se-

quential measurement can be globally optimal for bipartite
symmetric ternary separable pure states.

B. Extension to multipartite states

We can extend the above results to multipartite states. As
a simple example, we consider tripartite symmetric ternary

separable pure states {|�r〉 = |ar〉 ⊗ |br〉 ⊗ |cr〉}2
r=0, which

have equal prior probabilities. There exist unitary operators
V̂A, V̂B, and V̂C on HA, HB, and HC satisfying Eq. (21) and
|cr⊕1〉 = V̂C|cr〉. Here, let us consider the composite system of
HB and HC, HBC := HB ⊗HC, and interpret these states as
bipartite states {|�r〉 = |ar〉 ⊗ |Br〉}2

r=0, where |Br〉 := |br〉 ⊗
|cr〉 ∈ HBC. It is obvious that if a sequential measurement
can be globally optimal for the tripartite states, then it is
also true for the bipartite states. Assume that it is true for
the bipartite states; then, from Theorem 2, there exists a
sequential measurement �̂(Â
 ) satisfying Eq. (24), which is
globally optimal. Also, it follows that �̂(Â
 ) can be realized
by a sequential measurement on the tripartite system HA ⊗
HB ⊗HC if and only if, for any ω ∈ 	
, the measurement
B̂(ω) on HBC can be realized by a sequential measurement on
HB ⊗HC. B̂(ω1, j ) = {B̂(ω1, j )

r = δr, j}r can obviously be realized
by a sequential measurement. Also, it is known that a globally
optimal measurement for any bipartite binary pure states can
be realized by a sequential measurement [28,29], and thus
B̂(ω2, j ) can also be realized by a sequential one. Therefore,
�̂(Â
 ) can be realized by a sequential measurement on the
tripartite system if and only if B̂(ω3 ) can be realized by a
sequential measurement. Since B̂(ω3 ) is globally optimal for
the bipartite symmetric ternary separable pure states {|br〉 ⊗
|cr〉}2

r=0, B̂(ω3 ) can be realized by a sequential measurement if
and only if a sequential measurement for {|br〉 ⊗ |cr〉}r can be
globally optimal. We can summarize the above discussion as
follows: if a sequential measurement can be globally optimal
for each of the two sets of states {|ar〉 ⊗ |Br〉}r and {|br〉 ⊗
|cr〉}r , then the same is true for the tripartite states {|�r〉}.

Repeating the above arguments, we can extend it to more
than three-partite system, as stated in the following corollary.

Corollary 4. Let us consider N-partite ternary pure
states {|�r〉 := |ψ (0)

r 〉 ⊗ |ψ (1)
r 〉 ⊗ · · · ⊗ |ψ (N−1)

r 〉}2
r=0 with

equal prior probabilities, where N � 3. Suppose that
{|�r〉} are symmetric, i.e., for any n ∈ IN , there exists a
unitary operator V̂ (n) satisfying |ψ (n)

r⊕1〉 = V̂ (n)|ψ (n)
r 〉. Let

|b(n)
r 〉 := |ψ (n+1)

r 〉 ⊗ · · · ⊗ |ψ (N−1)
r 〉 (n ∈ IN−1). If for any

n ∈ IN−1, a sequential measurement can be globally optimal
for bipartite states {|ψ (n)

r 〉 ⊗ |b(n)
r 〉}2

r=0 with equal prior
probabilities, then the same is true for {|�r〉}.

By using Corollary 3, one can easily judge whether a
sequential measurement for the bipartite states {|ψ (n)

r 〉 ⊗
|b(n)

r 〉}2
r=0 can be globally optimal. Note that the above suf-

ficient condition may not be necessary. For example, let us
again consider the tripartite states {|ar〉 ⊗ |br〉 ⊗ |cr〉}r . For an
optimal sequential measurement for these states to be globally
optimal, it is sufficient that there exists a globally optimal
sequential measurement �̂(Â) for the bipartite states {|ar〉 ⊗
|Br〉}r such that the measurement B̂(ω) can be realized by a
sequential measurement on the bipartite systemHB ⊗HC for
any ω with Â(ω) �= 0, where A can be different from Â
.

IV. EXAMPLES

In this section we present some examples of symmetric
ternary separable pure states in which a sequential measure-
ment can be globally optimal. In Secs. IV A and IV B we

022316-5



NAKAHIRA, KATO, AND USUDA PHYSICAL REVIEW A 99, 022316 (2019)

FIG. 2. The region of the complex plane where a sequential
measurement for symmetric ternary separable pure states with KA =
KB =: K can be globally optimal.

consider the bipartite case. In Sec. IV C we consider the
multipartite case.

A. Case of KA = KB

We first give some examples of bipartite states {|�r〉 :=
|ar〉 ⊗ |br〉}r with KA = KB =: K . Note that xn and yn of
Eq. (28) are the same for each n ∈ I3, and thus x0 � x1 holds
from y0 � y1.

The region of the complex plane where a sequential mea-
surement for the states {|�r〉} with KA = KB = K can be
globally optimal is shown in red in Fig. 2. This region is
easily obtained from Corollary 3. The horizontal and vertical
directions are the real and imaginary axes, respectively. The
region of all possible K is represented as the dotted equilateral
triangle. This figure implies that, at least in the case of KA =
KB, a sequential measurement can be globally optimal in quite
a few cases.

As a concrete example, let us consider the symmetric
ternary separable pure states in which {|ar〉} and {|br〉} are the
lifted trine states {|Lr〉}2

r=0, which are expressed by [33]

|Lr〉 =
√

1 − g

(
cos

2πr

3
|u0〉 + sin

2πr

3
|u1〉

)
+ √

g|u2〉,

(33)

where {|un〉}2
n=0 is an orthonormal basis. The real parameter

g is in the range 0 < g < 1. Equation (33) gives K = (3g −
1)/2, and thus K is real in the range −1/2 < K < 1. It follows
that the states {|�r〉 = |Lr〉 ⊗ |Lr〉}r are also regarded as lifted
trine states. The region of possible values of K is shown in
the dashed green line in Fig. 2. From this figure, a sequential
measurement for {|�r〉} can be globally optimal if and only if
K � 0 (i.e., g � 1/3).

FIG. 3. The average success probabilities of an optimal sequen-
tial measurement and an optimal measurement for the ternary PSK
optical coherent states {|αr〉 ⊗ |αr〉}r , where {|αr〉} are the ternary
PSK optical coherent states with an average photon number S.

Another example is the states in which {|ar〉} and {|br〉}
are the ternary PSK optical coherent states {|αr〉}2

r=0, which
have equally spaced phases of {0, 2π/3, 4π/3} at constant
amplitude. |αr〉 is a normalized eigenvector of the photon
annihilation operator with the eigenvalue αr := √

Sτ r , and
S = |αr |2 is the average photon number of |αr〉. The phase
of the state |αr〉 is arg αr = 2πr/3. In this case, the states
{|�r〉 = |αr〉 ⊗ |αr〉}r are also regarded as the ternary PSK
optical coherent states with the average photon number 2S.
The coherent state |αr〉 is written as

|αr〉 = e− S
2

∞∑
n=0

αn

√
n!

|n〉, (34)

where |n〉 is the photon number state with n photons. This
gives

K = 〈α0|α1〉 = e− 3
2 Sei

√
3

2 S. (35)

The solid blue line in Fig. 2 shows the region of possible
values of K . It follows from Eq. (35) that arg K =

√
3

2 S is
proportional to S. From Fig. 2, a necessary and sufficient
condition that a sequential measurement for {|�r〉} can be
globally optimal is 2πk/3 � arg K + π/6 � 2πk/3 + π/3,
i.e.,

(4k − 1)π

3
√

3
� S � (4k + 1)π

3
√

3
, k ∈ {0, 1, 2, . . . }. (36)

The average success probability of an optimal sequential
measurement for {|�r〉 = |αr〉 ⊗ |αr〉}r is plotted in the solid
blue line in Fig. 3. Also, that of an optimal measurement is
shown in the dashed black line. These probabilities can be
numerically computed using a modified version of the method
given in Ref. [32]. The region of S satisfying Eq. (36), in
which a sequential measurement can be globally optimal, is
shown in red. It is worth mentioning that, as shown in Fig. 2 of
Ref. [32], in the strategy for minimum-error discrimination, an
optimal sequential measurement for the ternary PSK optical
coherent states is unlikely to be globally optimal, at least when
S is small. In the strategy for unambiguous discrimination, a
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FIG. 4. The region where a sequential measurement for the
ternary PSK optical coherent states {|ar〉 ⊗ |br〉}r can be globally
optimal, where {|ar〉} and {|br〉} are the ternary PSK optical coherent
states with average photon numbers SA and SB, respectively.

sequential measurement can be globally optimal if (and only
if) S satisfies Eq. (36).

B. Case of KA �= KB

Two concrete examples of symmetric ternary separable
pure states with KA �= KB will be given. The first is a set of
states {|�r〉 := |ar〉 ⊗ |δr〉}r , where {|δr〉}2

r=0 are ternary PPM
optical coherent states. Ternary PPM optical coherent states
have three slots that contain one signal slot (expressed by the
optical coherent state |α〉) and the remaining two nonsignal
slots (each expressed by the optical coherent state |β〉 with
|β〉 �= |α〉, which is usually set to the vacuum state |0〉). They
are written as

|δ0〉 := |α〉 ⊗ |β〉 ⊗ |β〉,
|δ1〉 := |β〉 ⊗ |α〉 ⊗ |β〉, (37)

|δ2〉 := |β〉 ⊗ |β〉 ⊗ |α〉.
{|ar〉} are not necessarily ternary PPM optical coherent states.
From Eq. (37), KB = 〈δr |δr⊕1〉 = |〈α|β〉|2〈β|β〉 holds, and
thus KB is nonnegative real. Therefore, as described in
Sec. V C, a sequential measurement can be globally optimal.
The same argument can be applied to states {|�r〉 := |δr〉 ⊗
|br〉}r .

The second example is the states {|�r〉 := |ar〉 ⊗ |br〉}r ,
where {|ar〉} and {|br〉} are the ternary PSK optical coherent
states with average photon numbers SA and SB, respectively.
The states {|�r〉} are also regarded as the ternary PSK optical
coherent states with the average photon number SA + SB. The
region of (SA, SB) in which a sequential measurement can be
globally optimal is shown in red in Fig. 4. We can see that
a sequential measurement can be globally optimal in some

cases. If SA (or SB) is equal to 4πk/(3
√

3) ≈ 2.42k (k =
1, 2, . . . ), then, since KA (or KB) is nonnegative real, a se-
quential measurement can be globally optimal.

Let us consider whether the ternary PSK optical co-
herent states {|αr〉} with an average photon number S can
be unambiguously discriminated by a Dolinar-like receiver,
which consists of continuous photon counting and infinitely
fast feedback (e.g., [38]). The performance of this receiver
never exceeds that of an optimal sequential measurement
for N-partite PSK optical coherent states {|α′

r〉⊗N } with
N → ∞, where {|α′

r〉 := |αr/
√

N〉}r is also the PSK opti-
cal coherent states with the average photon number S/N .
Note that n identical copies of |α′

r〉 are regarded as |αr〉
whose average photon number is S (i.e., |αr〉 = |α′

r〉⊗N ).
We here want to know whether a Dolinar-like receiver
can be globally optimal. We consider the bipartite ternary
states {|αr〉 = |ar〉 ⊗ |br〉}r , where |ar〉 = |√tαr〉(=|α′

r〉⊗tN )
and |br〉 = |√1 − tαr〉(=|α′

r〉⊗(1−t )N ) with 0 < t < 1 are op-
tical coherent states with average photon numbers tS and
(1 − t )S, respectively. The average success probability of an
optimal sequential measurement for the bipartite states with
any t is an upper bound on that of an optimal sequential
measurement for N-partite states {|α′

r〉⊗N } with N → ∞, and
thus is an upper bound on that of a Dolinar-like receiver.
We here show that there exists t such that an optimal se-
quential measurement for the corresponding bipartite states
{|ar〉 ⊗ |br〉}r is not globally optimal, which means that a
Dolinar-like receiver cannot be globally optimal. In the case
in which 〈α0|α1〉 is nonnegative real (i.e., S = 4πk/

√
3 with

k = 1, 2, . . . ), we choose t = 1/2; then, from Eq. (35), KA =
KB and arg KA = π holds, and thus a sequential measurement
cannot be globally optimal, as already shown in Fig. 2. In the
other case, we choose t → 0; formulating preprocessed {|ar〉}
and {|br〉} in the form of Eqs. (26) and (27), we have that for
each n ∈ {1, 2}

x2
n = 1

3
+ 2

3
e− 3tS

2 cos

[
(−1)n 2π

3
+

√
3tS

2

]
. (38)

Taking the limit of t → 0, we obtain x2/x1 → 0. From Corol-
lary 3, it is necessary to satisfy x2z0 − x1z1 � 0 for a sequen-
tial measurement to be able to be globally optimal. When t →
0, from x2/x1 → 0, z1 → 0 must hold. However, z1 converges
to a positive number. (z1 → 0 holds only if 〈b0|b1〉 converges
to a nonnegative real number, i.e., y1 − y2 → 0; however,
〈b0|b1〉 converges to 〈α0|α1〉, which is not a nonnegative real
number.) Therefore, a Dolinar-like receiver cannot be globally
optimal for any ternary PSK optical coherent states.

C. Case of multipartite states

As an example of multipartite states, let us address the
problem of multiple-copy state discrimination [13,16,39–41].
We again consider N-partite ternary PSK optical coherent
states {|α′

r〉⊗N } (|α′
r〉 := |αr/

√
N〉). As described in Sec. IV B,

in the limit of N → ∞, a sequential measurement cannot be
globally optimal. In this section, we consider N to be finite.

By using Corollaries 3 and 4, we can judge whether a
sequential measurement can be globally optimal. The region
of the average photon number S of |αr〉 for which the sufficient
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FIG. 5. Sufficient condition for a sequential measurement for the
N-partite ternary PSK optical coherent states {|α′

r〉⊗N } to be able to
be globally optimal. S is the average photon number of |α′

r〉⊗N .

condition holds is shown in red in Fig. 5. We here consider
the range S � 1.3. We can see in this figure that a sequential
measurement can be globally optimal even for large N (such
as N = 20) if S is sufficiently small (such as S � 0.1).

V. PROOF OF THEOREM 2

We now prove Theorem 2 using Lemma 1. After some
preliminaries in Sec. V A, we first obtain X̂ 


G in Sec. V B.
Next, in Sec. V C we consider the case y1 = y2. After that,
we consider the case y1 �= y2. A sufficient condition for this
theorem to hold and its reformulation are given in Secs. V D
and V E, respectively. In Sec. V F we prove that this sufficient
condition holds. We should note that the case in which {|ar〉}
or {|br〉} is mutually orthogonal is trivial, we assume that
neither {|ar〉} nor {|br〉} is mutually orthogonal.

A. Preliminaries

Assume without loss of generality that |ar〉 and |br〉 are
expressed as Eq. (27), where xn and yn satisfy Eq. (26). Let
K ′

A := 〈a0|a1〉 and K ′
B := 〈b0|b1〉; then, Eq. (28) holds. η and

χ are, respectively, defined by Eqs. (29) and (30).
Before giving the proof of Theorem 2, we shall prove some

lemmas.
Lemma 5.

y2
2 < η < y2

1 � y2
0. (39)

Proof. Since y2
1 � y2

0 obviously holds, we shall show y2
2 <

η < y2
1. We have(

1 − 3y2
k

)2 − (1 − 3χ )

= 3
(
3y4

k − 2y2
k + χ

)
= 3

[
y4

k − 2y2
k

(
y2

k⊕1 + y2
k⊕2

)+ y2
k

(
y2

k⊕1 + y2
k⊕2

)+ y2
k⊕1y2

k⊕2

]
= 3

(
y2

k − y2
k⊕1

)(
y2

k − y2
k⊕2

)
, (40)

where the third line follows from
∑2

n=0 y2
n = 1. Substituting

k = 1 into Eq. (40) yields (1 − 3y2
1 )2 � 1 − 3χ . The equality

holds when y0 = y1. In this case, from y2
2 = 1 − 2y2

0, we

have 1 − 3y2
1 = y2

2 − y2
0 < 0 � √

1 − 3χ . Thus, 1 − 3y2
1 <√

1 − 3χ always holds. Therefore,

y2
1 >

1

3
(1 −

√
1 − 3χ ) = η, (41)

where the equality follows from Eq. (31). In the same way,
substituting k = 2 into Eq. (40) yields 1 − 3y2

2 >
√

1 − 3χ ,
which gives η > y2

2. �
Let

un(q) := (
y2

n − q
)−1

, ∀q � η, q �= y2
2. (42)

Note that, from Lemma 5, q �= y2
0 and q �= y2

1 hold for any
q � η.

Lemma 6. For any q � η with q �= y2
2, we have

u2
0(q) � u2

1(q) � u2
2(q). (43)

Proof. Since q � η < y2
1 � y2

0 holds from Lemma 5,
u1(q) � u0(q) > 0 holds, which gives u2

1(q) � u2
0(q). Thus,

it suffices to prove u2
2(q) � u2

1(q). In the case of q < y2
2,

from u2(q) > u1(q) > 0, this is obvious. Let us consider the
case of q > y2

2. Since u2(q) < 0 holds, it suffices to show
u2(q) + u1(q) � 0. Let ũk := uk (η); then we have

ũ2 + ũ1 � ũ2 + ũ1 + ũ0

= ũ2ũ1ũ0[(ũ0ũ1)−1 + (ũ1ũ2)−1 + (ũ2ũ0)−1]

= ũ2ũ1ũ0(3η2 − 2η + χ )

= 0, (44)

where χ is defined by Eq. (30). The last line follows
from Eq. (31), i.e., 3η2 − 2η + χ = 0. Since u2(q) � ũ2 and
u1(q) � ũ1 hold, u2(q) + u1(q) � ũ2 + ũ1 � 0 holds. �

Lemma 7. Let {|sr〉}2
r=0 be the ternary pure states

expressed by

|sr〉 :=
2∑

n=0

ςnτ
rn|ϕn〉, (45)

where {ςn}2
n=0 are positive real numbers and {|ϕn〉}2

n=0 is an or-
thonormal basis. Also, let nmin be an element of argminn∈I3

ςn.
We consider problem PG with ρ̃r := |sr〉〈sr | and ξr := 1/3.
Then

Ẑ•
G := 3ς2

nmin
|ϕnmin〉〈ϕnmin | (46)

is an optimal solution to its dual problem (i.e., problem DPG).
Proof. We recall that ρ̂r := ξr ρ̃r = 1

3 |sr〉〈sr | and ν̂r :=∑
k∈I3\{r} ρ̂k . Let V̂ := ∑2

n=0 τ n|ϕn〉〈ϕn|; then, ρ̂r⊕1 = V̂ ρ̂rV̂ †

holds, where † denotes conjugate transpose.
First, we show that Ẑ•

G is feasible. Ẑ•
G � 0 obviously holds.

We can easily see that |c〉 ∈ Ker ν̂r (i.e., 〈c|sr⊕1〉 = 〈c|sr⊕2〉 =
0) holds if and only if |c〉 ∝ |s⊥

r 〉 holds, where

|s⊥
r 〉 :=

2∑
n=0

ς−1
n τ rn|ϕn〉. (47)

We have

〈s⊥
r |(Ẑ•

G − ρ̂r )|s⊥
r 〉 = 〈s⊥

r |Ẑ•
G|s⊥

r 〉 − 〈s⊥
r |ρ̂r |s⊥

r 〉
= 3 − 3 = 0. (48)

Thus, Eq. (4) with ẐG = Ẑ•
G holds, i.e., Ẑ•

G is feasible.
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Next, we show that Ẑ•
G is optimal. Let ẐG be a fea-

sible solution to problem DPG. Due to the symmetry of
the states, we assume without loss of generality that ẐG =
V̂ ẐGV̂ † holds. (Indeed, for any feasible solution Ẑ ′

G, ẐG :=
1
3

∑2
n=0 V̂ nẐ ′

G(V̂ †)n is a feasible solution that satisfies Tr ẐG =
Tr Ẑ ′

G and ẐG = V̂ ẐGV̂ †.) Thus, ẐG is expressed in the form of
ẐG = ∑2

n=0 θn|ϕn〉〈ϕn|, where θn is nonnegative real. Since ẐG

is feasible, we have

0 � 〈s⊥
r |(ẐG − ρ̂r )|s⊥

r 〉 =
2∑

n=0

ς−2
n θn − 3, (49)

which yields

Tr ẐG = ς2
nmin

2∑
n=0

ς−2
nmin

θn � ς2
nmin

2∑
n=0

ς−2
n θn � 3ς2

nmin
= Tr Ẑ•

G.

(50)

Therefore, Ẑ•
G is optimal. �

Note that although �̂G(r, Ẑ•
G) � 0 holds, Ẑ•

G − ρ̂r + λν̂r �
0 does not hold for any finite positive real number λ.
However, taking the limit λ → ∞, 〈t |(Ẑ•

G − ρ̂r + λν̂r )|t〉
becomes nonnegative for any vector |t〉. [More precisely,
〈t |(Ẑ•

G − ρ̂r + λν̂r )|t〉 → 0 holds if |t〉 ∝ |s⊥
r 〉; otherwise,

〈t |(Ẑ•
G − ρ̂r + λν̂r )|t〉 → ∞ holds].

B. Derivation of X̂�
G

Let us consider |ar〉 and |br〉 in the form of Eqs. (26) and
(27). A simple calculation gives

|�r〉 := |ar〉 ⊗ |br〉 =
2∑

n=0

x̃nτ
rn|φ̃n〉, (51)

where

|φ̃n〉 := 1

x̃n

2∑
k=0

xkyn�k|φk〉 ⊗ |φ′
n�k〉,

(52)

x̃n :=
√√√√ 2∑

k=0

x2
k y2

n�k .

Obviously {|φ̃n〉}2
n=0 is an orthonormal basis and x̃n is positive

real. We have

x̃2
1 − x̃2

2 = x2
0y2

1 + x2
1y2

0 + x2
2y2

2 − x2
0y2

2 − x2
1y2

1 − x2
2y2

0

= (
x2

0 − x2
2

)(
y2

1 − y2
2

)+ (
x2

1 − x2
2

)(
y2

0 − y2
1

)
� 0, (53)

where the inequality follows from Eq. (26). Thus, x̃1 � x̃2

holds. Also, we have

x̃2
0 − x̃2

2 = x2
0y2

0 + x2
1y2

2 + x2
2y2

1 − x2
0y2

2 − x2
1y2

1 − x2
2y2

0

= (
x2

0 − x2
1

)(
y2

1 − y2
2

)+ (
x2

0 − x2
2

)(
y2

0 − y2
1

)
. (54)

Although x0 � x2 and y0 � y1 � y2 hold from Eq. (26), x0 �
x1 does not always hold, which implies that whether x̃0 � x̃2

or not depends on given states. Let

[υ0, υ1, υ2] :=
{

[2, 1, 0], x̃0 � x̃2,

[0, 2, 1], otherwise; (55)

then, υ0 ∈ argminn∈I3
x̃n holds. Thus, from Lemma 7 with

|sr〉 = |�r〉, ςn = x̃n, and |ϕn〉 = |φ̃n〉,
Ẑ


G := 3x̃2
υ0

|φ̃υ0〉〈φ̃υ0 | (56)

is an optimal solution to problem DPG. Therefore, we have

X̂ 

G = TrB Ẑ


G = 3
2∑

n=0

x2
ny2

υn
|φn〉〈φn|. (57)

C. Case of y1 = y2

We here show that, in the case of y1 = y2 (i.e., K ′
B is

positive real), there exists a globally optimal sequential mea-
surement �̂(Â
 ) satisfying Eq. (24). Let

Â
(ω) :=
⎧⎨
⎩

Âr, ω = ω1,r (r ∈ I3),
Â3, ω = ω3,

0, otherwise,
(58)

where {Âr}3
r=0 is an optimal unambiguous measurement for

{|ar〉} with equal prior probabilities. Obviously Â
 is in MA

and satisfies Eq. (24). It follows that the sequential measure-
ment �̂(Â
 ) can be interpreted as follows: Alice and Bob,
respectively, perform optimal measurements for {|ar〉} and
{|br〉} with equal prior probabilities and get the results rA

and rB. �̂(Â
 ) returns rA if rA ∈ I3, rB if rB ∈ I3, and r = 3
otherwise. Note that rA = rB holds whenever rA and rB are
in I3.

Let PA and PB be, respectively, the average success prob-
abilities of optimal measurements for {|ar〉} and {|br〉} with
equal prior probabilities. Lemma 7 with |sr〉 = |ar〉, ςn =
xn, and |ϕn〉 = |φn〉 gives Ẑ•

G = 3x2
2 |φ2〉〈φ2|, and thus PA =

Tr Ẑ•
G = 3x2

2 holds. We obtain PB = 3y2
2 in the same way.

Thus, the average success probability of �̂(Â
 ) is

P[�̂(Â
 )] = 1 − (1 − PA)(1 − PB)

= 3
(
x2

2 + y2
2 − 3x2

2y2
2

)
= 3

[(
1 − x2

2

)
y2

2 + x2
2

(
1 − 2y2

2

)]
= 3

2∑
k=0

x2
k y2

2−k

= 3x̃2
2 = Tr Ẑ


G, (59)

where the last line follows from Eq. (57) and the fact that x̃0 �
x̃2 (i.e., υ0 = 2) holds when y1 = y2. Thus, �̂(Â
 ) is globally
optimal.

We should note that the same discussion is applicable to
the case of x1 = x2 (i.e., K ′

A is positive real); in this case, there
also exists a globally optimal sequential measurement �̂(Â
 )

satisfying Eq. (24).

D. Sufficient condition for Theorem 2

Since we have already proved the theorem in the case of
y1 = y2, in what follows, we only consider the case y1 �= y2.
(We do not have to assume x1 �= x2; the following proof is also
valid for x1 = x2.) Substituting Eqs. (8) and (57) into Eq. (10),
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�̂
(ω) with ω ∈ 	
 is written by

�̂
(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
λ→∞

X̂ 

G + λ�̂ − (

λ + 1
3

)|a j〉〈a j |, ω = ω1, j,

lim
λ→∞

X̂ 

G − η�̂ + λ|aj〉〈a j |, ω = ω2, j,

X̂ 

G − y2

2�̂, ω = ω3,

(60)

where

�̂ :=
2∑

k=0

|ak〉〈ak|. (61)

In obtaining Eq. (60), we use the fact that p
(ω1, j )
j = 1,

p
(ω2, j )
j⊕1 = p

(ω2, j )
j⊕2 = 3η, and p(ω3 )

r = 3y2
2. After some algebra

using Eq. (60), we can see that, for any ω ∈ 	
, �̂
(ω)|π〉 = 0
holds if and only if |π〉 ∝ |π


ω〉 holds, where |π

ω〉 ∈ HA (ω ∈

	
) is the normal vector defined as

|π

ω〉 :=

⎧⎪⎨
⎪⎩

C1V̂
j

A

∑2
n=0 x−1

n |φn〉, ω = ω1, j,

C2V̂
j

A

∑2
n=0 x−1

n z−1
υn

|φn〉, ω = ω2, j,

|φυ2〉, ω = ω3

(62)

and C1 and C2 are normalization constants. Thus, it follows
that Â
 satisfies Eqs. (24) and (11) with Â = Â
 if only if Â
 is
expressed as

Â
(ω) =
{

κ

ω|π


ω〉〈π

ω|, ω ∈ 	
,

0, otherwise,
(63)

where, for each ω ∈ 	
, κ

ω is a nonnegative real number.

Therefore, from Lemma 1, to prove that �̂(Â
 ) is an optimal
measurement, it suffices to show that there exists Alice’s
POVM Â
 (i.e., Â
 ∈MA) in the form of Eq. (63).

Due to the symmetry of the states, there exists an optimal
solution to problem P, Â, that is symmetric in the following
sense: for any ω ∈ 	, Â(ω�) = V̂AÂ(ω)V̂ †

A and Â(ω��) =
V̂ †

A Â(ω)V̂A hold, where the operator � is defined by B̂(ω� )
r =

V̂BB̂(ω)
r�1V̂

†
B for any r ∈ I3. It follows that B̂(ω�� )

r = V̂ †
B B̂(ω)

r⊕1V̂B

holds for any r ∈ I3. Note that we can easily verify that
ω�

k = ωk,1 and ω��
k = ωk,2 hold for any k ∈ {1, 2}; we as-

sume without loss of generality that Â
(ωk,1) = Â
(ω�
k ) =

V̂AÂ
(ωk )V̂ †
A and Â
(ωk,2) = Â
(ω��

k ) = V̂ †
A Â
(ωk )V̂A, which

indicates κ

ωk, j

= κ

ωk

for any k ∈ {1, 2} and j ∈ I3.
Let

Ŝ(T̂ ) := 1

3

2∑
j=0

V̂ j
A T̂
(
V̂ j

A

)†
, (64)

where T̂ is a positive semidefinite operator on HA. Ŝ(T̂ ) is
a positive semidefinite operator onHA satisfying Tr[Ŝ(T̂ )] =
Tr T̂ and commuting with V̂A. For notational simplicity we
denote Ŝ[Â(ω)] by Ŝ(ω). Due to the symmetry of Â, Ŝ(ω) =
Ŝ(ω�) = Ŝ(ω��) holds for any {ω,ω�, ω��} satisfying B̂(ω� )

r =
V̂BB̂(ω)

r�1V̂
†

B and B̂(ω�� )
r = V̂ †

B B̂(ω)
r⊕1V̂B (∀r ∈ I3). Let

Ê 

k := Ŝ

(∣∣π

ωk

〉〈
π


ωk

∣∣), k ∈ {1, 2, 3}. (65)

Since, from Eq. (62), |π

ωk, j

〉 = V̂ j
A |π


ωk
〉 and |π


ω3
〉 = V̂ j

A |π

ω3

〉
hold for any k ∈ {1, 2} and j ∈ I3, Eq. (65) gives

2∑
j=0

∣∣π

ωk, j

〉〈
π


ωk, j

∣∣ = 3Ê 

k , k ∈ {1, 2},

∣∣π

ω3

〉〈
π


ω3

∣∣ = Ê 

3 . (66)

Here, assume that Ŝ(ω) can be expressed as

Ŝ(ω) =
3∑

k=1

wω,kÊ 

k , ∀ω ∈ 	+,

wω,k � 0, ∀ω ∈ 	+, k ∈ {1, 2, 3}, (67)

where

	+ := {ω ∈ 	 : Â(ω) �= 0} (68)

and wω,k is a weight. Let us choose

κ

ω =

{
w


k
3 , ω = ωk, j (k ∈ {1, 2}),

w

3, ω = ω3,

w

k :=

∫
	+

wω,kdω; (69)

then, from Eq. (63), we have∫
	

Â
(dω) =
3∑

k=1

w

k Ê 


k =
∫

	+

3∑
k=1

wω,kÊ 

k dω

=
∫

	+
Ŝ(dω) =

∫
	

Â(dω) = 1̂A, (70)

where 1̂A is the identity operator on HA. The first equation
follows from Eq. (66). Equation (70) yields Â
 ∈MA. There-
fore, to prove Theorem 2, it suffices to prove Eq. (67).

E. Reformulation of Eq. (67)

For convenience of analysis, we shall reformulate the suf-
ficient condition given by Eq. (67). For any positive semidefi-
nite operator T̂ �= 0, sn(T̂ ) is defined as follows:

sn(T̂ ) := 〈φn | Ŝ(T̂ )

Tr[Ŝ(T̂ )]
|φn〉. (71)

From
∑2

n=0 〈φn|Ŝ(T̂ )|φn〉 = Tr[Ŝ(T̂ )],
∑2

n=0 sn(T̂ ) = 1
holds. Let us consider the following point:

s(T̂ ) := [
sυ1 (T̂ ), sυ0 (T̂ )

]
, (72)

which is in a two-dimensional space (we call it the S plane).
Since sn(T̂ ) � 0 holds from Eq. (71), each s(T̂ ) is in the first
quadrant of the S plane. We can easily verify that the point
s(T̂ ) has a one-to-one correspondence with Ŝ(T̂ )/Tr[Ŝ(T̂ )].
Let

e

k := s

(∣∣π

ωk

〉〈
π


ωk

∣∣), k ∈ {1, 2, 3}, (73)

which is the point in the S plane that corresponds to Ê 

k defined

by Eq. (65). e

3 = [0, 0] holds from Eq. (62). Also, let T 
 be

the triangle formed by e

1, e


2, and e

3. Note that T 
 may degen-

erate to a straight line segment in special cases. For simplicity,
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FIG. 6. S-plane representation in the case of K ′
A = K ′

B =
0.2 exp(iπ/10). e


1 (purple),D2 (green), andD3 (blue), respectively,
show the entire sets of points s(ω) with |T (ω)| = 1, 2, and 3. The
dashed line represents the triangle T 
.

we denote sn(ω) := sn[Â(ω)] and s(ω) := s[Â(ω)] (ω ∈ 	+).
From the first line of Eq. (67), we have

s(ω) = 1

Tr[Ŝ(ω)]

3∑
k=1

wω,ke

k . (74)

Thus, it follows that Eq. (67) is equivalent to the following:

s(ω) ∈ T 
, ∀ω ∈ 	+. (75)

Figure 6 shows the S-plane representation in the case
of K ′

A = K ′
B = 0.2 exp(iπ/10). The entire sets of points

s(ω) (ω ∈ 	+) with |T (ω)| = 2 and 3, denoted by D2 and
D3, are depicted by the green and blue regions in this figure,
respectively. Also, s(ω) = e


1 holds when ω satisfies |T (ω)| =
1. Indeed, in this case, since T (ω) = { j} holds for certain
j ∈ I3, we can easily see that Â(ω) ∝ |π


ω1, j
〉〈π


ω1, j
| must hold

from Eq. (19), which gives s(ω) = e

1. The triangle T 
 is

also shown in the dashed line in Fig. 6. One can see that
e


1, D2, and D3 are all included in T 
. Note that we can
show, under the assumption that Theorem 2 holds, that a
sequential measurement can be globally optimal if and only
if s(1̂A)(= [1/3, 1/3]) ∈ T 
 holds (see Appendix B). In the
case shown in Fig. 6, s(1̂A) is in T 
, and thus a sequential
measurement can be globally optimal.

F. Proof of Eq. (75)

We shall prove that Eq. (75), which is a sufficient condition
of Theorem 2, holds. �̂
(ω) of Eq. (10) can be rewritten as the
following form:

�̂
(ω) = X̂ 

G −

2∑
r=0

μ(ω)
r |ar〉〈ar |. (76)

From Eq. (18), μ(ω)
r = −∞ holds if e(ω)

r �= 0; otherwise,
μ(ω)

r = p(ω)
r /3 holds. It is very hard to show in a naive way

that each s(ω) with ω ∈ 	+ is included in T 
. However, we
can rather easily show that Eq. (75) holds by considering the
following two cases: (1) the case in which at least two of
{μ(ω)

r }r are the same and (2) the other case in which {μ(ω)
r }r

are all different.

Case (1): At least two of {μ(ω)
r }r are the same

Due to the symmetry of the states, we assume μ
(ω)
1 =

μ
(ω)
2 =: qω without loss of generality; then �̂
(ω) can be

expressed as

�̂
(ω) = X̂ 

G − qω�̂ − p|a0〉〈a0|, (77)

where �̂ is defined in Eq. (61) and p is a real number.
If |T (ω)| = 3, then qω = p(ω)

1 /3 = p(ω)
2 /3 holds to satisfy

Eq. (77). Also, in this case, we can easily see that p(ω)
1 =

p(ω)
2 � p(ω2 )

1 = p(ω2 )
2 = 3η holds, which gives 0 � qω � η.

Moreover, qω = −∞ holds if |T (ω)| = 1, and qω = η holds
if |T (ω)| = 2. Thus, qω � η always holds.

For each q � η, let |γq〉 be a normal vector satisfying

|γq〉 ∈ Ker �̂(1)(q),

�̂(1)(q) := X̂ 

G − q�̂ − pq|a0〉〈a0|, (78)

where pq is a real number determined such that Ker �̂(1)(q) �=
{0}. We shall show that |γq〉 can be uniquely written, up to a
global phase, as

|γq〉 =
{

C′
q

∑2
n=0

1
xn(y2

υn −q) |φn〉, q �= y2
2,

|φυ2〉, otherwise,
(79)

where C′
q is a normalization constant. From Eqs. (27), (57),

and (61), we have

X̂ 

G − q�̂ = 3

2∑
n=0

x2
n

(
y2
υn

− q
)|φn〉〈φn|. (80)

From Lemma 5, X̂ 

G − q�̂ (q � η) is singular if and only

if q = y2
2 holds. One can easily see |γq〉 = |φυ2〉 when q =

y2
2. Note that, in this case, one can define pq := 0. In what

follows, we consider the case q �= y2
2. From Eq. (78), we have

(X̂ 

G − q�̂ )|γq〉 = pq|a0〉〈a0|γq〉 ∝ |a0〉. (81)

Thus, from Eqs. (27) and (80), we have

|γq〉 ∝ (X̂ 

G − q�̂ )−1|a0〉 ∝

2∑
n=0

1

xn
(
y2
υn

− q
) |φn〉. (82)

Therefore, |γq〉 is expressed by Eq. (79). One can verify

Ker �̂(1)(q) �= {0} by letting pq := 〈a0|(X̂ 

G − q�)−1|a0〉−1

for
q < η and pη := −∞. Note that since |γq〉 is unique up to a
global phase, dim Ker �̂(1)(q) = 1 holds.

Since �̂
(ω) is in the form of Eq. (77) satisfying
Ker �̂
(ω) �= {0}, �̂
(ω) = �̂(1)(qω ) holds. Thus, Â(ω) ∝
|γqω

〉〈γqω
| holds. Let C be the set defined as

C := {s(|γq〉〈γq|) : q � η}; (83)

022316-11



NAKAHIRA, KATO, AND USUDA PHYSICAL REVIEW A 99, 022316 (2019)

then, s(ω) = s(|γqω
〉〈γqω

|) ∈ C holds. In Fig. 6, C is shown in
the blue dotted line. Therefore, to prove s(ω) ∈ T 
, it suffices
to show C ⊆ T 
.

In what follows, we shall show C ⊆ T 
. Since
s(|γq〉〈γq|) = e


3 ∈ T 
 holds when q = y2
2, we have only

to consider the case of q �= y2
2. From Eqs. (64), (71), and (79),

we have

sk (|γq〉〈γq|) ∝ 1

x2
k

(
y2
υk

− q
)2 = x−2

k u2
υk

(q), (84)

where uk (q) is defined by Eq. (42). Substituting k = υn into
this equation and using υυn = n, which follows from Eq. (55),
yields

sυn (|γq〉〈γq|) ∝ x−2
υn

u2
n(q). (85)

This gives

s(|γq〉〈γq|) ∝ [
x−2
υ1

u2
1(q), x−2

υ0
u2

0(q)
]
. (86)

First, let us consider the case in which the three points e

1,

e

2, and e


3 lie on a straight line. From Eq. (62), this case occurs
only when y0 = y1. Since s(|γq〉〈γq|) ∝ [x−2

υ1
, x−2

υ0
] holds from

Eq. (86), every point in C is on the line joining the origin e

3

to the point e

1. From Lemma 6 [i.e., u2

0(q) = u2
1(q) � u2

2(q)],
we have

sυ0 (|γq〉〈γq|) = x−2
υ0

u2
0(q)∑2

k=0 x−2
υk

u2
k (q)

�
x−2
υ0

u2
0(q)

u2
0(q)

∑2
k=0 x−2

υk

= sυ0 (ω1). (87)

Thus, s(|γq〉〈γq|) is an interior point between e

1 and e


3.
Therefore, C ⊆ T 
 holds.

Next, let us consider the other case in which e

1, e


2, and
e


3 do not lie on a straight line. Let l jk denote the straight
line joining e


j and e

k . It suffices to prove the following two

statements:
(a) C is in the region between the two lines l13 and l23,
(b) C is in the region between the two lines l12 and l13.
First, we prove statement (a). The gradient of the line

joining the origin to the point s(|γq〉〈γq|) is

ζ (q) := sυ0 (|γq〉〈γq|)
sυ1 (|γq〉〈γq|) = x2

υ1

(
y2

1 − q
)2

x2
υ0

(
y2

0 − q
)2 , (88)

where the last equality follows from Eq. (85). From Lemma 5,
one can easily verify that ζ (q) monotonically decreases in the
range q � η, which gives

ζ (−∞) � ζ (q) � ζ (η), ∀q � η. (89)

Also, from e

1 = s(|γ−∞〉〈γ−∞|) and e


2 = s(|γη〉〈γη|), the gra-
dients of the lines l13 and l23 are, respectively, ζ (−∞) and
ζ (η). Therefore, from Eq. (89), statement (a) holds.

Next, we prove statement (b). Let c(q) denote the sυ1

coordinate of the intersection of the sυ1 axis and the line
joining the two points e


1 and s(|γq〉〈γq|) in C. It follows that
statement (b) holds if and only if c(q) satisfies

0 � c(q) � c(η), ∀q � η. (90)

Since s(|γq〉〈γq|) is on the line joining e

1 and [c(q), 0], we

have that for some real number w,

sυ1 (|γq〉〈γq|) = wsυ1 (ω1) + (1 − w)c(q),
(91)

sυ0 (|γq〉〈γq|) = wsυ0 (ω1).

Also, since
∑2

n=0 sn(T̂ ) = 1 holds for any nonzero positive
semidefinite operator T̂ , we have

sυ2 (|γq〉〈γq|) = wsυ2 (ω1) + (1 − w)[1 − c(q)]. (92)

After some algebra with Eqs. (91), (92), and (85), we obtain

c̃(q) := x2
υ1

c(q)

x2
υ2

[1 − c(q)]
= u2

1(q) − u2
0(q)

u2
2(q) − u2

0(q)
. (93)

It follows from the definition of c̃(q) that c̃(q) monotonically
increases with c(q). Thus, the statement (b), i.e., Eq. (90), is
equivalent to

0 � c̃(q) � c̃(η), ∀q � η. (94)

From Lemma 6, c̃(q) � 0 obviously holds. Therefore, we
need only show c̃(q) � c̃(η).

Differentiating c̃(q) of Eq. (93) with respect to q gives

dc̃(q)

dq
= 2

[
u2

1(q) − u2
0(q)

]
u2

2(q) − u2
0(q)

{ f [u1(q)] − f [u2(q)]},
(95)

f (x) := x2 + u0(q)x + u2
0(q)

x + u0(q)
,

which implies that dc̃(q)/dq � 0 is equivalent to f [u1(q)] �
f [u2(q)]. In the case of q < y2

2, from 0 � u1(q) � u2(q),
f [u1(q)] � f [u2(q)] [i.e., dc̃(q)/dq � 0] holds, which fol-
lows from the fact that f (x) monotonically increases in the
range x � 0. In the other case of q > y2

2, from Lemma 6 [i.e.,
u2(q) � −u1(q) � −u0(q)], f [u2(q)] < 0 � f [u1(q)] [i.e.,
dc̃(q)/dq � 0] holds, which follows from the fact that f (x) <

0 holds if and only if x < −u0(q). Therefore, c̃(q) (q � η)
attains its maximum at q = −∞ and/or q = η, and thus, for
the rest, it suffices to show c̃(−∞) � c̃(η).

From Eq. (93) we have

c̃(q) =
(
y2

2 − q
)2[(

y2
0 − q

)2 − (
y2

1 − q
)2](

y2
1 − q

)2[(
y2

0 − q
)2 − (

y2
2 − q

)2]
=
(
y2

0 − y2
1

)(
y2

2 − q
)2(

y2
0 + y2

1 − 2q
)

(
y2

0 − y2
2

)(
y2

1 − q
)2(

y2
0 + y2

2 − 2q
) , (96)

which gives

c̃(−∞) = y2
0 − y2

1

y2
0 − y2

2

. (97)

Also, we have(
y2

1 − η)2
(
y2

0 + y2
2 − 2η

)− (
y2

2 − η
)2(

y2
0 + y2

1 − 2η
)

= (
y2

1 − y2
2

)(
y2

0y2
1 + y2

1y2
2 + y2

2y2
0 − 2η + 3η2

)
= (

y2
1 − y2

2

)
(3η2 − 2η + χ )

= 0, (98)

where the second to fourth lines, respectively, follow from∑2
k=0 y2

k = 1, Eq. (30), and Eq. (31). Thus, substituting q = η
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into Eq. (96) gives c̃(η) = (y2
0 − y2

1 )/(y2
0 − y2

2 ) = c̃(−∞).
Therefore, C ⊆ T 
 holds.

Case (2): {μ(ω)
r }r are all different

To prove s(ω) ∈ T 
, it suffices to show that each s(ω) is
on a straight line segment whose endpoints are in C. Indeed,
since C ⊆ T 
 holds, such a line segment is in the triangle T 
,
and thus s(ω) ∈ T 
 holds in this case.

Let us consider, without loss of generality, ω ∈ 	+ such
that μ

(ω)
2 < μ

(ω)
0 and μ

(ω)
2 < μ

(ω)
1 . In order to show that s(ω)

is on a straight line segment whose endpoints are in C, we
shall show the two statements: (a) s(ω) is on a certain straight
line segment, and (b) the line segment is part of a straight line
segment whose endpoints are in C.

Since we now consider case (2), |T (ω)| must be 2 or 3. Let

X̂ :=
{

X̂ 

G − μ

(ω)
2 �, |T (ω)| = 3,

X̂ 

G + ∞|a2〉〈a2|, |T (ω)| = 2.

(99)

One can easily see that X̂ is a positive definite operator. Let
|� (q)〉 be a normal vector satisfying

|� (q)〉 ∈ Ker �̂(2)(q),

〈a0|� (q)〉 � 0,

�̂(2)(q) := X̂ − q|a1〉〈a1| − p′
q|a0〉〈a0|, (100)

where p′
q is the function of q such that Ker �̂(2)(q) �= {0}.

[We can define such p′
q as p′

q := 〈a0|(X̂ − q|a1〉〈a1|)−1|a0〉−1
.

Since X̂ − q|a1〉〈a1| is positive definite, such p′
q al-

ways exists.] p′
q monotonically decreases with q. �̂
(ω) =

�̂(2)[μ(ω)
1 − μ

(ω)
2 ] holds if |T (ω)| = 3; otherwise, �̂
(ω) =

�̂(2)[μ(ω)
1 ] holds.

First, we show statement (a). Let �̂
(2)
0 := �̂(2)(0), �̂

(2)
1 :=

�̂(2)(p′
0), |�0〉 := |� (0)〉, and |�1〉 := |� (p′

0)〉. Note that
p′

q = 0 holds when q = p′
0 (i.e., p′

p′
0
= 0). We shall express

|� (q)〉 in terms of |�0〉 and |�1〉. For each k ∈ {0, 1}, from
�̂

(2)
k |�k〉 = 0, we have

|ak〉 = X̂ |�k〉
p′

0〈ak|�k〉 . (101)

Note that since X̂ is positive definite, we have X̂ |�k〉 �= 0,
which yields p′

0〈ak|�k〉 �= 0.
Substituting Eq. (100) into �̂(2)(q)|� (q)〉 = 0 and using

Eq. (101) yields

|� (q)〉 = X̂ −1(p′
qr0|a0〉 + qr1|a1〉)

= 1

p′
0

(
p′

qr0

〈a0|�0〉 |�0〉 + qr1

〈a1|�1〉 |�1〉
)

, (102)

where rk := 〈ak|� (q)〉. Premultiplying this equation by 〉a0|
and some algebra gives

qr1

〈a1|�1〉 = (p′
0 − p′

q )r0

〈a0|�1〉 . (103)

Substituting this equation into Eq. (102) gives

|� (q)〉 = r0

p′
0

(
p′

q

〈a0|�0〉 |�0〉 + p′
0 − p′

q

〈a0|�1〉 |�1〉
)

. (104)

Since r0 � 0 and 〈a0|�k〉 � 0 hold from Eq. (100), it follows
from Eq. (104) that |� (q)〉 is expressed as

|� (q)〉 = c0|�0〉 + c1|�1〉, (105)

with certain nonnegative real numbers c0 and c1. Let q2 be the
real number satisfying p′

q2
= q2. One can easily verify that,

when q = q2, Eq. (105) with c0 = c1 =: c holds. Let |�2〉 :=
|� (q2)〉.

Due to the symmetry of the states, Ŝ(|�0〉〈�0|) =
Ŝ(|�1〉〈�1|) =: Ŝ�0 holds. Thus, from Eq. (105), we have

Ŝ[|� (q)〉〈� (q)|] = (
c2

0 + c2
1

)
Ŝ�0 + c0c1Ŝ′, (106)

where

Ŝ′ := 1

3

2∑
j=0

V̂ j
A (|�0〉〈�1| + |�1〉〈�0|)

(
V̂ j

A

)†
. (107)

Substituting q = q2 into Eq. (106) and letting Ŝ�2 :=
Ŝ(|�2〉〈�2|) yields

Ŝ�2 = 2c2Ŝ�0 + c2Ŝ′. (108)

Substituting this into Eq. (106) gives

Ŝ[|� (q)〉〈� (q)|] = c′
0Ŝ�0 + c′

2Ŝ�2 , (109)

where c′
0 := (c0 − c1)2 and c′

2 = c0c1/c2. Note that taking the
trace of this gives c′

0 + c′
2 = 1 and that c′

0, c′
2 � 0 holds. Also,

Eq. (109) gives

s[|� (q)〉〈� (q)|] = c′
0s�0 + c′

2s�2 , (110)

where s�k := s(|�k〉〈�k|) for each k ∈ {0, 2}. Therefore,
s[|� (q)〉〈� (q)|] is on the straight line segment, denoted by
L, whose endpoints are s�0 and s�2 .

Next, we show statement (b). In the case of q = q2, since
Eq. (100) with q = p′

q = q2 holds, this is case (1), i.e., at least
two of {μ(ω)

r }r in Eq. (76) are the same; thus, s�2 is in C.
Also, if ω satisfies |T (ω)| = 3, then q = 0 is also case (1),
and thus s�0 is in C. Therefore, in the case of |T (ω)| = 3,
L is the line segment whose endpoints s�0 and s�2 are in
C. In what follows, assume |T (ω)| = 2. We shall show that
L is part of the straight line segment whose endpoints are
e


1 = s(ω1) ∈ C and s�2 ∈ C. Taking the limit as q → −∞ in
Eq. (100) gives s[|� (−∞)〉〈� (−∞)|] = e


1. Thus, repeating
the above argument with q → −∞ indicates that |� (−∞)〉
is expressed as Eq. (105) with c0 > 0 and c1 < 0, and that
Eq. (109) holds with c′

2 < 0. Thus, s�0 is an interior point
between e


1 and s�2 . Therefore, L is part of the line segment
whose endpoints are e


1 and s�2 .
The two cases (1) and (2) exhaust all possibilities; thus,

from the above arguments, Eq. (75) holds, and thus we com-
plete the proof. �

VI. CONCLUSION

An unambiguous sequential measurement for bipartite
symmetric ternary separable pure states has been investigated.
We have shown that a certain type of sequential measure-
ment can always be globally optimal whenever there exists
a globally optimal sequential measurement. From this result
we have derived a formula that can easily determine whether
an optimal sequential measurement is globally optimal. We
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have presented some examples in which an optimal sequential
measurement is globally optimal. In particular, for ternary
PSK optical coherent states, a sequential measurement can
be globally optimal in some cases, while, in the strategy for
minimum-error discrimination, an optimal sequential mea-
surement may never be globally optimal. Moreover, our re-
sults have been extended to multipartite states and have given
a sufficient condition that a sequential measurement can be
globally optimal.
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APPENDIX A: PROOF OF COROLLARY 3

Since, as already described in Sec. V C, a sequential mea-
surement can be globally optimal when y1 = y2, we only have
to consider the case y1 �= y2.

(1) ⇒ (2): From the discussion in Sec. V D, there exists an
optimal solution Â
 to problem P that is expressed by Eq. (63)
with κ


ωk
(k ∈ {1, 2, 3}) independent of j ∈ I3. Since Â
 is a

POVM, we have

2∑
j=0

[Â
(ω1, j ) + Â
(ω2, j )] + Â
(ω3) = 1̂A. (A1)

Substituting Eqs. (62) and (63) into Eq. (A1) gives⎡
⎢⎣

x−2
υ0

x−2
υ0

z−2
0 0

x−2
υ1

x−2
υ1

z−2
1 0

x−2
υ2

x−2
υ2

z−2
2 1

⎤
⎥⎦
⎡
⎢⎣

3κ

ω1

|C1|2
3κ


ω2
|C2|2

κ

ω3

⎤
⎥⎦ =

⎡
⎣1

1
1

⎤
⎦, (A2)

where we use υυk = k (k ∈ I3), which follows from Eq. (55).
After some algebra, we can see that Eq. (32) must hold if and
only if there exists κ


ωk
� 0 satisfying Eq. (A2).

(2) ⇒ (1): Let κ

ωk

be the solution to Eq. (A2); then, Â


defined by Eq. (63) is a POVM. Since, as already described
in Sec. V D, �̂
(ω)|π


ω〉 = 0 holds for any ω ∈ 	
, Eq. (11)
with Â = Â
 obviously holds. Therefore, from Lemma 1, the
sequential measurement �̂(Â
 ) is globally optimal. �

Note that one can obtain an analytical expression of Â
 by
substituting the solution κ


ωk
to Eq. (A2) into Eq. (62).

APPENDIX B: SUPPLEMENT OF THE S PLANE

Under the assumption that Theorem 2 holds, we shall show
that s(1̂A) ∈ T 
 is a necessary and sufficient condition that a
sequential measurement can be globally optimal.

First, we show the necessity. Assume that a sequential
measurement can be globally optimal. From Theorem 2, there
exists Â
 ∈MA satisfying Eq. (24) such that �̂(Â
 ) is globally
optimal. As described in Sec. V D, Â
 is expressed by Eq. (63).
Thus, let κ ′

3 := κ

ω3

and κ ′
k := 3κ


ωk
for k ∈ {1, 2}; then, since

Â
 is a POVM, we have

3∑
k=1

κ ′
kÊ 


k =
∫

	

Â
(dω) = 1̂A. (B1)

Premultiplying and postmultiplying this equation by 〉φn| and
|φn〉, respectively, gives

3∑
k=1

κ ′
k

3
e


k = s(1̂A). (B2)

This indicates that s(1̂A) is the weighted sum of e

k with the

weights κ ′
k/3 � 0, and thus s(1̂A) ∈ T 
 holds.

Next, we show the sufficiency. The above argument can
be applied in the reverse direction. Assume s(1̂A) ∈ T 
; then,
there exists κ ′

k � 0 satisfying Eq. (B2). Consider Â
 expressed
by Eq. (63) with κ


ω3
= κ ′

3 and κ

ωk

= κ ′
k/3 (k = {1, 2}). It fol-

lows that Â
 is a POVM satisfying Eq. (24) and �̂
(ω)Â
(ω) =
0. Thus, from Lemma 1, �̂(Â
 ) is globally optimal, and thus a
sequential measurement can be globally optimal. �

[1] I. D. Ivanovic, Phys. Lett. A 123, 257 (1987).
[2] D. Dieks, Phys. Lett. A 126, 303 (1988).
[3] A. Peres, Phys. Lett. A 128, 19 (1988).
[4] G. Jaeger and A. Shimony, Phys. Lett. A 197, 83 (1995).
[5] P. Raynal, N. Lütkenhaus, and S. J. van Enk, Phys. Rev. A 68,

022308 (2003).
[6] Y. C. Eldar, M. Stojnic, and B. Hassibi, Phys. Rev. A 69, 062318

(2004).
[7] Y. Feng, R. Duan, and M. Ying, Phys. Rev. A 70, 012308

(2004).
[8] M. A. Jafarizadeh, M. Rezaei, N. Karimi, and A. R. Amiri,

Phys. Rev. A 77, 042314 (2008).
[9] S. Pang and S. Wu, Phys. Rev. A 80, 052320 (2009).

[10] M. Kleinmann, H. Kampermann, and D. Bruß, J. Math. Phys.
51, 032201 (2010).

[11] H. Sugimoto, T. Hashimoto, M. Horibe, and A. Hayashi, Phys.
Rev. A 82, 032338 (2010).

[12] J. A. Bergou, U. Futschik, and E. Feldman, Phys. Rev. Lett. 108,
250502 (2012).

[13] D. Brody and B. Meister, Phys. Rev. Lett. 76, 1 (1996).
[14] M. Ban, K. Yamazaki, and O. Hirota, Phys. Rev. A 55, 22

(1997).
[15] S. Virmani, M. F. Sacchi, M. B. Plenio, and D. Markham, Phys.

Lett. A 288, 62 (2001).
[16] A. Acín, E. Bagan, M. Baig, L. Masanes, and R. Muñoz-Tapia,

Phys. Rev. A 71, 032338 (2005).
[17] M. Owari and M. Hayashi, New J. Phys. 10, 013006 (2008).
[18] A. Assalini, N. Dalla Pozza, and G. Pierobon, Phys. Rev. A 84,

022342 (2011).
[19] K. Nakahira and T. S. Usuda, Phys. Rev. A 86, 052323 (2012).
[20] K. Nakahira and T. S. Usuda, IEEE Trans. Inf. Theory 64, 613

(2018).
[21] M. Rosati, A. Mari, and V. Giovannetti, Phys. Rev. A 96,

012317 (2017).

022316-14

https://doi.org/10.1016/0375-9601(87)90222-2
https://doi.org/10.1016/0375-9601(87)90222-2
https://doi.org/10.1016/0375-9601(87)90222-2
https://doi.org/10.1016/0375-9601(87)90222-2
https://doi.org/10.1016/0375-9601(88)90840-7
https://doi.org/10.1016/0375-9601(88)90840-7
https://doi.org/10.1016/0375-9601(88)90840-7
https://doi.org/10.1016/0375-9601(88)90840-7
https://doi.org/10.1016/0375-9601(88)91034-1
https://doi.org/10.1016/0375-9601(88)91034-1
https://doi.org/10.1016/0375-9601(88)91034-1
https://doi.org/10.1016/0375-9601(88)91034-1
https://doi.org/10.1016/0375-9601(94)00919-G
https://doi.org/10.1016/0375-9601(94)00919-G
https://doi.org/10.1016/0375-9601(94)00919-G
https://doi.org/10.1016/0375-9601(94)00919-G
https://doi.org/10.1103/PhysRevA.68.022308
https://doi.org/10.1103/PhysRevA.68.022308
https://doi.org/10.1103/PhysRevA.68.022308
https://doi.org/10.1103/PhysRevA.68.022308
https://doi.org/10.1103/PhysRevA.69.062318
https://doi.org/10.1103/PhysRevA.69.062318
https://doi.org/10.1103/PhysRevA.69.062318
https://doi.org/10.1103/PhysRevA.69.062318
https://doi.org/10.1103/PhysRevA.70.012308
https://doi.org/10.1103/PhysRevA.70.012308
https://doi.org/10.1103/PhysRevA.70.012308
https://doi.org/10.1103/PhysRevA.70.012308
https://doi.org/10.1103/PhysRevA.77.042314
https://doi.org/10.1103/PhysRevA.77.042314
https://doi.org/10.1103/PhysRevA.77.042314
https://doi.org/10.1103/PhysRevA.77.042314
https://doi.org/10.1103/PhysRevA.80.052320
https://doi.org/10.1103/PhysRevA.80.052320
https://doi.org/10.1103/PhysRevA.80.052320
https://doi.org/10.1103/PhysRevA.80.052320
https://doi.org/10.1063/1.3298683
https://doi.org/10.1063/1.3298683
https://doi.org/10.1063/1.3298683
https://doi.org/10.1063/1.3298683
https://doi.org/10.1103/PhysRevA.82.032338
https://doi.org/10.1103/PhysRevA.82.032338
https://doi.org/10.1103/PhysRevA.82.032338
https://doi.org/10.1103/PhysRevA.82.032338
https://doi.org/10.1103/PhysRevLett.108.250502
https://doi.org/10.1103/PhysRevLett.108.250502
https://doi.org/10.1103/PhysRevLett.108.250502
https://doi.org/10.1103/PhysRevLett.108.250502
https://doi.org/10.1103/PhysRevLett.76.1
https://doi.org/10.1103/PhysRevLett.76.1
https://doi.org/10.1103/PhysRevLett.76.1
https://doi.org/10.1103/PhysRevLett.76.1
https://doi.org/10.1103/PhysRevA.55.22
https://doi.org/10.1103/PhysRevA.55.22
https://doi.org/10.1103/PhysRevA.55.22
https://doi.org/10.1103/PhysRevA.55.22
https://doi.org/10.1016/S0375-9601(01)00484-4
https://doi.org/10.1016/S0375-9601(01)00484-4
https://doi.org/10.1016/S0375-9601(01)00484-4
https://doi.org/10.1016/S0375-9601(01)00484-4
https://doi.org/10.1103/PhysRevA.71.032338
https://doi.org/10.1103/PhysRevA.71.032338
https://doi.org/10.1103/PhysRevA.71.032338
https://doi.org/10.1103/PhysRevA.71.032338
https://doi.org/10.1088/1367-2630/10/1/013006
https://doi.org/10.1088/1367-2630/10/1/013006
https://doi.org/10.1088/1367-2630/10/1/013006
https://doi.org/10.1088/1367-2630/10/1/013006
https://doi.org/10.1103/PhysRevA.84.022342
https://doi.org/10.1103/PhysRevA.84.022342
https://doi.org/10.1103/PhysRevA.84.022342
https://doi.org/10.1103/PhysRevA.84.022342
https://doi.org/10.1103/PhysRevA.86.052323
https://doi.org/10.1103/PhysRevA.86.052323
https://doi.org/10.1103/PhysRevA.86.052323
https://doi.org/10.1103/PhysRevA.86.052323
https://doi.org/10.1109/TIT.2016.2549994
https://doi.org/10.1109/TIT.2016.2549994
https://doi.org/10.1109/TIT.2016.2549994
https://doi.org/10.1109/TIT.2016.2549994
https://doi.org/10.1103/PhysRevA.96.012317
https://doi.org/10.1103/PhysRevA.96.012317
https://doi.org/10.1103/PhysRevA.96.012317
https://doi.org/10.1103/PhysRevA.96.012317


LOCAL UNAMBIGUOUS DISCRIMINATION OF SYMMETRIC … PHYSICAL REVIEW A 99, 022316 (2019)

[22] S. Croke, S. M. Barnett, and G. Weir, Phys. Rev. A 95, 052308
(2017).

[23] S. J. Dolinar, MIT Res. Lab. Electron. Quart. Prog. Rep. 111,
115 (1973).

[24] R. L. Cook, P. J. Martin, and J. M. Geremia, Nature (London)
446, 774 (2007).

[25] K. Banaszek, Phys. Lett. A 253, 12 (1999).
[26] S. J. van Enk, Phys. Rev. A 66, 042313 (2002).
[27] F. Becerra, J. Fan, and A. Migdall, Nat. Commun. 4, 2028

(2013).
[28] Y.-X. Chen and D. Yang, Phys. Rev. A 65, 022320 (2002).
[29] Z. Ji, H. Cao, and M. Ying, Phys. Rev. A 71, 032323 (2005).
[30] E. Chitambar, M. Hsieh, and R. Duan, IEEE Trans. Inf. Theory

60, 1549 (2014).
[31] G. Sentís, E. Martínez-Vargas, and R. Muñoz-Tapia, Phys. Rev.

A 98, 052305 (2018).
[32] K. Nakahira, K. Kato, and T. S. Usuda, Phys. Rev. A 97, 022320

(2018).

[33] P. W. Shor, in Quantum Communication, Computing, and Mea-
surement (Springer, Berlin, 2002), pp. 107–114.

[34] K. Nakahira, K. Kato, and T. S. Usuda, Phys. Rev. A 97, 022340
(2018).

[35] T. Rudolph, R. W. Spekkens, and P. S. Turner, Phys. Rev. A 68,
010301 (2003).

[36] K. Nakahira, K. Kato, and T. S. Usuda, Phys. Rev. A 91, 052304
(2015).

[37] A. Chefles, Phys. Lett. A 239, 339 (1998).
[38] S. J. Dolinar, Ph.D. dissertation, Massachusetts Institute of

Technology, Cambridge, MA, 1976.
[39] B. L. Higgins, B. M. Booth, A. C. Doherty, S. D. Bartlett, H.

M. Wiseman, and G. J. Pryde, Phys. Rev. Lett. 103, 220503
(2009).

[40] J. Calsamiglia, J. I. de Vicente, R. Muñoz-Tapia, and E. Bagan,
Phys. Rev. Lett. 105, 080504 (2010).

[41] B. L. Higgins, A. C. Doherty, S. D. Bartlett, G. J. Pryde, and H.
M. Wiseman, Phys. Rev. A 83, 052314 (2011).

022316-15

https://doi.org/10.1103/PhysRevA.95.052308
https://doi.org/10.1103/PhysRevA.95.052308
https://doi.org/10.1103/PhysRevA.95.052308
https://doi.org/10.1103/PhysRevA.95.052308
https://doi.org/10.1038/nature05655
https://doi.org/10.1038/nature05655
https://doi.org/10.1038/nature05655
https://doi.org/10.1038/nature05655
https://doi.org/10.1016/S0375-9601(99)00015-8
https://doi.org/10.1016/S0375-9601(99)00015-8
https://doi.org/10.1016/S0375-9601(99)00015-8
https://doi.org/10.1016/S0375-9601(99)00015-8
https://doi.org/10.1103/PhysRevA.66.042313
https://doi.org/10.1103/PhysRevA.66.042313
https://doi.org/10.1103/PhysRevA.66.042313
https://doi.org/10.1103/PhysRevA.66.042313
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1103/PhysRevA.65.022320
https://doi.org/10.1103/PhysRevA.65.022320
https://doi.org/10.1103/PhysRevA.65.022320
https://doi.org/10.1103/PhysRevA.65.022320
https://doi.org/10.1103/PhysRevA.71.032323
https://doi.org/10.1103/PhysRevA.71.032323
https://doi.org/10.1103/PhysRevA.71.032323
https://doi.org/10.1103/PhysRevA.71.032323
https://doi.org/10.1109/TIT.2013.2295356
https://doi.org/10.1109/TIT.2013.2295356
https://doi.org/10.1109/TIT.2013.2295356
https://doi.org/10.1109/TIT.2013.2295356
https://doi.org/10.1103/PhysRevA.98.052305
https://doi.org/10.1103/PhysRevA.98.052305
https://doi.org/10.1103/PhysRevA.98.052305
https://doi.org/10.1103/PhysRevA.98.052305
https://doi.org/10.1103/PhysRevA.97.022320
https://doi.org/10.1103/PhysRevA.97.022320
https://doi.org/10.1103/PhysRevA.97.022320
https://doi.org/10.1103/PhysRevA.97.022320
https://doi.org/10.1103/PhysRevA.97.022340
https://doi.org/10.1103/PhysRevA.97.022340
https://doi.org/10.1103/PhysRevA.97.022340
https://doi.org/10.1103/PhysRevA.97.022340
https://doi.org/10.1103/PhysRevA.68.010301
https://doi.org/10.1103/PhysRevA.68.010301
https://doi.org/10.1103/PhysRevA.68.010301
https://doi.org/10.1103/PhysRevA.68.010301
https://doi.org/10.1103/PhysRevA.91.052304
https://doi.org/10.1103/PhysRevA.91.052304
https://doi.org/10.1103/PhysRevA.91.052304
https://doi.org/10.1103/PhysRevA.91.052304
https://doi.org/10.1016/S0375-9601(98)00064-4
https://doi.org/10.1016/S0375-9601(98)00064-4
https://doi.org/10.1016/S0375-9601(98)00064-4
https://doi.org/10.1016/S0375-9601(98)00064-4
https://doi.org/10.1103/PhysRevLett.103.220503
https://doi.org/10.1103/PhysRevLett.103.220503
https://doi.org/10.1103/PhysRevLett.103.220503
https://doi.org/10.1103/PhysRevLett.103.220503
https://doi.org/10.1103/PhysRevLett.105.080504
https://doi.org/10.1103/PhysRevLett.105.080504
https://doi.org/10.1103/PhysRevLett.105.080504
https://doi.org/10.1103/PhysRevLett.105.080504
https://doi.org/10.1103/PhysRevA.83.052314
https://doi.org/10.1103/PhysRevA.83.052314
https://doi.org/10.1103/PhysRevA.83.052314
https://doi.org/10.1103/PhysRevA.83.052314



