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Designs of magnetic atom-trap lattices for quantum simulation experiments
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We have designed and realized magnetic trapping geometries for ultracold atoms based on permanent magnetic
films. Magnetic chip based experiments give a high level of control over trap barriers and geometric boundaries
in a compact experimental setup. These structures can be used to study quantum spin physics in a wide range
of energies and length scales. By introducing defects into a triangular lattice, kagome and hexagonal lattice
structures can be created. Rectangular lattices and (quasi-)one-dimensional structures such as ladders and
diamond chain trapping potentials have also been created. Quantum spin models can be studied in all these
geometries with Rydberg atoms, which allow for controlled interactions over several micrometers. We also
present some nonperiodic geometries where the length scales of the traps are varied over a wide range. These
tapered structures offer another way to transport large numbers of atoms adiabatically into subwavelength traps

and back.
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I. INTRODUCTION

Experiments with cold atoms trapped in lattice-type trap-
ping potentials have opened up new windows on condensed
matter phenomena [1]. The unprecedented control over many-
body quantum systems that these quantum simulators have to
offer allows experimentalists to study increasingly complex
systems. It is the hope of many that by these means it will
be possible to emulate some of the outstanding challenges,
such as high-T¢ superconductivity [2], frustrated magnetism
[3], and even high energy gauge theories like QCD [4]. Most
results of the past decades have been obtained in optical lattice
experiments where lattices of trapped atoms are created by
standing waves of laser light. These experiments are mostly
focused on lattices with open or harmonically confined bound-
aries and with a single lattice type. The method of chip based
magnetic trapping provides an alternative to optical lattices
where one has more freedom in the construction of trapping
geometries and length scales.

In recent years, magnetic lattices with 10 um lattice spac-
ing have been created to trap atomic ensembles [5,6]. In these
lattices Rydberg interactions could be exploited to control
interactions between the sites which are necessary for most
quantum simulation and quantum information experiments
[7-10]. It was recently shown theoretically that Rydberg
atoms can indeed be trapped in tight magnetic traps and even
magic trapping conditions may be achieved [11]. Note, how-
ever, that experiments on Rydberg excitation near surfaces
have so far been hampered by stray electric fields emanating
from adatoms [12,13]; see also Sec. II. Experiments so far
have employed all triangular, square, and oblique geometries
in two dimensions [6] and elongated one-dimensional lattices

[5].
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Here we present several geometries to trap ultracold atoms,
which will allow many new quantum simulation studies. First,
in Sec. II we explain the methods used in the designs. Kagome
and hexagonal (honeycomb) structures will be presented in
Sec. III. These geometries are particularly important for stud-
ies of frustration and quantum magnetism in two dimensions
[14]. In Sec. IV ladders and diamond chains are introduced
which may be used to study magnetic phases of spin models
in atomic chains. With elements that interrupt the periodicity
of a lattice we are able to create barriers along orthogonal
directions in the plane. These can be used to isolate plaquettes
of a finite number of traps. Finally, in Sec. V a tapered lattice
is presented wherein a varying lattice spacing yields tapered
structures which provide a natural bridge between traps at the
Rydberg scale and nanoscale magnetic lattices which have
recently been introduced [15-17]. The extra applications that
these barriers and tapered structures have on subwavelength
magnetic traps will be discussed in a separate paper.

II. MAGNETIC FIELDS OF PATTERNED FILMS

We assume that the spin of a moving atom follows the
local direction of the magnetic field B(r) adiabatically. The
magnetic potential energy —u - B(r) is then proportional to
the magnitude of the field, U(r) = upmpgrB(r). Here up is
the Bohr magneton, my is the magnetic quantum number, and
gr the Landé factor for an atomic level with total angular
momentum F. Atoms in a “low-field-seeking” state (with
mpgr > 0) can thus be trapped in a local magnetic field min-
imum. Majorana losses to nontrapped states can be neglected
as long as the trap frequencies remain much smaller than the
Larmor frequency wr, = wpgr|Buvot|/F [18]. Here By is the
absolute value of the magnetic field at the trap bottom.

The building block for all lattice geometries below is the
Ioffe-Prichard trap (IPT) [19,20], which is a widely used
technique to create magnetic field minima. As a film with
out-of-plane magnetization can be described by an equivalent
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edge current I); which runs along the edge of the film, both
current carrying wires and patterned permanent magnets can
be used to trap atoms.

In this paper we are concerned with designing magnetic
trapping potentials generated by permanently magnetized
films with a thickness 2 < 300 nm. The distance to the chip
surface is typically large compared to the film thickness,
z > h, so we neglect the finite film thickness. We describe
structures made out of perpendicularly magnetized films, pat-
terned in a binary fashion; i.e., we assume that in any given
location on the chip we have either the full film thickness or no
magnetic material at all. Instead of the bulk magnetization M
we use the two-dimensional magnetization, i.e., the magnetic
dipole per unit area: Iy = Mh. Our recently constructed ex-
periment houses a chip with a 50 nm thick film of magnetized
FePt with a magnetization of M = 800 kA/m [15]. Because
several structures that we will present have been realized on
this chip, we will consider this thickness and equivalent edge
current I; = 0.04 A.

As a basis for the different trapping geometries that we
will develop, we use the triangular and square lattice patterns
that have been developed by Fourier space optimization
[21]. For most of the presented structures it is convenient to
express the fields in terms of Fourier series. Furthermore, in
the region of space above the chip surface, the static magnetic
field can be written as the gradient of a scalar potential,
B(r) = —Vou(r).

Neglecting the finite film thickness, we define M, as
the surface density of magnetic moment. Taking this two-
dimensional magnetization to be periodic, M>(p) = M>(p +
r1) = M,(p + r3), with r; the basis vectors of the lattice and
p the in-plane two-dimensional coordinate, the magnetization
can be written as a two-dimensional Fourier series,

Ma(p) =1y ) Cuncos[(nK +mK>) - p]

m,n=—00
+ Sum sin[(nKy + mK3) - p] (1)

such that M,(p)/Iy is O or 1. The vectors K, K, are the basis
vectors of the reciprocal lattice, defined by K; x rj = 274;;,
and the area of the unit cell is S = |r; x r;|. The Fourier
coefficients are found by integration over one unit cell of the
lattice. With k,,,,, = nK; + mK,,
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For the magnetic potential we obtain [22]
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C.m and S, now give a compact description of the magnetic
field configuration. ®,(r) is defined such that it is a scale in-
variant Fourier series. This way Bgm () = =V ®y(r) o< a™!
and VB(r) oc a=?, where a is the lattice spacing. When the
field from the magnetic pattern is combined with an external
field, magnetic potential wells are created, which can be

FIG. 1. Three-dimensional representation of the magnetic poten-
tial in arbitrary units above an out-of-plane magnetized patterned
layer of FePt (gray). The potential is calculated at a height z = 0.5a
above the surface, with a the lattice constant. The external magnetic
field By, was chosen such that a square trapping potential with equal
barrier heights at z = 0.5a is obtained: B,,, = (—10, —9.0, —5.0 x
1072) G.

described by
Byt = Bexi + Bfiim.

In Fig. 1 the magnetic film for the square magnetic lattice
is pictured together with the potential created by film and
external field. In this case the pattern was calculated by an
optimization scheme for p2 (“wallpaper group”) type lattices
[21]. All trap parameters depend on the value of the external
field and ;. Without an external field no traps exist and,
depending on the magnitude and sign of its components, traps
can be created at different positions above a particular chip
pattern. By increasing (lowering) the external field, the trap
frequencies can be raised (lowered).

To create lattices of other symmetry classes than this p2
class, we combine a periodic (square or triangular) pattern
with designer defects. The edge of the magnetic film is
changed locally to raise or lower specific potential minima.
We introduce these defects as small virtual loop wires with
current Iy/; see Fig. 2. The total field is now given by

Btot = Bext + Bﬁlm + Bdefects (5)

Calculating the magnetic field potentials like this is more
accurate than calculating the sum of a finite number of loop
wires. When the whole pattern is described by loop wires,
edge effects often overshadow the lattice structures. This can
be overcome in principle by taking a large enough number of

(@) (b) (©)

FIG. 2. (a) The tile of the triangular lattice with magnetization
M out of plane. (b) Two loop wires that are added to the unit cell,
one on each side of the unit cell, with one loop section canceling the
equivalent edge current. (c) The resulting modified unit cell.
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loop wires. However, this quickly becomes computationally
expensive.

In the sections below we calculate the designed potentials.
For all presented lattices we calculated the bottom field and
the field at the saddle point(s), which form the potential
barriers between the traps in the different lattice directions.
We consider lattices where the lattice spacing a is several
micrometers, where controlled interactions can be created
between trapping sites [23,24]. For all trapping potentials the
trap frequencies can be found by making a harmonic oscillator
approximation at the trap minimum [25].

In this paper we concentrate on lattice constants of a
several micrometers. The distances of the traps to the surface
will then be at approximately the same length scale, which can
be understood as a consequence of the exponent in Eq. (4).
Many experiments on the excitation of Rydberg atoms close
to a surface have faced the issue of stray electric fields and
field gradients, to which Rydberg atoms are very susceptible
[12,13]. Such fields and gradients emanate from the surface,
usually as a result of atoms adsorbed on the surface.

Several experiments have demonstrated techniques to re-
duce these stray fields [26-29]. A dramatic reduction was
achieved by depositing a thin film of metallic Rb in a cryo-
genic environment [29]. These authors measured a field below
0.1 V/cm, and gradients on the order of 1 V/cm? at 150 um
distance to the surface, which was sufficiently small for
narrow linewidth Rydberg excitation. For smaller distances
little is known so far, but the quoted results are encouraging.
We note that the designed patterns presented here are to a
large extent scale invariant, so that they remain valid also
outside the realm of Rydberg physics.

III. TRIANGULAR LATTICES WITH DESIGNER
DEFECTS: KAGOME AND HONEYCOMB

While the triangular lattice has been used for many quan-
tum lattice studies, nowadays lattices of a higher symmetry
class attract more attention. The kagome lattice is of special
interest because of its predicted frustrated phases for particles
with antiferromagnetic interactions [30-32]. Recent work also
predicts the observation of a spin ice phase for Rydberg p-state
interactions on a kagome lattice [33,34]. The kagome lattice
can be created by shaken optical lattices [35,36] and with an
array of dipole traps [37]. Although both techniques have their
particular strengths, a magnetic chip based potential could
provide a scalable lattice without harmonic confinement and
with control over the lattice boundary.

The similar honeycomb structure has attracted much atten-
tion in recent years because of the presence of Dirac cones
in its band structure, which gives rise to the many extraor-
dinary properties of graphene. A magnetic hexagonal lattice
could be used to perform quantum simulations of graphene
or to search for other nontrivial quantum phases which are
predicted to arise for hard-core bosons in graphene-like ge-
ometries [38,39]. Optical realizations of the hexagonal lattice
have been either irregular (stretched) [37] or spin dependent
[40,41], while with a magnetic lattice the exact honeycomb
structure may be realized. Using nanofabrication techniques,
even an interface between a frustrated kagome lattice and a
nonfrustrated hexagonal lattice can be created.

Rydberg atoms have been successfully used for quantum
simulations in lattices created by optical dipole traps of
approximately 3 um spacing [7,10,37]. These experiments
can only trap up to approximately 50 atoms while a magnetic
lattice can create much larger lattices [6].

To build these more exotic lattices, we start from a trian-
gular lattice. With the methods of Ref. [21] a triangular lattice
can be generated with traps in a lattice spanned by the vectors

ri=(1,0) and r, = (%, 4). Approximately equal barriers
between all the trapping positions can be found by applying
the appropriate external field. Note that three different barriers
exist, in the directions of rq, 1, and r3 = r; — r,. Assuming a
film thickness of 50 nm, a magnetization of 800 kA/m, and a
trap at the height of z = 0.5a = 2.5 um, one finds a trap depth
of 6.6 G, a bottom field of 2.2 G, and trap frequencies of (60,
58, 18) kHz. Larger (smaller) trap frequencies and barriers
can be created with thicker (thinner) magnetic films and/or

stronger (weaker) external fields.

A. The kagome lattice

Starting from an optimized pattern for a triangular lattice,
we can create the kagome lattice by introducing designer
defects that raise the potential at specific sites. These are
local modifications of the edge of the pattern underneath the
default trapping position of the base triangular lattice. These
defects can be described by virtual loop currents such that
one edge of the loop cancels a section of the original edge.
An example is given in Fig. 2. Loops are chosen such that
the total magnetic coverage stays 50%, which is important to
avoid local magnetic field gradients within the lattice.

The kagome lattice is obtained by adding two of these
defects to a subset of the triangular lattice sites. A combination
of two defects with different size, position, and orientation is
used to obtain the desired potential. We consider a realization
with a 5 um lattice spacing that is designed for Rydberg atom
experiments. For comparison we calculate the trap parameters
for traps centered around z = 0.5a = 2.5 um with the same
external field as for the triangular lattice in Fig. 3. In these
lattices, at the sites with the defects the potential wells are
raised by 1.5 G. The remaining (nonraised) potential wells
then form the desired kagome sublattice. In Figs. 3(c) and
3(d) the kagome lattice structure is presented with potential
raising defects. The sublattice period is given by multiples of
the vectors 2ry and 2r;.

B. The honeycomb lattice

The hexagonal lattice is constructed in a similar way. Now
the tiles including defects are placed on the sub-lattice that is
created by multiples of r; 4 r, and 2r; — r»; see Figs. 3(e) and
3(f). The bottom field of the elevated traps is raised to 3.8 G
while the lower traps are kept at 2.3 G, as for the kagome
lattice. This demonstrates the universal applicability of this
technique.

C. Fabricated magnetic honeycomb and kagome lattices

The kagome and honeycomb structure have been created
in a 50 nm thick film of magnetized FePt. The fabrication
of these magnetic structures is discussed in full detail in a
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FIG. 3. (a) The triangular structure with @ = 5 um; (b) the
corresponding potential taken at z = 0.5a = 2.5 um. The external
field is given by By, = (—5.0, 2.0, —0.2) G and the trap bottom field
is 2.2 G. (c) The kagome lattice structure. In black the magnetic
pattern is shown with modified local shapes at the trap positions
that needed to be raised. (d) The potential created by pattern
(c) with a lattice spacing of 5 um and trap minima at z = 0.5a. The
same external magnetic field as (b) is applied. The kagome lattice
is indicated by the white dashed lines. (¢) The honeycomb lattice
structure. In black the magnetic pattern is shown with modified local
shapes at the trap positions that needed to be raised. (f) The potential
created by pattern (e) with a lattice spacing of 5 um and trap minima
at z = 0.5a. The same external magnetic field as in (b) is applied.
The hexagonal lattice is indicated by the white dashed lines.

separate paper [15]. In Fig. 4 we show a scanning electron
microscope image of the hexagonal geometry that correspond
to the design presented in Fig. 3. Figure 4 shows several tens
of trap sites for the honeycomb lattice. The magnetic mate-
rial (FePt) scatters more electrons than the substrate (MgO),
which makes it appear bright. The structures are covered by a
50 nm thick protective Pt layer.

IV. LOW-DIMENSIONAL STRUCTURES: LADDERS AND
DIAMOND CHAINS

We can also employ our magnetic lattices to create low-
dimensional structures for ultracold atoms. By local modifi-
cations to a lattice potential we can carve out (quasi-)one-

FIG. 4. SEM image of the honeycomb lattice with lattice spacing
of 5 um. Lighter regions indicate magnetic material.

dimensional potentials. Low-dimensional structures form
a natural testing platform for many quantum simulation
experiments and theories [42-45]. Here we provide several
geometries that can be used to simulate spin models such as
those proposed in Ref. [46—48] and [49-51]. The simulations
of nonperiodic lattices that are presented here are based
on finite lattice structure calculations. The magnetic film is
described by calculating the magnetic field of the equivalent
edge current I); for each pattern. We present only the inner-
most region of the total structures that we calculate, since the
edge of all structures perturbs the periodic patterns in typically
the first ten unit cells from the edge. If the edge is not placed
far enough from the shown central region, edge effects can
be recognized by an extra magnetic gradient in the direction
of the bias field. No such edge effects are present in any of
the presented lattices. In the experiments we typically prevent
these effects in a similar way by surrounding our lattices with
a region several millimeters wide containing other lattices
such that we maintain a 50% magnetic coverage [15].

A. Ladders

To construct confining barriers in two-dimensional lattice
potentials, we seek a method to separate traps into particu-
lar arrays. Small spin chains or two-dimensional plaquettes
of 2 x 2 traps can be produced by isolating sets of traps.
Inspired by optical lattice techniques where local traps are
raised by overlapping optical fields, we designed magnetic
artifacts that create a sharp magnetic barrier, similar to the
defects presented in the previous section. By straightening
out a horizontal magnetic array we were able to disrupt the
lattice in the y direction. These interrupting “fences” can be
used in combination with double or triple arrays of square
lattice traps to construct ladders of a chosen number of rails.
To construct a one-rail ladder, or equivalent a series of double
wells, we alternate two trapping arrays with one fence array.
Here we chose the external field such that equal barriers in the
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FIG. 5. (a) Magnetic film pattern with ¢ = 5 um that can create
a double-well series or two-rail ladder. The external field is here
set to generate equal barriers between all ladder sites and is By =
(—10, -9.0, =5.0 x 1072) G.

x and y directions are obtained between the traps in the ladder.
With the direction and magnitude of B we can control
the position and confinement of the traps. For example it is
possible to produce a one-dimensional lattice of double wells
with the same magnetic structure. In Fig. 5 the corresponding
potentials are presented. When considering bosons in ladder
geometries like this the Haldane model predicts a gapped
phase for odd-rail ladders, while for even-rail ladders the
energy bands touch [38,52].

A three-rail ladder can similarly be created by using either
three trapping ladders, as a trivial extension of the previous
figure, or by trapping on the other edge of the same magnetic
structures by reversing the external field. This is possible
because of the periodic structures that are present on the
nonflattened side of the barrier arrays. An example can be seen
in Fig. 6.

B. Plaquettes

The horizontal barriers from the previous section can be
combined with vertical barriers to create plaquettes of arbi-
trary sizes. With these structures one is be able to control the
number of interacting atoms and the size of their surrounding
lattice. Plaquettes may be useful for quantum information
applications with trapped atoms in order to implement error
correction [24,53,54]. With a magnetic plaquette potential one
can employ the scalability and technical benefits of an atom
chip to create a controlled grid of atomic traps.

12 (a)

(b)vvvv‘12

S e o o < <
e s — == = O

11
18
m10 2 (110 16
>

h oo o o (IR

> @ @ @ @ 4
8
D 6 6 6 0 (™
7 8 9 10 11 127 8 9 10 11 12
x/a x/a

FIG. 6. (a) The same magnetic film pattern as Fig. 5. (b) The
potential created by the film of (a) with the reversed external field:
B. = (10,9.0,5.0 x 107%) G. A three-rail ladder is created by the
same structure as Fig. 5 with reversed external field to create wells
above the other edge of the magnetic structures.

.
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FIG. 7. (a) Magnetic film pattern with a = 5 wm where horizon-
tal and vertical barriers have been combined to isolate a plaquette
of 10 x 9 sites. (b) The potential created by the film of (a) with
the same external field as for a square lattice with periodic barriers:
B = (—10,-9.0, —5.0 x 1072) G.

To create the vertical barriers, the corrugation from the top
of one magnetic structure was removed. For the horizontal
barrier a similar technique is used. By straightening our a
single unit cell, a raised barrier is created on its right side
together with a low valley on its left. Therefore we need to
combine two elements to create a full barrier in the horizontal
direction, one straightened-out thin element to create a barrier
on the right, and a thick piece of magnetic material to the left
of this to isolate the plaquettes from the lower valley. In Fig. 7
one can see how this combination of a thick and a thin element
is used to raise a barrier around a plaquette.

C. Diamond chains

Another geometry of interest for many quantum simulation
experiments is the diamond chain. The alternation between the
number of sites in each column has made the diamond chain
an inspiring tool for spin model proposals [49-51,55]. For
antiferromagnetic spin interactions, several ideas have been
proposed which show how frustration in complex geometries
can lead to new phases of matter [56,57]. Due to its presence
in many crystalline materials it is also a highly relevant
geometry for quantum simulation. Both materials with oxide
planes [58—60] and azurite [61,62] have been studied inten-
sively theoretically, but so far have not been realized with
optical lattices [63—65]. This is due to the large number of
wavelengths that one would need to combine. Their barrier
heights vary in different lattice directions and modulate along
the chain axes, which makes them hard to emulate with opti-
cal techniques. This complexity make diamond chains ideal
systems to be studied with magnetic lattices because their
complex geometry can be easily handled with nanofabrication
techniques.

By combining linear stretches and shifts it is possible to
create diamond chain potentials. An example is the single
diamond chain shown in Fig. 8. Higher order chains can be
created trivially by increasing the number of trapping arrays
in between the blocking arrays.

V. TAPERED STRUCTURES

In this section we introduce tapered lattices: structures
where the lattice spacing changes gradually across the lattice;
see Fig. 9. We will consider tapers that can connect the
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FIG. 8. (a) A single diamond chain where single traps are po-
sitioned in between double wells. (b) Potential corresponding to
the pattern of (a) with an external field B, = (24.4,2.05,0.13) G
chosen such that traps are formed at z = 0.45a. Here a = 5 um. By
controlling the external field, trap barriers in different directions can
be controlled independently.

Rydberg regime that we have considered so far to submicron
lattices of 250 nm. Tapered lattices solve two problems: trans-
port of atoms into submicron lattices and detection of atoms in
submicron lattices. By several groups an effort is being made
to reduce the period of atomic lattices, since the interaction
energy between atoms as well as hopping rates between sites
scales quadratically with the inverse lattice spacing. Loading
atoms into these traps from a macroscopic ultracold cloud is
hard and inefficient [17,66-71]. The loading efficiency gets
worse when one shrinks down a lattice. However, it is possible
to move all trap arrays from row to row in any of the presented
lattices by rotating the external magnetic field around the Ioffe
axis periodically [72]. By loading atoms into a large lattice
before bringing them closer together using the taper, extra
atomic losses could potentially be reduced. If we transport
back through the tapered structure to the larger lattice spac-
ings, we are able to move clouds from a subwavelength lattice
up to a region where individual traps can be distinguished by
a microscope.

From a more fundamental point of view one might also
consider a cloud of atoms trapped in a subwavelength lattice
at the smallest end of a tapered structure, which is then
released or shifted into the widening taper. Such systems then

(a) (b)

FIG. 9. (a) Example of a straight taper of 11 lines shrinking by
a factor of 2 (5% per line). (b) Example of a rounded taper. The
unit cells are now also rotated such that the lattice locally keeps its
original shape. The traps along the two red lines are similar but the
traps along the blue lines differ due to the different transformation.

provide a very natural quantum simulation of a quantum gas
in an expanding lattice. One thinks of cosmological theories
in which particles in the early universe are considered on an
inflating lattice. Experiments like this have also been proposed
in the context of the Kibble-Zurek mechanism (KZM) [73,74],
which predicts the formation of domains after a homoge-
neous gas is released in such a geometry. Although some
experiments have been done in periodic optical lattices [75]
and in one-dimensional clouds [76], a two-dimensional lattice
experiment with varying length scales within the lattice as
proposed here has not been created.

To combine lattices of different length scales, we devel-
oped tapered lattices in which the lattice spacing is varied
slowly in one direction. In optical lattice systems this would
require one to vary the frequency of all lattice beams in time
over a wide range, while with lithographic patterning one
is completely free in the scope and gradient of the lattice
spacings.

The combination of the shift array with the shrinking
lattices will therefore allow us to capture mesoscopic clouds
of hundreds of atoms in traps several micrometer apart and
then move them to smaller geometries. One has to limit the
amount of change from one unit cell to the next such that
similar traps are created in neighboring rows. This way, atoms
can be transported adiabatically up and down the lattice. There
are different ways to create tapers, as can be seen in Fig. 9.
In Fig. 9(a) the straight tapered lattice shows deformation
at the edge of the taper. Another choice is rounded tapers
that are created by a local transformation and rotation of
the unit cell to keep the local pattern constant, as shown in
Fig. 9(b). While the traps along the vertical red lines have
the same ratio of trap frequencies, the traps at the edges
of the structures, along the blue lines, vary in this regard.
Because we can only apply a single, uniform bias field that
is optimal for one specific trap site because of the local Ioffe
axis, traps with a different axis are deformed. A detailed
comparison between these geometries and how they influence
the transport efficiency of ultracold atoms requires further
study.

If one limits the row-to-row change to 1%, to ensure
adiabatic transport, it requires 300 shifting operations to
shrink the lattice spacing by a factor of 20: 0.99°% = 0.05.
In such a taper the fields required at the large 5 um scale are
approximately 7 G to trap atoms at half the lattice spacing. By
linearly increasing the external field while moving the traps
down the taper, the final trapping field reaches 203 G to trap
atoms in a 250 nm lattice, 125 nm above the surface of the
magnetic film.

This small distance raises the question of whether the
Casimir-Polder interaction may perturb the trapping potential
and thereby shift the trap minimum position, affect trap depth
and frequency, or even induce tunneling into the surface. We
also note that the chip is covered by a 50 nm layer of Pt,
so that the nearest surface is only 75 nm from the atoms.
A calculation in Ref. [77] showed that the van der Waals
interaction (—C3/z>) does lower the energy barrier towards
the surface, but also showed that the resulting tunneling
rate remains vanishingly small, even for distances down to
100 nm from the surface. Here we consider the Casimir-Polder
modification of the van der Waals potential for the covering Pt
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FIG. 10. (a) Section of the tapered lattice structure for which the
potential is presented. The taper has a slope of 5% per line and
the largest lattice spacing is 5 um. (b) The potential cross section
taken at height z = 0.35a such that it cuts through the trap bottom
of the horizontal array at y = 2a. The white lines show points where
possible trap positions can be created. Using a time-varying external
field, atoms can be moved along those lines. The external field is
B = (—11,—-4.2,0.20) G.

layer:
Cy
2(z+31/272)’

where we take C; = 1.7 x 1075 Jm* and A = 785 nm for
87Rb [78]. We find that this lowers the total potential at the
trap position, zp = 75 nm, by the equivalent of 3.8 G. The
attractive CP potential thus slightly increases the trap depth
relative to the magnetic field far from the surface. In principle,
the gradient and curvature of Ucp would change the trap
position and trap frequency, respectively. However, for the
tight traps at the narrow end of the taper, we find that these
changes are negligible.

During transport through the taper, the trap frequencies
and trap depths increase from 60 kHz and 7 G to 17 MHz

Ucp = (6)

and 203 G. In Fig. 10 the potential of a tapered section is
presented. Figure 10(b) also shows the lines along which
transport is possible. The lines have been drawn in plane at
height z = 0.35a (for the value of a corresponding to the large
end of the taper). These paths can be found by calculating
det (VB) = 0, which gives all points where a nonzero mag-
netic field minimum can be created [25].

VI. CONCLUSION

We have presented several geometries that can be used in
quantum simulation experiments based on permanent mag-
netic atom chips. With these patterns it has become possible
to create magnetic lattices of kagome and honeycomb geom-
etry as well as low-dimensional structures such as ladders
and diamond chains. We have shown how some of these
geometries have already been realized into a magnetic film.
Also magnetic fences have been presented that can isolate
plaquettes of atomic traps to lattices with fixed dimensions.
Furthermore tapered structures have been created that allow
for new experiments in varying geometries and may be used
to load subwavelength lattices. It would be interesting to
investigate whether the potentials which are presented here
on the micron scale can be scaled down to the subwavelength
regime.
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