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Overcomplete quantum tomography of a path-entangled two-photon state
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Path-entangled N-photon states are key resources for quantum enhanced metrology and quantum imaging,
as well as quantum computation. However, the quantum tomography of path-entangled indistinguishable
photons is still in its infancy. We propose and implement a quantum tomographical method to characterize
path-entangled two-photon NOON states, which can be extended to arbitrary N . To access both the populations
and the coherences of the path-encoded density matrix, a single ancilla spatial mode is introduced, and photon
correlations are performed as a function of a single phase within an interferometer. We characterize a two-photon
state generated through the Hong-Ou-Mandel interference of indistinguishable single photons emitted by a
semiconductor quantum dot and show that an overcomplete data set reveals spatial coherences that could be
otherwise hidden due to limited statistics. We finally extract the truly indistinguishable part of the density matrix
and identify the main origin for the reduced degree of entanglement.
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I. INTRODUCTION

Path entanglement is an important resource in the field of
precision measurements, where the use of entangled particles
provides accuracy beyond the standard quantum limit. A
textbook example is the quantum enhanced optical phase mea-
surement [1], which has already shown important applications
in the field of microscopy [2–4], lithography [5,6], biological
sensing [7,8], as well as gravitational-wave detection [9]. The
quantum advantage arises from the use of path entanglement
in interferometric protocols. For instance, a path-entangled
N-photon state in the form of |N0〉 + eiφ |0N〉, referred to as
a NOON state, enables an N-fold enhancement in the phase
resolution with a measurement sensitivity of �φ = 1

N , beyond
the standard quantum limit of �φ = 1√

N
[10]. Path entan-

glement has also been proposed as a resource for quantum
computing, both for intermediate, i.e., nonuniversal, tasks like
Boson sampling [11], as well as for universal quantum com-
putation using quantum walks of indistinguishable particles
[12–14].

Various schemes are proposed to generate NOON states
using beam splitters, ancillary photons, and postselection for
path-entangled states [15,16], or through mixing quantum
and classical light for polarization entangled states [17,18].
Today’s state of the art consists of N = 5 photon NOON
states [19] with most demonstrations using polarization en-
coding protocols [10,20]. Indeed, while path encoding offers
great potential, it requires a phase control that is challenging
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to implement with bulk optics. Recent integrated photonics
architectures have enabled the generation of on-chip path
entanglement [21–24], thus benefiting from robust and pre-
cise phase control and reconfigurability [25]. However, the
quantum tomography of multiphoton path-entangled states
has been scarcely addressed so far. The tomography of a
path-entangled single photon can be achieved using quantum
homodyne tomography [26] and entanglement witnesses have
been derived for two paths [27,28] and were recently extended
to multiple paths [29]. Path entanglement of two photons has
been demonstrated on chip, making use of a path-encoded
controlled NOT (CNOT) gate [21] or the equally low probability
of generating a photon pair in two nonlinear crystals [22].
In both cases the quantum tomography was achieved for
distinguishable two-photon states and was mostly intended to
quantify the chip performance rather than being an in-depth
characterization of the produced state.

The most natural way of obtaining a two-photon path-
entangled NOON state is to perform the Hong-Ou-Mandel
(HOM) experiment [30] with perfectly indistinguishable sin-
gle photons: by impinging on the two inputs of a balanced
beam splitter, they interfere and leave the beam splitter in a
maximally entangled state—a textbook experiment that has
been realized with both heralded [10,31] and on-demand
single-photon sources [32,33]. The creation of a two-photon
NOON state has commonly been supported through the ob-
servation of the expected phase dependence for coincidences
measured at the output of a Mach-Zehnder interferometer.
Only recently, a full reconstruction of the two-photon NOON
state has been achieved using homodyne tomography [34,35];
however, it was at the cost of using a local oscillator for each
photon.

Here, we propose a method to obtain the density ma-
trix of indistinguishable two-photon two-path states using
coincidence detection on single-photon avalanche diodes. It
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relies on a single ancilla mode and the control of a single
phase in a split Mach-Zehnder interferometer. We discuss the
accuracy of standard tomography techniques and show how an
overcomplete set of measurements enables one to confidently
extract all coherences that could be otherwise hidden because
of poor statistics. By exploiting the bosonic nature of photons
as proposed by Adamson and co-workers [36], we extend our
approach to assess the contribution of partially distinguishable
photons to the density matrix, which brings insight into the
cause for nonmaximal entanglement. Finally, we show how
our method can be extended to arbitrary NOON states using
the exact same scheme but photon-number-resolving detec-
tors.

II. GENERATION OF THE TWO-PHOTON STATE

We use a recently developed semiconductor source of
highly indistinguishable single photons [37] to generate a two-
photon path-entangled state. The device consists of an electri-
cally controlled single InGaAs quantum dot (QD) inserted in
an optical cavity and placed in a cryostat at 8 K [see Fig. 1(a)].
The QD exciton transition is resonantly excited with 15-ps
laser pulses at 82 MHz repetition rate. The transition is driven
to its excited state using a π pulse controlled through the laser
intensity. The resonant fluorescence photons are collected in
a crossed polarization scheme so as to separate them from
the excitation laser and are subsequently coupled to a single-
mode optical fiber. Figure 1(d) shows the coincidence counts
obtained when measuring the second-order autocorrelation
function g(2)(t ) with two single-photon detectors at the outputs
of a fiber-based beam splitter. The very small area of the
peak at zero delay gives g(2)(0) = 0.03 ± 0.01, evidencing
the excellent single-photon purity of the source. Note that
this residual signal arises mostly from scattered laser light
since no spectral filtering was used in contrast to Ref. [37].
To create the two-photon path-entangled state in a HOM
configuration, two photons successively generated 12.2 ns
apart are first probabilistically routed on both outputs of a
free-space polarizing beam splitter (PBS) [see Fig. 1(a)]. A
12.2-ns fiber-based delay line is added to one of the arms in
order to temporally overlap both photons on the fiber-based
HOM beam splitter (BSHOM), which provides an excellent
spatial-mode overlap of 0.997 and well-balanced reflection
and transmission coefficients R = 0.508 and T = 0.492. For
perfectly indistinguishable photons, the two photons should
exit the beam splitter in the maximally entangled two-photon
state |ψ2002〉 = 1√

2
(|2, 0〉 − |0, 2〉), where the first (second)

number refers to the photon number in path 0 (path 1) [see
Fig. 1(b)]. Directing the signal of the two output path modes
0 and 1 towards single-photon detectors leads to the standard
experimental configuration used to measure the mean wave-
packet overlap of the two photons. The corresponding coin-
cidence histogram is shown in Fig. 1(e) from which a HOM
visibility of 0.945 is deduced (for details on the procedure,
see Ref. [38]), corresponding to a mean wave-packet overlap
of 0.975 when correcting for the imperfect g(2)(0). The same
device with a time delay between generated photons of 3 ns
[38] and filtering the zero phonon line [39] delivers photons
with indistinguishability beyond 0.98. We operate it here at
longer delay and without spectral filtering in order to test the

BS

a

a

a

a

a

a

PBS

HWP

PC

PC

PC

PBS

a

a

PC

BS
BS

a

a

a

a

a

a

BS

(a)

(b)

(c)

(d) (e)

- 2 - 1 0 1 2 3 4
0

200

400

600

Time (12.2 ns)

C
oi

nc
id

en
ce

s(
ar

b.
un

it)

- 4 - 3 - 2 - 1 0 1 2 3 4
0

200

400

600

Time (12.2 ns)

C
oi

nc
id

en
ce

s(
ar

b.
un

it)

Shutter

LP

8K

0 a

0 a

0 a
BS

FIG. 1. (a) Schematic of the experimental setup used to generate
the path-entangled two-photon state. LP stands for linear polarizer,
HWP for half-wave plate, BS for beam splitter, PBS for polarizing
beam splitter, and PC for polarization control, which is composed by
a half-wave plate and a quarter-wave plate. The shutter on the lower
line is used to measure the phase in the tomography setup every 10 s.
(b) Schematic of the tomography setup. In our implementation BS1

has a splitting ratio of 40:60 while that of BS2 is 50:50. (c) Mode
diagram corresponding to the setup in (b), where φ is the phase shift
between the two arms of the interferometer and the additional beam
splitters ηi describe the experimental losses. (d) Measurement of the
second-order correlation function g(2)(t ) of the single-photon source.
(e) Measurement of the mean wave packet overlap of two photons
from the source. This same histogram provides the correlation rate
R0,1 as defined in Sec. III.

potential of the proposed tomography methods to measure
deviations from the ideal NOON state.

III. TWO-PHOTON TWO-PATH QUANTUM STATE
TOMOGRAPHY

To characterize the state of two photons distributed over
two paths, the state tomography is performed in the two-
photon subspace of the Hilbert space, tracing out the con-
tributions of vacuum and single-photon state arising from
probabilistic routing and losses [35]. Considering that the two
photons cannot be distinguished in any degrees of freedom
other than their spatial mode, it is described by a 3 × 3
density matrix ρ in in the |2, 0〉, |1, 1〉, |0, 2〉 basis [36]. Tomo-
graphical reconstruction of NOON states has been addressed
for two orthogonal polarization modes of one spatial mode
[40,41], where all coherences can be derived using N-fold
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coincidences and SU(2) transformations via phase retarders
and wave plates. Such a scheme can in principle be transposed
to path encoding, yet at the cost of stabilizing two independent
optical phases: one phase in one path, and the other in an
additional Mach-Zehnder interferometer needed to mimic a
tunable beam splitter. Here, we propose an alternative ap-
proach based on a single phase and an ancillary spatial mode.

Figure 1(b) presents the proposed experimental setup and
Fig. 1(c) the corresponding mode diagram. Photons in paths
0 and 1, corresponding to the creation operators â†

0 and â†
1,

are sent to a final fiber-based beam splitter labeled BS2 in a
Mach-Zehnder configuration. Path 0 is directly coupled to one
of the inputs of BS2. A free-space beam splitter BS1 is inserted
on the other arm of the Mach-Zehnder to entangle path 1
with the ancillary mode, the path labeled 2. The free-space
part between BS1 and BS2 is not optically stabilized, gener-
ating a slowly varying optical phase φ which is periodically
measured. As shown below, a set of nine photon correlation
measurements, from a proper combination of paths i and j,
and for two different phases, rendering the correlation rates
Ri, j (φ) for 0 � i, j � 5, allows one to perform the quantum
state tomography in the spatial mode basis.

This design derives from an analogy to the tomography
of a polarization-entangled two-photon state [42] for which a
minimal set of measurements, i.e., enabling the linear recon-
struction of the density matrix, includes photon correlations
between nonorthogonal polarizations. Mapping paths 0 and 1
to the polarization modes H and V , the above experimental
configuration essentially mimics such correlation measure-
ments. Detection on the output paths 3 and 4 accounts for
the projection onto the (H ± eiφV )/

√
2 polarizations. Corre-

lations such as R3,4—without the additional BS1—evidence a
cos 2φ dependence, and have previously been used to confirm
the nature of a two-photon NOON state [32]. Yet a complete
polarization tomography must also include correlations such
as Ri,5 with i = 3, 4, which in the polarization analogy corre-
spond to correlation between linearly polarized photon V and
diagonal or circular polarizations.

To derive the density matrix from a complete set of mea-
surements, we first consider the case of a pure input state,

|ψ〉in = α|2, 0〉 + β|1, 1〉 + γ |0, 2〉

=
(

α√
2

â†
0â†

0 + βâ†
0â†

1 + γ√
2

â†
1â†

1

)
|00, 01〉, (1)

and the corresponding density matrix ρ in. The diagonal terms
corresponding to the populations can be obtained from the
correlation rates R0,1 for |1, 1〉, R0,0 for |2, 0〉, and R1,1 for
|0, 2〉, where Ri, j = 〈ψin|â†

i â†
j â j âi|ψin〉 refers to correlation

counts obtained by coupling paths i and j to detectors. With-
out the use of photon-number-resolving detectors, the autocor-
relation rate Ri,i is obtained by coupling the path i to a beam
splitter and performing a correlation measurement on the two
outputs of this additional beam splitter. The population of
the |1, 1〉 state ranges from zero, in the case of perfectly
indistinguishable photons, to 0.5, for fully distinguishable
ones. We make use of the unitary transformation between
modes 0, 1, and 2 and modes 3, 4, and 5, which is determined

by the optical setup:⎛
⎜⎝

â†
3

â†
4

â†
5

⎞
⎟⎠ = Usetup

⎛
⎜⎝

â†
0

â†
1

â†
2

⎞
⎟⎠. (2)

This allows one to calculate the output state |ψout〉 and the
corresponding correlation rates Ri, j = 〈ψout|â†

i â†
j â j âi|ψout〉 as

a function of the density matrix elements ρ in
k,l . By doing so,

a minimal set of correlation measurements Rcomp.(φ1, φ2) is
obtained when measuring the following rates for two distinct
phases φ1 and φ2:

Rcomp.(φ1, φ2) = (R0,0, R0,1, R1,1,

× R3,3(φ1), R3,4(φ1), R4,5(φ1),

× R3,3(φ2), R3,4(φ2), R4,5(φ2)) (3)

with |φ1 − φ2| �= 0, π
2 , π . The corresponding linear transfor-

mation matrix M relating Rcomp. to the vectorial form of ρ in

is invertible so that the density matrix of the analyzed state
is deduced from correlation measurements through the linear
equation

(ρ in ) = M−1Rcomp.(φ1, φ2). (4)

The same relation holds for any mixed input state for
which the density matrix is a linear superposition of pure-
state density matrices weighted by the corresponding state
probability.

In practice, some optical losses on the setup should be
considered to correctly reproduce the measured correlations.
These losses are modeled as additional beam splitters, labeled
ηi for i = 0, 1, 2 as shown in Fig. 1(c), and respectively
describe imperfect fiber-to-fiber coupling at one input of BS2,
insertion losses in free space to fiber coupling at the other
input of BS2, and losses on BS1. For the analysis presented in
the rest of this paper, we have extended the transformation of
Eq. (2) to include the three additional optical modes required
to account for the losses, in such a way that Usetup effectively
reproduce the scheme of Fig. 1(c). Such an approach allows
one to maintain a unitary description of the experiment and
keep the same procedure as described above, at the cost of
introducing more modes.

The calculated coincidence rates are shown in Fig. 2 for
various input states in order to illustrate the sensitivity of the
corresponding measurements. In the case of the ideal maxi-
mally entangled state |ψ2002〉 (solid lines), both coincidence
count rates R3,4 and R3,3 are expected to vary with 2φ, reflect-
ing the enhanced phase resolution of the NOON state in the
Mach-Zehnder interferometer. The maximum contrast and the
horizontal shift of the interference pattern are determined by
the amplitude and the phase of the coherence terms between
|0, 2〉 and |2, 0〉. Note that, in our setup, the visibility of the
interference for an ideal NOON state cannot reach a unit value
due to the presence of the beam splitter BS1 in one arm,
as well as additional losses. For a fully mixed two-photon
state (dotted lines), all coincidences show no dependence
on φ (overlapping dotted red and blue lines for R3,4 and
R3,3). The dashed line shows the calculated rates for the pure
state |ψ〉in = cos(θ )√

2
|2, 0〉+ sin(θ )ei π

4 |1, 1〉− cos(θ )√
2

|0, 2〉, with
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FIG. 2. Expected results from the measurements presented in the
text for different input states. Solid lines denote calculated correla-
tion rates for the ideal two-photon state |ψ〉in = 1√

2
(|2, 0〉 + |0, 2〉).

Dotted lines denote calculated correlation rates for the mixture ρ in =
1
2 |2, 0〉〈2, 0| + 1

2 |0, 2〉〈0, 2|. In this case R3,4 = R3,3 is independent
on φ. Dashed lines denote calculated correlation rates corresponding
to the state |ψ〉in = cos(θ )√

2
|2, 0〉+ sin(θ )ei π

4 |1, 1〉− cos(θ )√
2

|0, 2〉, with
θ = 0.2.

θ = 0.2. The presence of a |1, 1〉 population results in a cos φ

dependence of R3,5 and R4,5 shifted by its initial phase—π/4
in the present example—which, as expected, does not shows
an enhanced phase resolution. Analogously to R3,4 and R3,3,
the interference pattern on the measurements of the type Ri,5

allows accessing the phase and amplitude of the coherence
terms now relating |1, 1〉 to the rest of the state. By combining
all the measurements listed in Eq. (3) then, we are able to
access all the elements of the density matrix of the analyzed
state.

IV. OVERCOMPLETE SET OF MEASUREMENTS

To obtain the correlation rates R3,4, R3,5, and R4,5, we
use the experimental configuration sketched in Fig. 1(b).
The phase φ in the interferometer arm freely evolves over
time and correlation counts are continuously acquired. The
phase is measured every 10 s by closing one input path of the
HOM beam splitter BSHOM using an electronically controlled
shutter so that only one photon enters the analysis setup.
The intensity signal recorded on path 3 or 4 is due to the
single-photon interference and oscillates with φ, giving access
to its time dependence. Figure 3(a) shows the time trace of the
corresponding signal recorded over a 10-h period. It shows
large fluctuations of cos(φ) indicating that 2π variations of
φ take place over a typical 10-min timescale. Figure 3(b)
shows the corresponding histogram of total acquisition times
distributed over 20 phase bins, showing a reasonably flat
dependence with φ.

Three detectors are used on paths 3, 4, and 5 to record
the three detection counts simultaneously. Time tagging of
the events on the three detectors is recorded with respect to
the laser trigger in order to reconstruct the correlation rates as
a function of φ. To remove the errors due to fluctuations of the
signal over time—arising from mechanical fluctuations in the
relative laser spot-source overlap—the coincidence counts of
each measurement are normalized. Normalization is achieved
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FIG. 3. (a) Single-photon rate giving access to the phase φ in the
tomography setup, measured as a function of time on path 3 when
blocking the lower path in Fig. 1(a). (b) Corresponding histogram of
the acquisition time periods as a function of 20 phase bins. (c) Real
and imaginary parts of the density matrix deduced from a set of nine
measurements using the linear inversion tomography for (φ1, φ2) =
(0, 5π

19 ). (d) Fidelity to the maximally entangled NOON state deduced
from the maximum-likelihood method with nine measurements as a
function of (φ1, φ2).

with the correlation peaks recorded at time delays correspond-
ing to multiples of the laser repetition period (k × 12 ns) with
|k| � 2. These peaks are due to single-photon events arising
from different excitation pulses, and their magnitude can also
be theoretically predicted from the product of single detection
rates Rj = 〈ψout|â†

j â j |ψout〉.

V. STANDARD QUANTUM TOMOGRAPHY

We first use the standard linear tomography approach,
making use of Eq. (4). As discussed by Thew and co-
authors, linear quantum tomography does not require that
the projectors forming a complete set of measurements are
orthogonal [43]. Mathematically, we find that for any couple
of phases such that |φ1 − φ2| �= 0, π

2 , π , the measurement set
Rcomp.(φ1, φ2) allows a reconstruction of the density matrix.
Indeed, we note that for instance (φ1, φ2) = ( π

4 , 3π
4 ) does not

allow discriminating between the ideal NOON state from the
totally mixed state (see solid and dotted lines in Fig. 2). In
this case, R34 and R44 turn out to be only sensitive to the
imaginary part of the coherence. In order to determine with the
same precision the real and imaginary parts of all coherences,
an optimal choice providing the lowest uncertainties in the
state tomography is found for a couple of phases such that
|φ2 − φ1| ≈ π

4 .
As an example, we derive the raw density matrix obtained

for (φ1, φ2) = (0, 5π
19 ) in Fig. 3(c). It exhibits small deviations

from a physical density matrix with Tr(ρ in ) = 1.034 > 1. To
determine a meaningful value of fidelity, we normalize the
unphysical state by the trace and obtain a fidelity to the ideal
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|ψ2002〉 state of F = 0.85. To avoid the issue of nonphysical
properties of the resulting matrix [42], we use the maximum-
likelihood approach and numerically determine nine parame-
ters tν defining the physical density matrix ρ in(t1, . . . , t9), to
maximize the likelihood function

P(t1, . . . , t9) =
9∏

ν=1

exp −Rν (t1, . . . , t9) − Rν

σ 2
ν

, (5)

where Rν (t1, . . . , t9) are the expected coincidence rates for the
test input state ρ in(t1, . . . , t9), Rν are the measured ones, and
σν is the standard deviation of the νth coincidence.

Figure 3(d) shows the fidelity to ρ2002 deduced using
the maximum-likelihood method as a function of (φ1, φ2).
Fluctuations in the pattern of Fig. 3(d) result from experi-
mental noise and/or insufficient statistics. The fidelity drops
in the vicinity of (φ1, φ2) = (π/4, 3π/4) as expected from the
discussion above. We have calculated the average value of the
deduced fidelity as well as its standard deviation as a function
of |φ2 − φ1|: no dependence is observed for the present set of
measurements as long as |φ2 − φ1| �= 0 and |φ2 − φ1| �= π

2 ,
where noise gives a strong threefold increase of the standard
deviation. Away from these two singular points, the average
fidelity is 0.87 with a standard deviation of 0.06.

VI. OVERCOMPLETE QUANTUM TOMOGRAPHY

The measured normalized coincidence count rates R3,4,
R3,3, R3,5, and R4,5 are plotted in Fig. 4(a) as a function of φ,
together with the phase-independent count rates R0,0, R0,1 and
R1,1. Experimental error bars are derived taking into account
the Poissonian noise on the coincidences as well as on the
normalization count rates. R3,3 shows stronger noise due to
the lower statistics available for the measurement.

The dashed lines in Fig. 4(a) show the correlation rates
calculated for the state deduced from linear tomography pre-
sented in Fig. 3(c), evidencing the limited accuracy of the
standard tomography. Indeed, the corresponding correlations
fail to reproduce the experimental ones on the full φ scale,
particularly in the [π

2 , π ] range, which is somehow expected
since both φ1 and φ2 were chosen in the [0, π

2 ] range.
To obtain a better insight into the two-photon state, the

likelihood function is now maximized for the whole set of
79 phase-dependent measurements. The density matrix of the
corresponding input state ρover is shown in Figs. 4(b) and 4(c).
It presents a fidelity to the NOON state of 0.91 ± 0.02, in the
range of the average fidelity obtained through nine measure-
ments within the standard deviation. The coincidence rates
corresponding to this reconstructed state are superimposed
on the measurements in Fig. 4(a) (solid lines), showing a
very good agreement with the experimental observations. The
observed small phase dependence of R4,5 and R3,5 is well
accounted for, evidencing coherence between the |1, 1〉 and
the |0, 2〉 and |2, 0〉 terms.

This analysis shows that the use of an overcomplete to-
mography allows for any state reconstruction without prior
assumption about the state. Indeed, as shown in Fig. 2, the
coherences between the |0, 2〉 and |2, 0〉 as well as the coher-
ence between the |1, 1〉 and the |2, 0〉 or |0, 2〉 components
lead to a horizontal shift in the phase-dependent correlation
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FIG. 4. (a) Normalized coincidence rates as a function of φ.
Symbols denote measurements. Dotted lines denote calculated co-
incidence rates for the state deduced from linear tomography for
(φ1, φ2) = (0, π

4 ) [see Fig. 3(d)]. Solid lines denote coincidence rates
calculated for the state deduced from the overcomplete set of 79
measurements. (b) Real and (c) imaginary part of the density matrix
deduced from an overcomplete set of 79 measurements. (d) Mean χ2

between the measured correlation rates over the full φ range and the
expected ones for the state deduced for each phase couple (φ1, φ2)
using the maximum-likelihood method. (e) Mean χ2 as a function of
an index representing the 200 phase couples (φ1, φ2). The horizontal
dashed line shows the mean χ 2 value of 1.7 obtained for the state
reconstructed with the overcomplete data set.

rates. As a result, without prior hypothesis or knowledge on
the state, one cannot a priori identify a phase couple (φ1, φ2)
that would allow for a reliable state reconstruction using the
single set of nine measurements. To illustrate this quantita-
tively, Fig. 4(d) shows the mean χ2 between the measured
correlation rates over the full φ range and the expected ones
for the state deduced for all phase couples (φ1, φ2) using
the maximum-likelihood method. Figure 4(e) shows the same
mean χ2 as a function of an index representing the 200
phase couples (φ1, φ2) evidencing a mean χ2 larger for any
couple of phase (φ1, φ2) than the value of 1.7 obtained for
the state reconstructed with the overcomplete data set, shown
by the horizontal line. The use of an overcomplete data set,
monitoring the whole phase dependence, allows for reliable

022312-5



L. DE SANTIS et al. PHYSICAL REVIEW A 99, 022312 (2019)

reconstruction of any arbitrary state. In the next section, we
extend our analysis a step further to obtain a diagnosis for the
deviation of the produced state from the ideal NOON state.

VII. EXTRACTING THE TRUE PHOTON
INDISTINGUISHABILITY

The creation of a maximally entangled two-photon NOON
state depends on various parameters: the indistinguishability
of the photons impinging on the HOM beam splitter, the
balance of the reflection and transmission coefficients, as well
as any undesired source of background light. On the one hand,
the interference of two perfectly indistinguishable photons
on an unbalanced beam splitter, with |R| �= |T |, results in
a |1, 1〉 population. On the other hand, two distinguishable
photons create a |1, 1〉 population with a perfectly balanced
beam splitter. In any case, the distinguishability of the photons
affects coherences between |2, 0〉 and |0, 2〉 only via the
reduction of their populations. In the present experiment—
using a semiconductor quantum dot operated without any
spectral filtering of the zero-phonon line—two origins for the
photon distinguishability can be expected. First, a residual
phonon sideband emission certainly takes place and slightly
reduces the photon indistinguishability, as recently shown
[39]. Additionally, the resonant excitation scheme leads to
a small fraction of residual laser light not completely sup-
pressed in the crossed polarized collection. This residual light
is also distinguishable from the single photons emitted by the
quantum dot and is also responsible for the measured nonzero
g(2)(0) shown in Fig. 1(d).

Even though the physical origin of each detected photon
cannot be determined by our apparatus used for tomography,
Adamson and co-workers have demonstrated that in such a
situation it is still possible to extract more information on
the two-photon state [36]. The contribution of the truly dis-
tinguishable photons to the |1, 1〉 population can be separated
from that due to an imperfect setup via a more refined analysis
of the visible and hidden degrees of freedom of the state. In
practice, one introduces the four-state basis |2, 0〉, |0, 2〉, ψ+,
ψ−, corresponding to the visible degree of freedom, where the
ψ± are now the symmetric and antisymmetric states of two
possibly distinguishable photons “a” and “b” on each path:
ψ± = |1a,1b〉±|1b,1a〉√

2
. Truly indistinguishable photons can only

occupy the symmetric state ψ+; thus any population in the
antisymmetric state ψ− reveals the presence of distinguishing
information. The 4 × 4 density matrix ρvis reads in this basis
[31,36]

ρvis =

⎛
⎜⎜⎜⎝

ρ20,20 ρ20,ψ+ ρ20,02 0

ρψ+,02 ρψ+,ψ+ ρ02,ψ+ 0

ρ02,20 ρψ+,02 ρ02,02 0

0 0 0 ρψ−,ψ−

⎞
⎟⎟⎟⎠

=
(

(ρ+
k,l ) 0

0 ρ−

)
, (6)

where the coherences between the 3 × 3 symmetric ρ+ and
1 × 1 antisymmetric ρ− subspaces are zero. By considering a
pure input state in the form

|ψ〉in = (αâ†
0,aâ†

0,b + βâ†
0,aâ†

1,b + γ â†
0,bâ†

1,a + δâ†
1,aâ†

1,b)|0〉

vis �

0.486 � 0.000 0.032 � 0.007 �0.434 � 0.011 0.000

0.032 � 0.007 0.007 � 0.000 �0.015 � 0.010 0.000

�0.434 � 0.011 �0.015 � 0.010 0.467 � 0.000 0.000

0.000 0.000 0.000 0.040 � 0.000

FIG. 5. The 4 × 4 density matrix with the distinguishable and
indistinguishable parts of the two-photon state.

and calculating the corresponding coincidences

Ri, j = 〈ψout|â†
i,aâ†

j,bâ j,bâi,a + â†
i,bâ†

j,aâ j,aâi,b|ψout〉,
we can determine new relations between (ρ+

k,l , ρ
−) and the

Ri, j terms. We observed that, as expected, the calculated
Ri, j do not formally depend on the coherence terms between
the symmetric and antisymmetric part of the density matrix,
even if they are considered as nonzero. We then carry out
the maximum-likelihood method using the overcomplete set
of measurements to obtain the ten parameters defining the
physical density matrix in the form of ρvis (see Fig. 5).
Notably, most of the |1, 1〉 population now appears on the
antisymmetric part ρψ−,ψ− of the density matrix, with a
negligible population on the symmetric ρψ+,ψ+ population.
This approach allows us to ascribe most of the NOON state
imperfection to a partial distinguishability of the photons and
not to imperfections in the HOM beam splitter. Furthermore,
knowing that the lower bound of ρψ+,ψ+ + ρψ−,ψ− is given by
g(2)(0) = 0.03, we ascribe most of the extracted distinguisha-
bility to the residual laser.

VIII. EXTENSION TO HIGH PHOTON NUMBERS

The present scheme can be extended to perform the tomog-
raphy of high-photon-number NOON states by making use of
photon-number-resolving (PNR) detectors. Such an approach
allows one to access all the necessary N th-order photon cor-
relations as previously demonstrated for polarization-encoded
NOON states [40,41].

Indeed, the possible distributions of N indistinguishable
photons over two modes leads to a density matrix with
(N + 1)2 elements for a NOON state. Introducing an ancillary
mode, we obtain three accessible output modes over which the
photons can be distributed, giving rise to (N + 2)(N + 1)/2
possible configurations for the photon-number distribution.
Detecting each of these possible photon distributions for two
different values of the interferometer phase gives a number
of measurements exceeding the number of elements in the
density matrix. The tomography problem is then reduced to
the identification of two possible values of phases giving a
complete set of measurements.

As an example, we consider explicitly here the case of
N = 3. The density matrix ρ̂3003 of the three indistinguishable
photons distributed over the two modes â0 and â1 of the
interferometer has 16 elements to be accessed in a basis
consisting of {|3, 0〉, |2, 1〉, |1, 2〉, |0, 3〉}. We can define an
ideal correlation measurement between n photons on the mode
i and m photons on the mode j as R̂n,m

i, j = |n〉〈n| ⊗ |m〉〈m|. The
four populations can be measured using PNR detectors from
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the correlations

R̂3,0
0,1, R̂2,1

0,1, R̂1,2
0,1, R̂0,3

0,1.

Following the same procedure as before, by placing PNR
detectors at the three outputs of the split Mach-Zehnder setup,
six additional measurements can be performed, each for two
different values (φ1 and φ2) of the interferometer phase φ. In
this case, it can be shown that

R̂3,0
3,4(φ), R̂0,3

3,4(φ), R̂2,1
3,4(φ), R̂2,1

3,5(φ), R̂1,2
4,5(φ), R̂2,1

4,5(φ)

for |φ1 − φ2| �= k π
2 , k π

3 , along with the four population mea-
surements listed above, constitute a complete set of measure-
ments for the linear reconstruction of the density matrix.

IX. CONCLUSIONS

In the present work, we have proposed a simple experi-
mental method to perform quantum state tomography of a
two-photon path-entangled state. Although unavoidable ex-
perimental noise led to uncertainties in a standard quantum
tomography approach, we have shown that an overcomplete
data set allows one to extract highly reliable information.
Moreover, by accessing the indistinguishable and distinguish-
able parts of the density matrix, we provide a precise diagnosis

for the deviation from an ideal state, separating limitations
arising either from the photon source or from imperfections
of the optical network.

High-photon-number path-entangled NOON states are
foreseen as important resources for many applications, in-
cluding quantum enhanced imaging, sensing, and lithography.
A quantitative estimation of the degree of entanglement is
thus a key resource, and while approaches are explored to
detect entanglement at the lowest cost, full tomography may
very well be the only reliable solution [44]. Here, we have
proposed an approach that allows for the quantum tomography
of path-encoded NOON states for any N by using a single and
simple experimental setup.
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