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We compare the performance of quantum error correcting codes when memory errors are unitary with the
more familiar case of dephasing noise. For a wide range of codes, we analytically compute the effective logical
channel that results when the error correction steps are performed noiselessly. Our examples include the entire
family of repetition codes, the five-qubit, Steane, Shor, and surface codes. When errors are measured in terms
of the diamond norm, we find that the error correction is typically much more effective for unitary errors than
for dephasing. We observe this behavior for a wide range of codes after a single level of encoding, and in the
thresholds of concatenated codes using hard decoders. We show that this holds with great generality by proving
a bound on the performance of any stabilizer code when the noise at the physical level is unitary. By comparing
the diamond norm error D′

� of the logical qubit with the same quantity at the physical level D�, we show that
D′

� � cDd
� where d is the distance of the code and c is a constant that depends on the code but not on the error.

This bound compares very favorably to the performance of error correction for dephasing noise and other Pauli
channels, where an error correcting code of odd distance d will exhibit a scaling D′

� ∼ D
(d+1)/2
� .

DOI: 10.1103/PhysRevA.99.022313

I. INTRODUCTION

Building a large-scale quantum computer will require sub-
stantial efforts to mitigate noise through the use of quan-
tum error correction and fault tolerance. The fault tolerance
threshold theorem [1–4] guarantees that as long as the errors
are sufficiently rare and weakly correlated, an arbitrarily long
quantum computation can proceed indefinitely and with low
overhead. The exact numerical value of the threshold depends
critically on the assumptions about the noise, and from the
perspective of fault-tolerant quantum computing not all types
of errors are equivalent. This is even true for uncorrelated
noise since errors such as dephasing and depolarizing noise
are purely stochastic, but control errors such as unitary over-
or under-rotation can add coherently.

This distinction between stochastic and coherent errors was
recognized quite early on to be important [5]. In particular,
using our best theorems to date, the only known way to relate
the threshold for stochastic errors to the threshold for coherent
errors is to square the stochastic value of the threshold [6].
Thresholds quoted in the literature for stochastic-type noise
range between values of about 10−2 to 10−4 depending on
how generous the assumptions are on the stochastic noise
and whether the threshold is a numerical estimate based on
simulation [7] or a theorem based on rigorous proof [8] (or
something intermediate). Not knowing if these values need
to be squared therefore represents a rather large gap in our
understanding of the threshold. The situation is complicated
by the fact that the only large-scale numerical simulations that
are tractable must necessarily deal with Pauli errors, for which
it is known that the squaring is unnecessary [9].

The role that non-Pauli errors play in the fault-tolerance
threshold is therefore quite poorly understood. Some recent
works are beginning to develop our understanding, such as
the use of the so-called honest Pauli approximation [10] or

recent full-scale simulations of coherent noise, using small
codes [11], using tools such as tensor networks [12], or in
some special cases via an exact solution [13–15].

The focus of this paper is on understanding the role of co-
herent errors in quantum error correction. In order to motivate
our main results, it is helpful to focus the discussion on two
meaningful quantities that we wish to study, the average gate
infidelity r and the diamond distance D�, defined below. This
will also help motivate the particular scaling behavior that we
seek to quantify.

We would like to compare quantities that can actually
be measured in experiments directly to the fault-tolerance
threshold. Unfortunately, here we see another large gap be-
tween what we can measure and what we can infer about
the threshold. For example, the average gate infidelity r (E ),
defined as

r (E ) = 1 −
∫

dψ〈ψ |E (ψ )|ψ〉, (1)

is routinely measured to high precision in randomized bench-
marking experiments [16]. However, all of our provable
knowledge about thresholds uses a much stricter error metric,
the diamond distance D�(E ) to the identity, defined as

D�(E ) = 1
2‖E − I‖� := 1

2 sup
ρ

‖E ⊗ I (ρ) − ρ‖1 (2)

in terms of the Schatten 1-norm (the sum of the singular
values). The gap between these two quantities in the regime of
interest can be orders of magnitude in general, a point recently
emphasized by Sanders et al. [17]. Unfortunately, there is
no simple way to measure the diamond distance in general
without doing complete process tomography [18].

Recent work has sought ways to quantify the worst-
case behavior needed to prove a threshold theorem using
measurement methods that are preferably scalable and avoid
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tomography. Examples include gate set tomography [18] and
the unitarity [19], though neither method is completely scal-
able in contrast to randomized benchmarking.

Complementing this line of research, and motivating the
upper bound we prove below in Theorem 1, is the theoret-
ical approach of [20,21], which seeks to classify physical
noise sources in terms of “good” and “bad” noise scaling.
A family {Eγ : γ ∈ [0, 1]} of noise models with E0 = I has
“good” scaling if D�(Eγ ) � Cr (Eγ ) and “bad” scaling if
D�(Eγ ) � C ′√r (Eγ ) for all γ ∈ [0, 1] and some constants
C,C ′ > 0 that are independent of γ . Other scalings are also
possible, and could be called “intermediate.” The purpose of
this coarse distinction is that for a given noise channel E , if
D�(E ) ≈ r (E ), then the proxy measure of r (E ) that is easily
obtained via benchmarking gives a good indication of how
close one might be to the threshold, while if D�(E ) ≈ √

r (E ),
then the proxy is highly misleading. These scaling limits
are extremal [17,20–22]. Of course, the usefulness of this
distinction depends implicitly on the constants C and C ′ being
relatively civilized. Taking, say, C = 1015 shows that all noise
is trivially good until r (Eγ ) � 10−30. Similarly, we also need
C ′ to be sufficiently large for this distinction to be meaningful
in practice. However, while we are always ultimately inter-
ested in absolute noise rates on single instances, hiding these
constants and discussing scaling enables us to make important
physical insights into the nature of noise sources and what the
expected effect might be on quantum information.

Illustrating the utility of this scaling behavior perspective,
Ref. [20] classifies many common qubit noise models such
as dephasing, depolarizing, amplitude damping, leakage, and
unitary errors according to this dichotomy. It is only the
unitary errors and so-called “coherent leakage” that exhibit
bad error scaling [20]. By combining some knowledge of the
dominant noise process with measurements of r (E ) and the
aforementioned unitarity, Refs. [20,21] show that it is possible
to obtain pertinent information about how close one’s qubits
are to the fault-tolerance threshold.

This discussion of scaling focused on the case of physical
errors, but even more desirable would be to understand the
scaling of logical error rates in quantum error correcting codes
[23]. Motivated by the above notions of good and bad error
scaling in regards to physical errors, we seek to develop an
analogous understanding of how coherent and incoherent er-
rors scale at the logical level. It has been observed numerically
that there can be orders of magnitude difference in the logical
error rates after concatenating quantum codes [24], so a priori
it is not clear that it is possible to obtain a simple scaling
dichotomy as we seem to have in the case of physical errors.

Summary of results

In this paper, we focus on physical qubit noise chan-
nels with both unitary control errors and dephasing noise.
We aim to compare the performance of ideal error
correction for coherent noise channels, for which the diamond
norm distance greatly exceeds the average fidelity error, with
dephasing, for which they are comparable. The main tool is
to calculate effective noise channels for the encoded qubits
after error correction, following Rahn et al. [25]. Broadly,
the results of our investigations into the performance of ideal

error correction under coherent errors suggest that simply con-
sidering diamond norm error at the physical level overstates
the effect that residual coherent errors will have on logical
information in a quantum computer.

In order to develop our analytical methods, we begin in
Sec. III by revisiting the case of the repetition codes studied
by Greenbaum and Dutton [13]. Although these are not proper
quantum error correcting codes, they can correct against Z

rotations and dephasing, and are simple enough to be analyti-
cally tractable for arbitrarily high distance codes. As has been
shown previously [24], the performance of error correction
depends very strongly on how coherent the noise process is,
and is not predicted by a single figure of merit for the noise,
such as average fidelity or diamond norm distance.

One result of this analysis relates to the nature of the
effective noise channels for codes where the distance is odd
or even. If the noise process is a purely unitary rotation
about Z and the repetition code has odd distance, we find
that the effective noise channel conditioned on syndrome
measurement is also unitary. Consequently, the statistics of
syndrome measurement is independent of the logical state
of the code. For the case of even distance repetition codes,
however, we find that the effective channel conditioned on
the syndrome measurement corresponds to a (very) weak
measurement of logical Z. As a result, the syndrome mea-
surement outcomes do depend weakly on the logical state
of the qubit. However, the effective noise channel averaged
over syndromes is pure dephasing, even when the underlying
physical noise process is purely unitary. We have observed
qualitatively similar behavior for even distance surface codes.

In Sec. IV we apply these methods of calculation of effec-
tive channels to general stabilizer codes. Our main analytical
result is Theorem 1, which roughly states the following. For
any [n, k, d] stabilizer code, the logical diamond norm error
D′

� after ideal error correction of a purely unitary error is
bounded by D′

� � cn,kD
d
� in terms of the physical diamond

norm error D�, where cn,k is a constant independent of the
errors (but may depend on the code). This result does not just
apply to uniform unitary noise, but is readily generalized to
hold for all single-qubit unitary noise if we express the bound
in terms of the largest value of D� across the physical qubits.
This is very favorable behavior compared to the performance
of error correction for dephasing noise. Recall that an error
correcting code of odd distance d will correct t dephasing
errors where d = 2t + 1. Consequently, for dephasing it is
known that D′

� scales like Dt+1
� . Another way to assess this

comparison between coherent and dephasing noise after error
correction is to express this bound in terms of the average
fidelity error r at the physical level D′

� � crt+1/2, where c is
a constant that depends on the code but not on the unitary
error. (Recall that for a coherent error D� scales like r1/2.)
This compares quite favorably to the well-known scaling rt+1

for dephasing errors.
In Sec. V we compute the effective noise channels for a

range of quantum codes using an automated procedure. We
consider unitary qubit noise and study how the performance of
the code depends on the axis of rotation in the Bloch sphere.
There are frequently large effects. For example, for the surface
code the error correction performs much better for rotations
about the Y axis, than for rotations about X and Z. This
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observation is analogous to the recently discussed behavior
of the surface code under Pauli noise [26].

Finally, in Sec. VI we study concatenated codes for noise
channels that combine Z rotations with dephasing using a
hard decoder. Again, we use an automated procedure to gen-
erate the effective channel for a single level of encoding. By
regarding these effective channels as a map on noise processes
it is possible to find the threshold for a hard decoder as a
fixed point of the map. We compare the two extreme limits
of unitary Z rotations and pure dephasing and find that the
threshold as a function of the diamond norm error is in every
code we tested larger for the case of unitary errors.

II. NOISE MODELS AND EFFECTIVE CHANNELS

Suppose we have a qubit Hamiltonian H with H 2 = I ,
then coherent noise channels result from unitary noise pro-
cesses of the form

UH,θ = e−iθH = cos θI − i sin θH. (3)

Physically, such error processes arise from over or under rota-
tion in qubit control pulses. Note that since we are considering
qubit noise processes, the choice H 2 = I allows for a general
Bloch sphere rotation axis.

It is frequently of interest to combine coherent and incoher-
ent errors. To study this sort of noise process we will follow
Kueng et al. [20] and specialize to rotations about the Z axis
of angle θ and dephasing with probability p. This simple
phenomenological model allows us to make a detailed com-
parison between the effects of coherent and incoherent errors,
but it also corresponds to the dominant noise processes in
many experimental implementations of quantum computing.
The resulting noise channel is

N (ρ) = e−iθZ[(1 − p)ρ + pZρZ]eiθZ (4)

= (1 − x)ρ + xZρZ − iy(Zρ − ρZ). (5)

In the second expression we have used an alternative
parametrization of the noise process that will greatly simplify
certain calculations. The real parameters x, y are defined as
follows:

x = p cos2 θ + (1 − p) sin2 θ, (6)

y = (1 − 2p) cos θ sin θ. (7)

It has become common in the literature to compare a noise
model such as this with some Pauli channel that approximates
it [10,11,27,28]. For this example, the Pauli twirling approx-
imation to this error is just to project down to the case where
y = 0. Thus, for a given initial noise model given by p, θ

the Pauli twirling approximation is to consider instead the
model with p′ = p cos2 θ + (1 − p) sin2 θ and θ ′ = 0. Since
we are mainly interested in the scaling when error rates are
small, we will often expand expressions such as x and y to
lowest nontrivial order in p and θ . So, for example, we have
x ≈ p + θ2 and y ≈ θ .

In the following, we will also occasionally be interested in
the noise operations conditional on the outcome of a syndrome
measurement in an error correction procedure. These noise

processes will likewise combine unitary and dephasing error
but will not necessarily preserve trace, being of the form

Ns(ρ) = x̄ρ + xZρZ − iy(Zρ − ρZ) (8)

with the case x̄ = 1 − x preserving the trace, and x + x̄ � 1
corresponding to some stochastic process occurring with
probability x + x̄. Here, the subscript s labels a particular
syndrome.

We will frequently be concerned with measures of the
strength of the noise process. Although there are many possi-
ble choices, we will confine ourselves to two frequently used
measures. The first is the average gate infidelity r because it
can be estimated accurately in randomized benchmarking ex-
periments. The second is the diamond norm error D� because
it can be used to bound the overall error when noise processes
can occur sequentially in a computation and therefore appears
in the statement of fault-tolerance threshold theorems. For our
model channel, both of these error metrics were calculated by
Kueng et al. [20] for the above unitary and dephasing channel:

r = 2x
3 = 2

3 [p cos(2θ ) + sin2(θ )] ≈ 2
3 (p + θ2), (9)

D� =
√

x2 + y2 = 1
2 |1 − (1 − 2p)e2iθ | ≈

√
p2 + θ2. (10)

Notice that in the limit p → 0 corresponding to a unitary
error, D� = | sin θ | ≈ |θ | while r ≈ θ2 so that the diamond
norm distance can be much larger than the average fidelity
error [17,20]. Also notice the simplifications in these formulas
when expressed in terms of x and y, and in particular that r is
independent of y, while the diamond norm distance is just the
length of the vector (x, y).

We wish to study the performance of [n, k, d] quantum er-
ror correcting codes that encode k logical qubits in n physical
qubits with code distance d. As discussed in the Introduction,
we will focus on ideal error correction where noise processes
act only on the qubit memory and the encoding and error
correction are performed ideally. Such an ideal error correc-
tion process defines an effective channel on the logical qubits.
We wish to build intuition about the effectiveness of error
correction for coherent errors by studying these error channels
analytically.

The effective channel on the logical qubits arises from
composing the operations of encoding, noise, error correction,
and then decoding. As such, it is described by a completely
positive trace-preserving map on the k logical qubits. It can
be written in the form

NL = E†RÑE, (11)

where E is the encoding map (an isometry), Ñ is the noise
acting on the n qubits of the code, R is recovery by syndrome
measurement with correction, and E† reverses the encoding.
The application of quantum operations in our notation follows
the same conventions as matrix multiplication, with oper-
ations occurring earlier being written to the right of later
operations.
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For independent qubit noise on an n-qubit code, the noise
process acts on each physical qubit independently and

Ñ =
n⊗

m=1

N , (12)

where the single-qubit noise process N is assumed to act inde-
pendently and identically on each physical qubit. Most of our
considerations can be generalized to the case of nonidentical
noise processes acting independently on the different physical
qubits, but for now we defer a discussion of this case.

The error correction process is made up of syndrome
measurement followed by correction. We consider two natural
cases. First, to obtain a trace-preserving map, we average
over all syndromes to obtain the error correction map R.
Physically, this corresponds to the error process assigned by
an observer external to the error correction process who is
unaware of which syndrome arose. Alternatively, we can eval-
uate the conditional operation where a particular syndrome s
is specified and the recovery map Rs applies the projection
corresponding to this syndrome and then performs the sub-
sequent correction. The resulting conditional noise process
on the logical qubits Ns will be completely positive but not
trace preserving; it will be normalized by the probability of
the specified syndrome.

Techniques for calculating the effective noise channel NL

are discussed at length by Rahn et al. [25]. As described there
we can regard the error correction procedure as a map on
qubit noise channels N → NL. Note that while the encoding,
error correction, and decoding operations are linear when
regarded as a map on the noise process Ñ , the map N → Ñ
is a polynomial map on the matrix elements that define N .
Specifically, we can expand a general qubit noise process as
follows:

N (ρ) =
∑
P,P ′

nPP ′PρP ′, (13)

where the sum runs over all qubit Pauli matrices. Then, the
coefficients in the corresponding expansion for either NL or
Ns are nth-order polynomials of the coefficients nPP ′ . In
the case of the noise process [Eq. (5)] we conclude that the
effective channels after error correction can be written as
polynomials of the parameters x and y. We will make use
of this observation to simplify analytical calculations in the
following section.

In the majority of our examples below we have used
Mathematica to automate the computation of the effective
channel NL using the approach outlined by Rahn et al. [25].
The results of those calculations are discussed in detail in
Secs. V and VI. However, when the error correcting code and
recovery map have high symmetry it is possible to compute
the effective channel explicitly for unitary error processes,
and we will now describe that process using the repetition
codes as a specific example (this case was also considered
by Greenbaum and Dutton [13]). The techniques developed
to analyze these codes will then be sufficient to allow us to
place bounds on the diamond norm error after correction for
general [n, k, d] stabilizer codes.

III. EFFECTIVE ERROR CHANNELS FOR COHERENT
ERRORS AND REPETITION CODES

In this section we will describe how to calculate effective
error channels for coherent error processes, using the repeti-
tion codes as a primary example. The high symmetry of these
codes allows us to find simple closed-form expressions for
essentially all quantities of interest. Despite the fact that these
are not proper quantum error correcting codes, the behavior of
these simple examples is qualitatively similar to all the other
(more interesting) examples that we have studied.

The effective channels for the repetition code with odd
n were first calculated by Greenbaum and Dutton [13]. We
present a slightly streamlined analysis and apply it to both
the case of even n and the conditional noise processes Ns.
We will also see that our techniques can be used to find
the effective channel for more general codes and to obtain
our main analytical result which is a bound on the diamond
norm error after ideal correction for unitary errors and general
stabilizer [n, k, d] codes.

Our approach involves considering the case of unitary
errors initially. We are therefore motivated to consider cor-
recting errors of the form U = exp(−iθH ) using an [n, k, d]
error correcting code. So, we have n physical qubits each
undergoing an error U . We will confine ourselves to identi-
cally distributed errors for now. Since U = cos θI − i sin θH

and H 2 = I we can think of the fundamental error process
as H and each qubit will either have experienced an error
H or not. We can specify all possible tensor products of
H by a binary vector w, with ones indicating that H acts
on the corresponding qubit. The Hamming weight w is just
the number of ones |w| in w. Therefore, w is the number
of qubits that have a nontrivial error. We can indicate error
configurations by the operators Hw = H⊗w. There are

(
n

w

)
configurations of weight w, and we can define the sum over
these error configurations as follows: Ew = ∑

w:|w|=w Hw. So,
the overall n-qubit error operator is as follows:

Ũ = [exp(iθH )]⊗n = [cos θI − i sin θH ]⊗n

=
n∑

w=0

(−i sin θ )w(cos θ )n−wEw. (14)

This expression for the overall unitary error as a sum over
Hamming weights holds for any independent unitary error
regardless of the error correcting code of interest. In the
following, it will be convenient to define the function

fw(θ ) = (−i sin θ )w cosn−w(θ ). (15)

Notice that these functions are increasingly small for high
weight. It is easy to see that |fw(θ )| � | sin θ |w| cos(θ )|n−w

� Dw
� where D� is the diamond norm error of the unitary

noise.
At this point, we have characterized the noise process Ñ

on the n physical qubits. The next step is to calculate the
effect of error recovery R. This will involve measuring the
syndrome, and performing a corresponding correction. As a
result, R involves a sum over the 2n−k syndromes and it will
not be possible to find a closed-form expression for a general
code. In this work, we have used automated procedures to
handle examples with small k. Moreover, the codes of most
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interest possess high symmetry, and this enhanced symmetry
can be used to find closed-form expressions in a number of
interesting cases.

In order to determine the syndrome that will arise from
stabilizer measurement, we now replace the sum over error
weights in Eq. (14) by a sum over syndromes. At this point,
we have to take advantage of the specific properties of the
code. We will focus for the moment on a repetition code with
an odd number n = 2t + 1 of physical qubits. The stabilizer
generators of the code are XiXi+1 for i = 1, . . . , n − 1. There
is one encoded qubit with logical operators X̄ = X⊗n and
Z̄ = Z⊗n. Recall that logical operators of stabilizer codes
are defined only up to multiplication by stabilizers. So, we
could equally have chosen X̄ to be X ⊗ I⊗n−1, but we make
this choice to emphasize the permutation symmetry of the
code. While this is only technically a quantum error correcting
code, as it has distance d = 1, it does have distance n for
Z errors. Consequently, it should be effective in correcting
unitary errors when H = Z. We will now specialize to that
case. Notice that this corresponds to our noise model (5) with
p = 0, or equivalently x = sin2 θ and y = sin θ cos θ .

Since the code can correct t Z errors, each of the 2n−1

error configurations Zw with weight less than or equal to t

results in a unique syndrome. For each error configuration w

with weight w � t the weight n − w error configuration ZwZ̄

results in the same syndrome. Together these account for all
2n error configurations. We can rewrite the error unitary (14)
as follows:

Ũ =
t∑

w=0

∑
w:|w|=w

Zw[fw(θ )Ī + fn−w(θ )Z̄]. (16)

Each term in the sum over w results in a unique syndrome
and so the syndrome measurement step projects onto a single
value of w. The vector w, which has weight less than or equal
to t , specifies the correction Zw. Consequently, when the
syndrome requires a correction of weight w the logical qubit
undergoes the effective channel

NLw(ρL) = KwρLK†
w, (17)

where

Kw = fw(θ )Ī + fn−w(θ )Z̄. (18)

It is straightforward to show that K†
wKw = (|fw|2 +

|fn−w|2)Ī and therefore Kw is proportional to a unitary.
The normalization relates to the probability of the syndrome,
and for small θ this is approximately θ2w. The unitary is
a rotation about Z and the rotation angle is approximately
(−1)t−wθ2(t−w)+1 in this limit. Notice that this rotation angle
is much larger for the less likely syndromes; we will discuss
this further in a subsequent section. The fact that the effective
channel only depends on the weight of the correction is a
consequence of the permutation symmetry of the code. For
general noise processes, the effective channel conditioned on
a given syndrome is analyzed by Chamberland et al. [29] as a
generalization of the approach of Rahn et al. [25].

We can now evaluate the overall noise map as follows:

NL(ρ) =
t∑

w=0

(
n

w

)
KwρLK†

w = (1 − x ′)ρ

+ x ′Z̄ρZ̄ − iy ′(Z̄ρ − ρZ̄), (19)

with

x ′ =
t∑

w=0

(
n

w

)
xn−w(1 − x)w =

n∑
w′=t+1

(
n

w′

)
xw′

(1 − x)n−w′
,

(20)

y ′ = yn

t∑
w=0

(
n

w

)
(−1)t−w =

(
2t

t

)
y2t+1. (21)

The final expression for x ′ is a simple reorganization of the
sum to make it clear that x ′  (

n

t+1

)
xt+1 for small x. It is clear

that for small x the sum for the effective error rate x ′ is domi-
nated by the terms arising from syndromes with w = t + 1,
the lowest weight uncorrected errors. [The repetition code
corrects t errors with t  n/2 so the combinatorial factor

(
n

t+1

)
attains its maximum possible value. By contrast, for surface
codes with large distance, for example, the lowest weight
errors do not necessarily dominate the effective error rate for
realistic values of the parameters.] The final expression for y ′
arises from applying Pascal’s rule to consecutive terms in the
sum [13]. It is clear from this expression that in contrast to x ′,
all Hamming weights contribute to the expression for y ′ at the
same order y2t+1. Thus, any characterization of the average
error will get contributions from all syndromes, even those
that correspond to very high weight errors and arise with very
low probability. However, the combinatorial factors in the sum
in Eq. (21) mean that the sum is largely determined by terms
where w is not too different from t .

Inspecting the sum in Eq. (21), it is clear that the value
of y ′ is reduced due to the fact that the sign of the rotation
angle of the effective channel for each syndrome oscillates
with the Hamming weight. By reducing the magnitude of
y ′ this cancellation reduces the coherence of the effective
channel. It is straightforward to assess the extent to which this
cancellation is reducing the coherence of the average channel.
If we remove the factor (−1)t−w from the sum in Eq. (21) we
would obtain the value 2ny2t+1. So, this quantity scales with
y as before but it is larger than y ′ by a factor roughly equal to√

πt in the limit of large t .
We have established this identity only for the unitary case

where x = sin2 θ and y = sin θ cos θ . However, we will show
below that this formula holds for all the combinations of
unitary and dephasing errors in Eq. (5). Notice that since x ′
depends on x alone, the Pauli twirling approximation to the
effective channel can be found starting from the Pauli twirling
approximation at the physical level. This seems unlikely to be
a general property of these noise maps.

We can also write the conditional channel (17) for a given
syndrome w. Note that

NLw(ρL) = KwρLK†
w = x̄ ′

wρL + x ′
wZ̄ρLZ̄

− iy ′
w(Z̄ρL − ρLZ̄), (22)

where

x̄ ′
w = xw(1 − x)n−w, (23)

x ′
w = xn−w(1 − x)w, (24)

y ′
w = (−1)t−wyn. (25)

022313-5



ERIC HUANG, ANDREW C. DOHERTY, AND STEVEN FLAMMIA PHYSICAL REVIEW A 99, 022313 (2019)

Note that all of these are proportional to unitary processes
satisfying y ′2

w = x ′
wx̄ ′

w since the underlying process is unitary
and has y2 = x(1 − x).

The overall probability of this syndrome is

pw = xw(1 − x)n−w + xn−w(1 − x)w, (26)

and there are
(

n

w

)
syndromes that have a correction operation

of weight w. Since the probability of each weight depends
on x alone, it can be computed using the Pauli approximation
to Eq. (5). Also, the probability of a given weight arising
is independent of the logical state. We will see that these
properties do not hold for all codes.

As for the unconditional effective channel, we have so far
explained how to establish these results with unitary errors
p = 0, but we have rewritten these expressions in terms of the
parameters x and y such that they hold for all instances of
the noise model (5). We will establish these formulas in the
general case in the next subsection.

A. Effective channels with dephasing as well as unitary errors

Given the calculations so far, it is straightforward to see
that for the general case of the noise model of Eq. (5) we have

Ñ (ρ) =
∑

w′,w̄,w̄′
pw′

(1 − p)n−w′
fw̄(θ )f ∗

w̄′ (θ )Zw′+w̄ρZw′+w̄′ .

(27)

Here and elsewhere, addition of the binary vectors w is
modulo two.

If we consider a syndrome measurement with outcome
w, then a projection onto the corresponding stabilizer sub-
space just picks out the four terms of this sum where both
w′ + w̄ and w′ + w̄′ are equal to either w or n − w. (n is
the n-component binary vector with Hamming weight n.)
The corresponding correction operator is Zw as before, and
this results in a conditional effective channel of the form of
Eq. (22) as expected.

We now just need to evaluate the parameters x̄ ′
w, x ′

w, y ′
w.

Considering first the coefficient of ρL we find

x̄ ′
w =

∑
w′,w̄=w−w′

pw′
(1 − p)n−w′ |fw̄(θ )|2

=
n∑

w′=0

w′∑
w̃=0

(
w

w̃

)(
n − w

w′ − w̃

)
pw′

(1 − p)n−w′ |fw+w′−2w̃(θ )|2

= xw(1 − x)n−w. (28)

In the first equality we sum over all binary vectors w′ and
w̄ = w − w′. Consider a fixed w′. Let w̃ be the number of
locations where both w and w′ have ones. There are w′ − w̃

locations where w′ has a one and w has a zero. Consequently,
w̄ has weight |w̄| = w − w̃ + (w′ − w̃) = w + w′ − 2w̃. For
each 0 � w̃ � w′ there are

(
w

w̃

)(
n−w

w′−w̃

)
distinct choices of w′

that have this value of w̃. This establishes the second equality
above. The final equality is most easily seen by observing that
x = (1 − p) sin2 θ + p cos2 θ and 1 − x = (1 − p) cos2 θ +
p sin2 θ and then applying the binomial expansion to xw and
(1 − x)n−w.

The same procedure can be used to compute the other
parameters. The case of x ′

w is precisely the same as for x̄ ′
w.

For y ′
w we find

−iy ′
w =

∑
w′,w̄=n−w−w′,w̄′=w−w′

pw′
(1 − p)n−w′

fw̄(θ )f ∗
w̄′ (θ )

=
n∑

w′=0

w′∑
w̃=0

(
w

w̃

)(
n − w

w′ − w̃

)
pw′

(1 − p)n−w′

× fn+2w̃−w−w′ (θ )f ∗
w+w′−2w̃(θ )

= −i(−1)t−w[sin θ cos θ ]n
n∑

w′=0

w′∑
w̃=0

(
w

w̃

)

×
(

n − w

w′ − w̃

)
(−p)w

′
(1 − p)n−w′

= −i(−1)t−wyn. (29)

One way to see the final equality is to note that y =
cos θ sin θ [(1 − p) − p] and apply the binomial expansion to
yw and yn−w.

This establishes the claimed result for the conditional
effective channels. Averaging over syndromes recovers the
result for the unconditional effective channel.

B. Repetition codes with even distance

So far, we have considered the case where n = 2t + 1
is odd. It is also interesting to look at the case of an even
distance code where n = 2t + 2 physical qubits. We will note
two interesting features of this case. First, the unitary part of
the logical error channel (y ′) vanishes after a single round
of error correction, so that the effective logical channel is
pure dephasing. Second, the probabilities of various syndrome
measurement outcomes will depend on the initial logical state
(albeit weakly).

The stabilizer generators of the code are XiXi+1 for i =
1, . . . , n − 1. There is one encoded qubit with logical oper-
ators X̄ = X ⊗ I⊗n−1 and Z̄ = Z⊗n. For the odd repetition
codes, each syndrome indicates either a weight w or a weight
n − w error and the symmetric decoder corrects the lowest
weight error. When n is even there is no good way of cor-
recting the Hamming weight t + 1 errors, and we just need to
decide on some procedure that does not lower the symmetry
of the code. In this case for each of the w = t + 1 syndromes
we will choose one of the two corresponding weight t + 1
errors as the correction operation. So, for example, one of
the pair will act nontrivially on the first qubit, and we will
choose this as the correction operator. This procedure results
in a state in the code space and preserves the overall structure
and symmetry of the decoder. Looking at the sum over the
syndromes in Eq. (16), we should therefore treat the w =
t + 1 term separately as follows:

Ũ =
t∑

w=0

∑
w:|w|=w

Zw[fw(θ )Ī + fn−w(θ )Z̄]

+
∑

w:|w|=t+1,w1=1

ft+1(θ )Zw[Ī + Z̄]. (30)

It is already clear from the expression for the noise op-
erator in terms of the syndromes that the effective chan-
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nel conditioned on a stabilizer measurement is quite dif-
ferent in the even distance case as compared to the odd
distance case. We can read off from Eq. (30) that a weight
t + 1 syndrome results in a projection on a Z̄ eigen-
state of the logical qubit, which would of course totally
destroy the quantum information. In contrast for odd distance
codes, the conditional channel was unitary. For the other
syndromes we have as before a conditional channel given
by Eq. (17) with the Kraus operator Kw given by Eq. (18).
However, in the even distance case it is easy to show that
the Kraus operator is not unitary and in fact K†

w = ±Kw.
For small θ we find Kw ≈ (−i)wθw[Ī − (−1)t−wθ2(t−w)+2Z̄].
Each of these Kraus operators corresponds to performing a
weak measurement of Z̄ with a measurement outcome that
depends on the weight of the stabilizer.

An important takeaway is this: whereas previously
the syndrome probabilities were completely independent
of the logical state, this is no longer true for the even distance
codes. For these codes, the unitary error is generating some
entanglement between the logical and stabilizer qubits and
the stabilizer measurement outcomes can depend on the initial
logical state.

We can now evaluate the overall noise map for even
distance repetition codes, which has the same form as Eq. (19)
but with the parameters as follows:

x ′ =
t∑

w=0

(
n

w

)
xn−w(1 − x)w + 1

2

(
n

t + 1

)
xt+1(1 − x)t+1

(31)

= 1

2

(
n

t + 1

)
xt+1(1−x)t+1+

n∑
w′=t+2

(
n

w′

)
xw′

(1−x)n−w′
,

(32)

iy ′ = yn

[
t∑

w=0

(
n

w

)
(−1)t−w − 1

2

(
n

t + 1

)]
= 0. (33)

As we argued in the odd case, this expression holds for all
initial x and y. A cancellation arises such that the unitary
component of the error is totally removed after a single round
of error correction. Once again, this cancellation depends on
the fact that all Kraus operators contribute at the same order,
so in practice for a large t code this involves averaging over
very rare events.

As for the case of odd distance repetition codes, it is
possible to generalize the conditional effective channels to
the general noise model of Eq. (5). We will not write the
formulas for x̄ ′

w, x ′
w, y ′

w explicitly. However, note that the
overall probability for a syndrome w is

pw = xw(1 − x)n−w + xn−w(1 − x)w − 2(−1)t−wyn〈Z̄〉.
(34)

In contrast to the case of odd distance, this probability depends
on y as well as x and so the behavior is distinct from that
for the Pauli channel approximation. It also depends on the
logical state. Measuring the syndrome implements a weak
measurement of Z̄ and this is reflected in the syndrome
outcome probabilities. Note that for low w, this dependence
is rather weak.

C. Nonuniform single-qubit errors

These considerations work equally well when the unitary
error on each physical qubit can be distinct. The generaliza-
tion from the case of uniform unitary errors can largely be
handled by modifying the notation. We will consider the case
of rotations about the z axis by angles θj that differ between
the qubits.

Stepping through the calculations above to find the effec-
tive channel for a given syndrome, we first write the error
process on the n qubits as a sum over syndromes as follows:

Ũ =
n⊗

i=1

U (θi ) =
t∑

w=0

∑
w:|w|=w

Zw[fw(θ )Ī + fn−w(θ )Z̄].

(35)

We have defined the following function:

fw(θ ) =
n∏

j=1

(−i sin θj )wj cos1−wj (θj ). (36)

Consequently, the Kraus operator corresponding to the syn-
drome w is as follows:

Kw = fw(θ )Ī + fn−w(θ )Z̄. (37)

Now that the unitary errors are not uniform, the effective
channels for each syndrome are distinct. The number of
distinct effective channels has risen from t to 2n−1.

We can write these effective channels in terms of the
parameters xj and yj as follows:

x̄ ′
w =

n∏
j=1

x
wj

j (1 − xj )1−wj , (38)

x ′
w =

n∏
j=1

x
1−wj

j (1 − xj )wj , (39)

y ′
w = (−1)t−w

n∏
j=1

yj . (40)

As in our earlier examples, these expressions have been estab-
lished only for unitary rotations about the z axis but hold also
for the model with nonuniform dephasing included. In this
case, the generalization can be established more straightfor-
wardly. The map from the physical noise process, specified by
the parameters {xj }, {yj }, and {x̄j = 1 − xj } to the effective
logical noise process for the syndrome w, given by x̄ ′

w, x ′
w, y ′

w

is a polynomial where each term is nth order overall and
first order in x̄j , xj , yj for each j . These polynomials are
fixed uniquely by considering just the unitary case. We were
not able to use this argument previously because in the uni-
tary case y2 = x̄x which generally leads to an ambiguity in
generalizing from the unitary to the general case using this
method. This ambiguity is avoided here because no quadratics
in the parameters x̄j , xj , yj arise. Having established these
results for nonuniform noise without explicitly considering
dephasing, we could reobtain the results of Sec. III A by
specializing to the uniform case and then averaging over
syndromes.
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IV. EFFECTIVE CHANNELS WITH COHERENT ERRORS
FOR GENERAL STABILIZER CODES

The same approach can be used to find effective channels
for more general stabilizer codes, including the channel con-
ditioned on a given syndrome. The main ideas have already
arisen in the context of the repetition codes, but for a general
stabilizer code there is a greater overhead of notation and
some technical details. The main result of this section is that
the diamond distance error for unitary noise processes after
ideal correction scales like θd where d is the distance of the
code when a minimum distance decoder is used. Readers who
are more interested in the specific effective channels may wish
to skip ahead to the next section.

As discussed in the Appendix, a general product of Pauli
matrices on n qubits can be specified by a binary vector b
of length 2n. Ones in the first n entries specify the locations
of X operators, while ones in the second group of n entries
specify the locations of Z operators. A qubit acted on by
both an X and a Z is understood to be acted on by Y . We
will use the notation Pb to indicate the resulting product of
Paulis. If mx , my , and mz are the numbers of X, Y , and
Z operators in the product, then the Hamming weight is
w = mx + my + mz. We refer the reader to [30] for further
information on stabilizer quantum error correcting codes. The
discussion in the Appendix provides a brief summary and
fixes our notation.

We now wish to consider general unitary rotations, so we
have H = αxX + αyY + αzZ. Since H 2 = I we have α2

x +
α2

y + α2
z = 1. We can therefore rewrite our overall unitary on

n qubits (14) as follows:

Ũ =
∑

b

fw(θ )αmPb, (41)

where we have used the shorthand notation αm = αmx
x α

my

y α
mz
z .

As before, we can generalize to the case of nonuniform
unitary noise straightforwardly. We obtain

Ũ =
∑

b

gb(θ,α)Pb, (42)

with the definition

gb(θ ,α) =
n∏

j=1

(−i sin θj )wj (b) cos1−wj (b)(θj )

× α
mxj (b)
xj α

myj (b)
yj α

mzj (b)
zj . (43)

Both the rotation angles θj and the rotation axes, given by
αxj , αyj , αzj , now change from qubit to qubit. We have used a
notation such that mxj (b) is one if Pb has an X for qubit j and
is zero otherwise.

Consider now a stabilizer code. The stabilizer generators
are signed products of Pauli matrices ±Pgi

where the binary
vectors gi satisfy certain constraints, for example, that the
stabilizer generators all commute. A general member of the
stabilizer group St is described by the length n − k binary vec-
tor t , where those in the vector signify that the corresponding
stabilizer generator is part of the product that results in St .
The code has k logical X operators X̄i = Pxi

and k logical Z

operators Z̄i = Pzi
. These logical operators are defined only

up to multiplication by elements of the stabilizer group, but

here we will pick particular coset representatives. We can
describe products of logical Pauli operators Ll by a length
2k binary vector l = (lx, lz), in analogy to the Pauli matrices.

Now consider implementing the error correction with a
specific decoder. First, the stabilizers are measured, and there
are 2n−k syndromes. For a given Pauli error Pb, we associate
the syndrome y = s(b). We will choose a fiducial Pauli error
E y having the lowest possible weight among all errors that
lead to that syndrome. There may be more than one choice
for some syndromes, particularly for degenerate codes, and
in that case we choose the lexicographically first choice of
Pauli. We therefore define the symmetric decoder (or minimum
weight decoder) to be the decoder that chooses the following
correction:

E†
y = Pr ( y), r ( y) = lex arg min

b
{|b| : s(b) = y}, (44)

where recall that |b| is the Hamming weight of b. We note that
this decoder is generally not optimal, so some decoders could
potentially do even better than suggested by our analysis.

Later in the paper, we will discuss two slight variants of this
decoder. In Sec. IV we consider simplifications to the effective
noise channels that arise from symmetries of the code. In
that case, choosing the correction to be the lexicographically
first choice of Pauli with the required syndrome and lowest
possible weight can result in a correction procedure that has
less symmetry than the code itself. An example is the Steane
code, where certain two-qubit errors can be corrected. If these
are chosen to be the two-qubit Paulis made up of one X

and one Z error, then the effective noise channels simplify.
In such examples it is possible to specify the corrections
E y out of the set of possible lowest weight corrections for
that syndrome so as to preserve the symmetry of the code.
A second modification of the decoder is used in Sec. VI
where we consider noise processes that are combinations of
dephasing and Z rotations. Since for these noise processes
only Z errors can occur, we can improve the performance
of the code by choosing E y to be the lowest weight product
of Pauli Z errors that could produce the syndrome y. If no
product of Z’s results in the syndrome we can, as before,
choose the lowest weight correction, however, this syndrome
will not arise.

Having specified a decoder we know that for any Pauli
matrix Pb there is a unique syndrome s(b) and correction
E

†
s(b) such that E

†
s(b)Pb commutes with the stabilizer group.

Thus, E
†
s(b)Pb is in the normalizer group that is generated

by the logical operators and the stabilizer group (see for
example [30]). Thus, there exists a logical operator Ll (b),
stabilizer St (b), and phase factor ηb equal to ±1 or ±i such that
E

†
s(b)Pb = ηbLl (b)St (b). Consequently, every Pauli matrix can

be written uniquely in the form Pb = ηbEs(b)Ll (b)St (b). This
mapping is a property of the chosen error correcting code, en-
coding unitary and decoding schemes. Equally for any choice
of syndrome s, logical operator l , and stabilizer element t
their product is a Pauli matrix up to a phase so that there is a
unique b(s, l, t ) and ηs,l,t such that Pb = ηs,l,tEsLlSt . So, the
mapping between b and (s, l, t ) is one-to-one and onto. Note
that the 4n Pauli products Pb are accounted for since there
are 2n−k syndromes, 4k logical operators, and 2n−k stabilizer
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elements, which can together result in 2n−k × 4k × 2n−k = 4n

distinct products.
With these preliminaries completed, we can now rewrite

the expression for Ũ from Eq. (41) as a sum over syndromes,
rather than a sum over products of Paulis:

Ũ =
∑

s

∑
l

∑
t

fw(s,l,t )(θ )αm(s,l,t )ηs,l,tEsLlSt . (45)

This expansion for Ũ makes it very straightforward to read
off the Kraus operators of the effective channel. Since we start
in the code space, the stabilizers in this product act trivially.
The syndrome measurement projects the system onto a single
value of s and the correction E

†
s removes the fiducial error for

that syndrome. Consequently, we obtain 2n−k Kraus operators
indexed by s acting on the logical qubit as follows:

Ks =
∑

l

∑
t

fw(s,l,t )(θ )αm(s,l,t )ηs,l,tLl . (46)

The nonuniform case is nearly identical:

Ks =
∑

l

∑
t

gb(s,l,t )(θ,α)ηs,l,tLl . (47)

This expression can be used to study general properties of
the effective channel. We will restrict our discussion to the
following theorem.

Theorem 1. For any [n, k, d] stabilizer code, the diamond
norm error D′

� of the logical qubits after ideal error correction
using a minimum weight decoder satisfies

D′
� � cn,kD

d
� (48)

for independent unitary errors with rotation angles satisfying
|θi | � π/4, where D� = maxi | sin θi |. The constant cn,k de-
pends on n and k but is independent of the errors.

Proof. Our result is analogous to Theorem 5.5 of [31]
when applied to unitary errors, and our proof follows the
contours of that theorem. We will explicitly consider the case
of uniform errors. The generalization to nonuniform errors is a
straightforward modification using the approach of Sec. III C
and Eq. (47) for the Kraus operator arising from the syndrome
s with nonuniform unitary noise.

We must first explicitly separate the nontrivial logical
operators from the identity in the expansion over syndromes.
So, consider

Ũ =
∑

s

∑
t

fw(s,0,t )(θ )αm(s,0,t )ηs,0,tEs Ī St

+
∑

s

∑
l �=0

∑
t

fw(s,l,t )(θ )αm(s,l,t )ηs,l,tEsL
′
lSt . (49)

We have written L′
l in the second term above just to emphasize

that the logical identity operator does not arise in the sum.
We seek to understand the relative size of the terms in this
expansion. We have restricted attention to |θ | � π/4 so that
higher weight errors are less likely than lower weight errors.
Notice that in this regime we have | tan θ | � 1 and therefore
|fw(θ )| � |fw′ (θ )| when w � w′. On the other hand, all the
factors αm satisfy |ηbα

m| � 1 and the operator norm of the
product of Pauli matrices EsLlSt is � 1.

We now analyze the Hamming weights of the various terms
in Eq. (49). In each term of this sum we will specify the

weight of the correction operator E
†
s by ws . Considering the

first of the two terms in Eq. (49), the identity is a member
of the stabilizer group, so that one of the terms is just Es

itself and has Hamming weight ws . The other terms in the
sum are of the form EsSt and each of these terms is a possible
error process that leads to the same syndrome s. But, we have
chosen our decoder such that ws is the lowest possible weight
for an error with this syndrome. So, all the contributions to
the first term in Eq. (49) have w � ws . Since we have a
quantum error correcting code, all errors up to and including
some Hamming weight t will be corrected by the code. For
odd d we have d = 2t + 1, while for even d, d = 2t + 2.
Every product of Paulis of Hamming weight w � t is either a
member of the stabilizer group, or one of the fiducial errors
Es, or is equivalent to some Es up to multiplication by a
stabilizer operator. Consequently, every product of Paulis with
Hamming weight w � t occurs somewhere in the first term
of Eq. (49). Considering now the second term in Eq. (49),
clearly we have w � t + 1 for all the contributions, regardless
of s. For specific values of s we can be more precise. For each
syndrome, the factor L′

lSt is a nontrivial logical operator and
therefore has weight at least d. Therefore, in each contribution
to the syndrome s the product of Pauli matrices EsL

′
lSt has

weight w � d − ws . (Note that in examples like the Steane
code it is possible to correct certain errors Es with ws > t .
For these syndromes, w � t + 1 will be a better bound on the
Hamming weight of EsL

′
lSt .)

Consequently, we can consider the corresponding expan-
sion of Ks:

Ks =
∑

t

fw(s,0,t )(θ )αm(s,0,t )ηs,0,t Ī

+
∑
l �=0

∑
t

fw(s,l,t )(θ )αm(s,l,t )ηs,l,tL
′
l . (50)

In the first term we have w � ws and in the second we have
w � max(d − ws, t + 1). The overall effective channel is

NL(ρ) =
∑

s

KsρK†
s =

∑
l,l ′

rl,l ′LlρL
†
l ′ . (51)

Specifically,

rl,l ′ =
∑
s,t,t ′

fw(s,l,t )(θ )fw(s,l ′,t ′ )(θ )αm(s,l,t )αm(s,l ′,t ′ )ηs,l,tηs,l ′,t ′ .

(52)

This is a trace-preserving, unital, completely positive map
since the encoding, recovery, and decoding maps are all unital
and trace preserving.

If we specify that both l and l ′ are nontrivial so Ll , Ll ′ �= Ī ,
then

|rl,l ′ | �
∑
s,t,t ′

|fw(s,l,t )(θ )fw(s,l ′,t ′ )(θ )| � 8n−k|ft+1(θ )|2

� 8n−k|f2t+2(θ )| � 8n−k|fd (θ )|. (53)

The first inequality is just the triangle inequality com-
bined with the fact that |αm| � 1 and ηs,l,t � 1. The sec-
ond inequality follows from the fact that each w appearing
in the sum satisfies w � t + 1 and so |fw| � |ft+1| when
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|θ | � π/4. The prefactor just counts the number of terms
in the sum over the syndromes and two copies of the
stabilizer group. To see the third inequality notice that if
w + w′ � n, then |fwfw′ | = | sin(θ )|w+w′ | cos(θ )|2n−w−w′ �
| sin(θ )|w+w′ | cos(θ )|n−w−w′ = |fw+w′ |.

Applying the same logic to the case where l ′ = 0, so that
Ll ′ = Ī , and l �= 0 we see that

|rl,0| �
∑
s,t,t ′

|fw(s,l,t )(θ )fw(s,0,t ′ )(θ )|

� 4n−k
∑

s

|fws
(θ )fd−ws

(θ )| � 8n−k|fd (θ )|. (54)

The second inequality here results from the fact discussed
above that for each term in the sum w(s, l, t ) � d − ws and
w(s, 0, t ) � ws . Clearly, the case of r0l ′ with l ′ �= 0 is the
same.

Finally, we can bound r0,0 since NL(ρ) is trace preserving
and unital and so

∑
l rl,l = 1, and therefore

|r0,0 − 1| � (4k − 1)8n−k|fd (θ )|. (55)

The result follows by applying the triangle inequality and
the fact that if Nl,l ′ (ρ) = LlρL

†
l ′ then ‖Nl,l ′ ‖� = 1. This last

statement follows from the characterization of the diamond
norm in terms of the maximum output fidelity in [32, Theorem
5]. �

A couple of remarks are in order. First, collecting the
constant factors and simplifying, we see that the statement
holds with cn,k = 23n+k + 23n−k � 23n+k+1, but no attempt
was made to optimize the constant and significantly better
bounds might exist. Second, we note that most of the error
correcting codes that we have studied saturate this inequality
in the sense that the diamond norm distance after error correc-
tion scales as |θ |d for a small initial unitary angle, regardless
of code or rotation axis. Only for certain codes and specific
rotation axes have we observed a more favorable scaling.
Third, our theorem bounds the diamond norm error in terms of
θd for all stabilizer codes. However, for large distance codes
operating close to threshold, this bound will be very weak.
For large distance codes, the expected θd dependence of the
effective channel will occur but only for very small values of
θ , very far below threshold. We also note that the intermediate
stages of our proof reproduce the observations about unitary
channels made at the level of the process matrix by Gutiérrez
et al. [11]. Finally, we note that a related version of this result
in terms of the average gate infidelity was recently proven
independently by Beale et al. [33].

Effective channels for symmetric codes

It has been observed that the effective channels for widely
studied error correcting codes, such as the five-qubit and
Steane codes, typically have many fewer distinct conditional
channels than there are syndromes of the code [29]. We saw
an example of this for the repetition code where, due to the
permutation symmetry of the code, the conditional channel
just depends on the weight of the correction operator and not
on the detailed syndrome for uniform noise. Clearly, symme-
tries of the error correcting code can simplify the effective
channels that arise for uniform noise. Here, we briefly discuss

these simplifications. Symmetries of stabilizer codes have
been studied previously (see for example [34–37]).

We will largely focus on the automorphism group of the
code under permuting qubits, but we can formulate the notion
of symmetry more generally. For our purposes, a stabilizer
code together with its error correction procedure will have
interesting symmetries when there is some subgroup G of the
Clifford group acting on the physical qubits that preserves the
error correction procedure. We will say that an error correcting
code is symmetric under G if the logical operators can be
chosen to be invariant under G and the stabilizer group is
preserved under the action of G. Specifically, for all G ∈
G and stabilizer elements t there exists some t ′ such that
GStG

† = St ′ , while for all G ∈ G and l we have GLlG
† =

Ll . We will say that the decoding procedure is symmetric if
the code is symmetric and for all G and t there is some t ′
such that GEtG

† = Et ′ . Up until now we have used the term
symmetric decoder if the correction E

†
t has the lowest weight

of any error that could have caused the syndrome t . We now
place this further requirement on the choice of correction.

When the error correction procedure is symmetric, the syn-
dromes will break up into orbits under the action of G. Rather
than considering general Clifford symmetries of stabilizer
codes, we will now specialize to the case where the symmetry
of the code is some group of permutations of physical qubits.
Qubit permutations are very special because they preserve the
Hamming weight and αn. Thus, if we perform a permutation
GPbG

† = Pb′ , then w(b′) = w(b) and so on. We will see that
conditional channels of all syndromes in a given orbit are
equal for such permutation symmetries of stabilizer codes.
This explains the simplifications observed in Sec. III for the
repetition code and in [29] for a range of other codes.

To demonstrate that the effective channels for syndromes
in a single orbit are equal, consider a fixed syndrome s and
a fixed permutation G ∈ G. Then, we define s′ such that
GEsG

† = Es′ . Now, let us consider a single term in Eq. (45)
that has the chosen s, we have

Pb = ηs,l,tEsLlSt (56)

and if we define b′ such that GPbG
† = Pb′ we have

Pb′ = ηs,l,t (GEsG
†)(GLlG

†)(GStG
†)

= ηs,l,tEs′LlSt ′ = ηs′,l,t ′Es′LlSt ′ . (57)

The second equality just arises from the definitions and the
fact that the error correction procedure is symmetric under
G. The third equality holds because η can be written in
terms of the commutators of the various factors, and these are
preserved under the action of the unitary. (Alternatively, it can
be written in terms of the symplectic inner product which is
manifestly invariant under swapping qubits; see the Appendix
for more details.) Moreover, we have

w(s, l, t ) = w(b) = w(b′) = w(s′, l, t ′) (58)

since permutations leave the weight unchanged, and the same
identity holds for αn. The mapping takes St to St ′ under the
group G so in the formula for the Kraus operator of the
conditional channel (46) each term in the sum for Ks maps
invertibly to a single term in the sum for Ks′ . Consequently,
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we have

Ks =
∑

l

∑
t

fw(s,l,t )(θ )αn(s,l,t )ηs,l,tLl (59)

=
∑

l

∑
t ′

fw(s′,l,t ′ )(θ )αn(s′,l,t ′ )ηs′,l,t ′Ll = Ks′ . (60)

Thus, all the Kraus operators corresponding to syndromes in
a given orbit of the symmetry are equal.

We have shown these simplifications only for unitary noise
at the physical level. It would be interesting to extend this
analysis to noise processes with more than a single Kraus
operator. In the case of repetition codes with an odd number
of qubits, we can choose the code and decoding procedure
to have the full permutation symmetry of the d qubits. This
implies that the Kraus operators can only depend on the
Hamming weight of the correction procedure, as we observed
in Sec. III.

In the case of the five-qubit code [38], the stabilizer
group is generated by the operators XZZXI and its cyclic
permutations and the logical operators can be chosen to be
X̄ = XXXXX and Z̄ = ZZZZZ. It is clear that this code
is symmetric under cyclic permutations of the qubits. It is
also symmetric under the permutation (1, 5)(2, 4), which is
a reflection if the five qubits are arranged on the vertices of
a pentagon. This generates the group D10 of symmetries of
the pentagon. (We believe that this is the full symmetry group
of the code.) The five-qubit code is a [5,1,3] code and there
are 2n−k = 16 distinct syndromes. In the symmetric decoder
we choose correction operations that are the lowest weight
Paulis that can result in each syndrome. These are the identity
IIIII , and the 15 single-qubit Pauli’s. This set of correction
operators is symmetric under the full permutation group, so
we can conclude that the overall error correction procedure
is symmetric under D10. The correction operations break into
four orbits under this group. Representatives of these orbits
are IIIII, XIIII, Y IIII , and ZIIII . Consequently, there
are four distinct conditional effective channels for the five-
qubit code under the symmetric decoder. This agrees with the
number of conditional effective channels in [29].

For the Steane code [39] we can use similar arguments.
This is a CSS code with its X-type stabilizers generated
by XXXIXII, XIXXIXI , and XXIXIIX. The Z-type
stabilizer generators are obtained by replacing X with Z.
The logical operators can be chosen to be X̄ = XXXXXXX

and Z̄ = ZZZZZZZ. The code is symmetric under the
permutations (2, 3)(6, 7), (2, 3, 4)(5, 6, 7), (1, 3)(2, 5), and
(1, 3)(4, 6). These permutations generate the 168-element
group GL(3, 2), which is the group of symmetries of the
Fano plane. One can check by exhaustive search that this
is the full symmetry group of the code. In order to identify
the symmetry group we found it useful to picture the Steane
code as the smallest possible color code. From this point of
view, the qubits in the code correspond one-to-one with the
points of the Fano plane. Moreover, the lines of the Fano
plane correspond to the logical operators with weight 3. (It
would be interesting to know whether some relationship of
this kind holds between other color codes and other finite
geometries.) Since the Steane code is a [7,1,3] code, there are
2n−k = 64 distinct syndromes. In the symmetric decoder, the

correction operations are the identity IIIIIII , the 21 single-
qubit Paulis, and the 42 Paulis that are the tensor product of
a single X with a single Z. This set of correction operators
is symmetric under the full permutation group, so we can
conclude that the overall error correction procedure is sym-
metric under GL(3, 2). The correction operations break into
five orbits under this group. Representatives of these orbits are
IIIIIII, XIIIIII, Y IIIIII, ZIIIIII , and XZIIIII .
This number of orbits does not agree with the seven inequiv-
alent conditional effective channels stated in [29] for general
noise processes. However, our result only applies to unitary
channels (which may have higher symmetries than the more
general channels considered in [29]) and it is not clear whether
the decoder in [29] has the highest possible symmetry. So, we
expect that these statements are not in disagreement.

Note that these simplifications are independent of the exact
unitary error that has occurred and for certain highly symmet-
ric noise processes it is possible that there are further reduc-
tions in the number of distinct conditional effective channels.
We will see that an example of this is the five-qubit code with
unitary errors of the form exp[−iθ (X + Y + Z)/

√
3].

For specific examples that we considered there are still
patterns in the expressions for the conditional effective chan-
nels that arise from the structure of the code. One instance
where such examples arise is when the code has a nontrivial
single-qubit transversal gate. Such a transversal gate maps the
stabilizer group to itself but acts nontrivially on the logical
operations, the corrections Es, and the factors αn. In the
example of the five-qubit code, the Clifford gate that maps
X → Y → Z → X is transversal. This makes it possible to
infer the conditional effective channel for an error in the orbit
given by YIIII in terms of the one for errors in the orbit
containing XIIII .

V. PERFORMANCE OF STABILIZER CODES
UNDER COHERENT ERRORS

In this section we will review the performance of a variety
of quantum error correcting codes against coherent errors
using the techniques developed so far. Recall that for a unitary
error we have D� ≈ 3

√
r/2 ≈ |θ | so that there is a large

difference between the size of errors as estimated in random-
ized benchmarking and errors as measured by diamond norm
distance. Characteristically we find that after error correction
the diamond norm error of the effective channel D′

� is much
smaller than would be expected based on the diamond norm
error at the physical level. For dephasing errors, D′

� ∝ Dt+1
�

for a small error. On the other hand, we have seen that for a
unitary error D′

� � cDd
� .

The difference in this behavior is almost sufficient to
overcome the distinction between diamond norm error and
average gate infidelity at the physical level. If r is the av-
erage fidelity error at the physical level, then for an odd
distance code we find D′

� � c(3/2)2t+1rt+1/2 for unitary er-
rors, while for dephasing errors D′

� ∝ rt+1. For even distance
codes this comparison is even more striking, we find D′

� �
c(3/2)2t+2rt+1 for unitary errors, compared to D′

� ∝ rt+1 for
dephasing errors. So, the scaling with r is the same for
both unitary and dephasing errors. We emphasize that these
results assume ideal error correction, and do not analyze
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fault-tolerant gadgets and noisy gates and measurements.
They do suggest that there is a need for a sharper analysis
of the performance of fault-tolerant gadgets against unitary
errors.

The remainder of this section explores the logical effec-
tive channels and the logical diamond norm error scaling
relative to the physical diamond norm error and the physical
average gate infidelity for a variety of small quantum codes
using pure unitary errors around arbitrary axes. In the next
section, we will also consider the more general noise model
that includes dephasing and demonstrate with the Steane code
how the computation of the effective logical channel can
be used to find thresholds for concatenated codes with the
symmetric decoder.

A. Repetition codes

In the limit of low error x, y � 1, we can compute simple
approximations for the diamond norm error of the effective
channel of the repetition codes discussed in Sec. III. For
pure dephasing noise we have y = 0 and D′

�  (
n

t+1

)
xt+1 =(

n

t+1

)
Dt+1

� = (
n

t+1

)
(3/2)t+1rt+1 which is the expected scaling

with error probability, physical diamond norm error, and
average gate infidelity, respectively.

For unitary errors we have y2 = x(1 − x) and it is possible
to see that D′

� is dominated by the contribution arising from
y ′. Consequently, we have D′

�  (2t

t

)|y|2t+1  (2t

t

)
D2t+1

� (2t

t

)
(3/2)t+1/2rt+1/2, which is the scaling suggested by The-

orem 1. Notice that these results imply that a simple Pauli
twirling approximation to a unitary error, which just sets y =
0, would underestimate the logical error, finding D′

PT A� (2t+1
t+1

)|θ |2t+2 in the limit of small |θ |, as opposed to
(2t

t

)|θ |2t+1.
In the terminology of [40], this implies that the Pauli twirling
approximation to the effective noise channel is dishonest but
it is less dishonest than when the PTA is applied at the logical
level.

B. Effective channels for unitary errors:
The five-qubit code and others

As discussed in Sec. IV, the five-qubit code is symmetric
under cyclic permutation of the qubits of the code, and also
possesses a symmetry resulting from the transversal Clif-
ford gate operation that maps X → Y → Z → X. Conse-
quently, we begin by considering unitary errors of the form
exp[−iθ (X + Y + Z)/

√
3] which enhances the symmetry of

the various effective error channels. The five-qubit code has
16 syndromes, and in this highly symmetric case there are
only two conditional effective channels, one corresponding
to the trivial syndrome. All the nontrivial syndromes result
in the same effective channel. These two channels are each
described by a single Kraus operator K0 in the trivial case and
K1 in the nontrivial case. They can be written as follows:

K0 = (g0 + 15g4)Ī − (10g3 − 6g5)(X̄ + Ȳ + Z̄), (61)

K1 = (g1 + 4g3 + 3g5)Ī − (2g2 + 2g4)(X̄ + Ȳ + Z̄), (62)

where gw = fw/(
√

3)w.
Inspecting the expressions for K0 and K1 we can see that

this behavior is qualitatively very similar to what we observed

for the repetition codes. It is straightforward to check that
both K0 and K1 are proportional to a unitary and correspond
to rotation about the same axis (X + Y + Z)/

√
3 as occurs

at the physical level. In the case of a small rotation error
θ � 2π , we find that the trivial syndrome occurs with high
probability and results in a rotation θ ′

0  10θ3/3. A nontrivial
syndrome occurs with probability 15θ2 and results in a
rotation θ ′

1  −2θ . Notice that conditioned on a nontrivial
syndrome, the rotation angle has actually increased. Never-
theless, this pattern is exactly the one seen in the repetition
code, and saturates the scaling limit of Theorem 1 since we
have D′

�  cD3
� for small θ . The qualitative behaviors that we

observed for the repetition codes and special rotation axes are
also seen in proper stabilizer codes for typical rotation axes.

Consider now a rotation about the Z axis. In this case, we
find four inequivalent Kraus operators. The first corresponds
to the trivial syndrome. There are then five syndromes that
detect single Z errors and result in a effective error that is
rotation about the Z axis. The other two classes of syndromes
would generally detect single Y and X errors. But, since
these do not arise for this noise model, they detect two-qubit
Z errors of the form ZZIII and ZIZII , respectively. The
resulting Kraus operators are

K0 = f0Ī + f5Z̄, (63)

K1 = f1Ī + f4Z̄, (64)

K2 = −f2Ȳ − if3X̄, (65)

K3 = −f2X̄ + if3Ȳ . (66)

Here, K1 is the conditional channel that results when the
correction operation is a Z operation, K2 corresponds to a Y

operation, and K3 is an X operation. The Kraus operators are
proportional to unitaries, but this time the rotation axis is not
necessarily the same as the original unitary. Notice that from
these conditional effective channels we find D′

�  cD4
� so that

unitary errors about this axis are much better corrected than
for a typical rotation axis.

We see that for this Pauli axis rotation, the five-qubit code
behaves as if it corrects two errors rather than one, and if
we modified the correction operation to correct for two-qubit
Z errors it would be possible to correct the unitary rotation
such that D′

�  cD5
�. This is consistent with the fact that

the five-qubit code has distance 5 if there are only Z errors,
as it becomes a repetition code in this limit. Note that this
improvement requires that the rotation axis of the unitary is
known.

We will not write the effective channels for a general
rotation axis, but it is illuminating to see how the performance
of the code varies as the rotation axis is changed. This is
shown in Fig. 1, where D′

�/D
d
� is plotted for various rotation

axes. The improved performance for rotations about the Pauli
axes is clearly visible. It can be seen that rotations about
axes like (X + Y + Z)/

√
3 are local maxima for the diamond

norm error after error correction.
We can study the performance of many other stabilizer

codes in the same way. The general behavior is similar to
the five-qubit code, although for typical codes the scaling of
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FIG. 1. (a) Contour plot of the ratio D′
�/D

d
� against the rotation axis of a single-qubit unitary error for the [5,1,3] five-qubit code using

the symmetric decoder. The polar angle is u and the azimuthal angle is v. The rotation angle for the unitary error was chosen to be θ = 0.01.
(b) 3D spherical plot of the ratio D′

�/D
3
� for the [5,1,3] five-qubit code calculated as for (a). Rotations about Pauli axes are suppressed at a

higher order than all other axes.

D′
� with Dd

� holds for all rotation axes. This is true of the
Steane code, for example, as shown in Fig. 2(a), where we see
improved performance for rotations about (X + Y + Z)/

√
3

and reduced performance for rotations about the Pauli axes.
We provide a few further examples of the dependence of

the effective channel on the rotation axis of the unitary which
arises when using the symmetric decoder. In Fig. 2(b) we
show the analogous plot for the Bare [7,1,3] code of Li et al.
[41] and in Fig. 2(c) the [9,1,3] Shor code [42]. In the case
of the Shor code, errors for rotations about Z are corrected
less well than rotations about X due to the structure of this
code as a concatenation of codes correcting bit flips and phase
flips. This concatenation structure means that the subgroup of
the stabilizer group made up of products of X operators is
larger than the subgroup made of products of Z’s. Lastly, we
show the [9,1,3] surface code [43] in Fig. 2(d). Here again we
see that there is enhanced correction along (X + Z)/

√
2 and

especially along Y . This is consistent with the large increase
in the error correction threshold observed for incoherent Y

noise in the surface code when using an optimal decoder [26].
Unfortunately, we do not have a general understanding of the
symmetry axes that show enhanced performance for all of the
codes that we plot in Fig. 2, and it remains an intriguing open
problem to better explain or predict such behavior in the most
general case.

VI. CONCATENATED CODE THRESHOLDS FOR JOINT
UNITARY AND DEPHASING ERRORS

We now return to the noise model of Eq. (5), which com-
bines Z-axis rotation with dephasing. Whereas previously we

have always used the symmetric, minimum distance decoder,
we now specialize to a Z-only decoder that finds the minimum
distance correction among all Paulis consisting only of Z and
I . This is sensible since for these noise channels only Z-type
errors are supported.

For any given code we can regard the ideal error correction
as a map on the noise channel. For most of the codes we have
investigated we find that the form of the noise is unchanged
and there exist some (x ′, y ′) such that the error correction im-
plements the map (x, y) → (x ′, y ′). This type of calculation
was also performed by Gutiérrez et al. [11], but in contrast we
do not need the full process matrix since our noise model is
restricted to Eq. (5) and so is a function solely of x and y. For
example, for the Steane code we find

x ′ = 21x2 − 98x3 + 210x4 − 252x5 + 168x6 − 48x7

+ 42y4 − 252xy4 + 504x2y4 − 336x3y4, (67)

y ′ = 14y3 − 168xy3 + 504x2y3 − 672x3y3

+ 336x4y3 + 48y7, (68)

so to lowest order, under unitary noise only, p′ ≈ 63θ4 and
θ ′ ≈ 14θ3, which is consistent with Theorem 1.

This procedure can handle rather larger codes. As a further
example, consider the [16,1,4] surface code described in [44].
We consider the noise model of Eq. (5) and perform correction
by measuring X stabilizers only. With the Z-only decoder, we
find y ′ = 0 and

x ′ = 32x2 − 188x3 + 484x4 − 500x5 − 612x6 + 3136x7 − 5680x8 + 6080x9 − 4032x10 + 1536x11 − 256x12 + 28xy2

− 222x2y2 + 756x3y2 − 1378x4y2 + 1104x5y2 + 752x6y2 − 2880x7y2 + 3120x8y2 − 1600x9y2 + 320x10y2

+ 12y4 − 96xy4 + 208x2y4 + 416x3y4 − 3088x4y4 + 7040x5y4 − 8320x6y4 + 5120x7y4 − 1280x8y4 − 10y6

− 32xy6 + 704x2y6 − 2880x3y6 + 5280x4y6 − 4608x5y6 + 1536x6y6 − 48y8 + 384xy8 − 1152x2y8 + 1536x3y8

− 768x4y8 − 16y10 + 64xy10 − 64x2y10. (69)
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FIG. 2. 3D spherical plots of the ratio D′
�/D

d
� against the rotation axis of a single-qubit unitary error for various error correcting codes

using the symmetric decoder. The rotation angle for the unitary error was chosen to be θ = 0.01. The codes are (a) the Steane code, (b) the
Bare [7,1,3] code [41], (c) the [9,1,3] Shor code, and (d) the [9,1,3] surface code. Different codes have different axes along which the post-error
correction diamond norm error is more favorable than others.

It is striking that for this even distance error correcting code
we reproduce the behavior for even distance repetition codes
where we also found y ′ = 0. This confirms that the behavior
seen there also arises for other more interesting quantum error
correcting codes, although we still do not know if this is true
for every even distance code in general.

As discussed by Rahn et al. [25], the effective channel can
be used to study the performance of concatenated codes. The
effective channel can be regarded as a map on noise processes,
and iterating this map corresponds to concatenated error cor-
rection. As always, the noise map corresponds to a particular
choice of decoder. In this case, the corrections are made at
each level of the code using only the syndrome at that level.
The full syndrome of the concatenated error correcting code is
not used to determine the correction. Such decoders are known
as hard decoders and it has been shown that soft decoders,
that do consider the full syndrome, can lead to improved
performance [45]. Moreover, simply iterating the mapping
means that at each level of the code the symmetric decoder
is used. It has also been shown that there are hard decoders
that can improve on this [29]. (The improvements in [29]
typically depend on knowledge of the noise model, whereas
the concatenated symmetric or Z-only decoders can be speci-
fied independently of the precise noise model.) Nevertheless,

it is of interest to study the threshold of the concatenated
symmetric decoder under unitary noise. For example, it was
shown in [13] that after two levels of concatenation through a
repetition code a unitary error of the form exp(−iθZ) results
in an effective noise process dominated by dephasing.

Looking at the Steane code again, the mapping in Eq. (67)
can be concatenated to further reduce the noise in terms of the
diamond distance for unitary noise as in Fig. 3(a). The level-1
pseudothreshold is

θth1 ≈ 0.3276, D� th1 ≈ 0.3218. (70)

For comparison, under incoherent dephasing noise alone, the
level-1 pseudothreshold for concatenation of the Steane code
is

pth1 ≈ 0.0646, D� th1 ≈ 0.0646. (71)

As can be seen from Fig. 3(b), this is also equal to the true
threshold. This is because the logical noise model is exactly
of the same form at each level of concatenation. By contrast,
the true threshold for unitary Z rotation under concatenation
is

θth ≈ 0.1918, D�th ≈ 0.1906, (72)

FIG. 3. (a) Plots of the diamond distance D
(k)
� of the effective channel for the kth concatenation of the Steane code over the diamond

distance D� of the original unitary X noise channel for k = 0, 1, 2, 3, 4, 5. The true threshold and level-1 pseudothresholds are indicated by
dashed lines. (b) Thresholds for concatenation of the Steane code under unitary bit-flip noise as a basin of attraction in p and θ . Thresholds
and level-1 pseudothresholds for coherent and incoherent noise are labeled with dashed lines.
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TABLE I. Concatenated code thresholds in terms of physical
diamond norm error and average fidelity error for unitary Z noise
and incoherent dephasing using minimum-weight Z decoders. In
each case, the threshold diamond norm error exhibits two important
effects. First, the level-1 pseudothreshold differs by a significant
amount from the true threshold only for the case of unitary noise.
Second, the threshold is substantially higher in the case of unitary
errors compared to incoherent errors. Notice, however, that when the
thresholds are expressed in terms of the average fidelity error, then
the threshold for unitary error is less than or equal to the threshold
for a dephasing error.

Code Incoherent Coherent

[n, k, d] Name D�(pth ) r (pth ) D�(θth ) r (θth ) D�(θth1 ) r (θth1 )

[5,1,3] Five-qubit 0.5000 0.3333 0.7071 0.3333 0.8284 0.4575
[7,1,3] Steane 0.0646 0.0431 0.1906 0.0242 0.3218 0.0690
[7,1,3] Bare 0.5000 0.3333 0.7077 0.3333 0.8761 0.5117
[9,1,3] Shor 0.0499 0.0333 0.1177 0.0092 0.1477 0.0145
[9,1,3] Surface 0.0753 0.0502 0.2053 0.0281 0.3085 0.0634
[16,1,4] Surface 0.0395 0.0263 0.1613 0.0173 0.3180 0.0674

which is significantly lower than the level-1 pseudothreshold.
We can look at the behavior over the full range of parameters
to find the region for which the noise is below threshold and
can be reduced to an arbitrarily small value by concatenating
the code. This is done by considering the iterative map as
a dynamical system and finding the basin of attraction, as
indicated in Fig. 3(b).

We can repeat these calculations for a range of codes, as
before. The results are summarized in Table I. It is worth
noting that the true threshold for the two extremal noise
models of pure unitary Z-rotation error or pure dephasing
error exhibit a large gap in each of the cases we examine, and
perhaps surprisingly the threshold for coherent noise is higher
in every case.

VII. CONCLUSION

We have studied the performance of quantum error correc-
tion against coherent noise, and coherent noise together with
dephasing. We have proven that the logical effective channel
corrects coherent errors much more effectively than incoher-
ent errors, in the precise sense of Theorem 1. We have also
shown that a natural family of decoders exhibits this effect for
a wide range of codes both in the single-level coding regime,
and for concatenated codes. The thresholds that we calculate
suggest that quantum error correction performs better than
expected when the errors are coherent, at least in the sense that
this seems to lead to higher thresholds when these thresholds
are expressed in terms of diamond norm errors.

There are many open questions suggested by this work, but
the most interesting is to extend this analysis to the context
of fault-tolerant quantum computation. It would be extremely
interesting if the increased thresholds that we observed for
ideal error correction continued to hold for fault-tolerant
circuits. This would in turn strongly suggest that a sharper
analysis of the threshold is needed to get accurate estimates
of the threshold when coherent noise is taken into account. It
would also be especially interesting to investigate what further

improvements could be obtained for these channels using
optimal Pauli recovery channels instead of minimum distance
decoding, or other structured near-optimal recoveries [46].
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APPENDIX

In this Appendix we will collect some formulas from the
stabilizer formalism that are standard (see for example [30]),
but the discussion here will fix notation that will be required
in the main text. We will write every Pauli matrix on n qubits
in terms of two length n binary vectors bx and bz. Ones in
this vector will correspond to a Pauli matrix acting on the
corresponding qubit. The support of the vector bx will be
the set of qubits for which the corresponding entries of bx

are equal to one. The size of the support will be |bx |. We
will also define the binary vector bx · bz which is the bitwise
product of the two vectors, and has ones on the intersection
of the supports of bx and bz. These are the qubits on which
the corresponding Pauli matrix acts with Y . Recalling that
XZ = −iY , we have that a general Pauli matrix can be written

Pb = i|bx ·bz|X⊗bx Z⊗bz (A1)

and it is clear that the Pauli matrices are in one-to-one corre-
spondence to the 4n binary vectors bx, bz. Note that the Pauli
matrices Pb so defined are the products of Paulis with a coef-
ficient +1 and are therefore Hermitian. This Pauli has weight
w = |bx | + |bz| − |bx · bz|, there are mx = |bx | − |bx · bz| X

operators, mz = |bz| − |bx · bz| Z operators, and my = |bx ·
bz| Y operators in this product, so that mx + my + mz = w.

We will imagine that bx and bz are row vectors, and so
we can use the length 2n row vector b = (bx, bz) to denote
a general Pauli matrix. We can define a 2n × 2n symplectic
matrix

� =
[

0 I

−I 0

]
. (A2)

We can define a symplectic inner product as follows: b�b′T =
|bx · b′

z| − |bz · b′
x |. The two elements b and b′ commute if

and only if (−1)b�b′T = 1. While we have defined the sym-
plectic inner product as a number, we will only ever use its
value modulo 4. (Notice that there is a sign that is different
compared to Nielsen and Chuang [30] and we do not evaluate
inner products modulo 2, but rather use the conventional inner
product.)

We can therefore compute products straightforwardly:

PbPb′ = i|bx ·bz|i|b
′
x ·b′

z|X⊗bx Z⊗bzX⊗b′
x Z⊗b′

z (A3)

= (−1)|b
′
x ·bz|i|bx ·bz|i|b

′
x ·b′

z|X⊗bx X⊗b′
x Z⊗bzZ⊗b′

z (A4)

= (−1)|b
′
x ·bz|(−i)|b

′
x ·bz|(−i)|bx ·b′

z|Pb+b′

= (−i)|bx ·b′
z|−|b′

x ·bz|Pb+b′ = (−i)b�b′T
Pb+b′ . (A5)

022313-15



ERIC HUANG, ANDREW C. DOHERTY, AND STEVEN FLAMMIA PHYSICAL REVIEW A 99, 022313 (2019)

The second line makes use of the commutation formula
we have just derived. In the final line we use (bx + b′

x ) ·
(bz + b′

z) = bx · bz + b′
x · b′

z + b′
x · bz + bx · b′

z. As claimed,
the symplectic inner product only needs to be evaluated mod-
ulo 4. Since two Paulis commute if and only if the symplectic
inner product is 0 mod 2, when we multiply two commuting
Paulis the phase factor is ±1, conversely when multiplying
two anticommuting Paulis the phase factor is ±i.

Consider now a stabilizer code. The stabilizer
generators are signed products of Pauli matrices ±Pgi

where the binary vectors gi satisfy certain constraints, for
example, that the stabilizer generators all commute. Since
the generators are associated with n − k row vectors gi we
can collect these vectors into a (n − k) × 2n binary matrix
G whose rows are the gi . For any given error E = Pb the
syndrome is a length n − k binary column vector s given by

s(b) = G�bT mod 2. (A6)

A general member of the stabilizer group St is described by
the length n − k binary vector t such that

St = ±
n−k∏
i=1

P ti
gi

= ±PtG. (A7)

The first factor of ±1 is there to account for the signs of
the stabilizer generators in product. In examples of interest
to us, this will always be one. The phase factor in the final
expression arises from iterating equation (A5) and is real
because all the stabilizer generators commute. It has a definite

value that is suppressed in the interests of lightening the
notation.

The code has k logical X operators X̄i = Pxi
and k logical

Z operators Z̄i = Pzi
. Since the X operators are specified by

k binary row vectors of length 2n, we can specify the logical
X operators by the k × 2n binary matrix X whose rows are
the xi , and likewise a corresponding matrix Z for the logical
Z matrices.

We can describe products of logical Pauli operators Ll by
a length 2k binary vector l = (lx, lz), in analogy to the Pauli
matrices as follows:

Ll = (−i)|lx ·lz|
∏

X̄
lxi

i

∏
Z̄

lzj
j = ±(−i)|lx ·lz|PlxXPlzZ.

(A8)

The phase factor ±1 arises because the product of logical
X’s is a product of commuting operators and likewise the
product of logical Z’s. Again, it has a definite value, given
by iterating equation (A5), but suppressing this factor lightens
the notation. Notice that the matrix product in the subscript
results in a length 2n binary row vector as expected.

There are 2n−k syndromes, and with each syndrome s we
will associate the lowest weight error Es that leads to that
syndrome. Our decoder will reverse this error. Explicitly then

Es = Pb̃ where b̃ is the lowest weight solution to s = G�b̃
T

.
Then, it can be shown that every Pauli matrix can be written
in the form Pb = ηbEs(b)Ll (b)St (b) where ηb is a phase factor
equal to ±1 or ±i.
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