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Visual tracking (VT) is the process of locating a moving object of interest in a video. It is a fundamental
problem in computer vision, with various applications in human-computer interaction, security and surveillance,
robot perception, traffic control, etc. In this paper, we address this problem in the quantum setting, and present
a quantum algorithm for VT based on the framework proposed by Henriques et al. [IEEE Trans. Pattern Anal.
Mach. Intell. 7, 583 (2015)]. Our algorithm comprises two phases: training and detection. In the training phase, in
order to discriminate the object and background, the algorithm trains a ridge regression classifier in the quantum
state form where the optimal fitting parameters of ridge regression are encoded in the amplitudes. In the detection
phase, the classifier is then employed to generate a quantum state whose amplitudes encode the responses of all
the candidate image patches. The algorithm is shown to be polylogarithmic in scaling, when the image data
matrices have low condition numbers, and therefore may achieve exponential speedup over the best classical
counterpart. However, only quadratic speedup can be achieved when the algorithm is applied to implement the
ultimate task of Henriques’s framework, i.e., detecting the object position. We also discuss two other important
applications related to VT: (1) object disappearance detection and (2) motion behavior matching, where much
more significant speedup over the classical methods can be achieved. This work demonstrates the power of
quantum computing in solving computer vision problems.
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I. INTRODUCTION

Visual tracking (VT) is the task of locating a moving
object of interest in a video. It is a fundamental problem
in computer vision and has wide applications [1–5] across
human-computer interaction, security and surveillance, robot
perception, traffic control, and medical imaging. In recent
years, a successful approach for VT, which attracts wide
attention, has been tracking by detection, where discrimina-
tive machine learning classifiers are adopted to detect the
object. In this approach, every pair of time contiguous frames
respectively undergoes two phases: training and detection. For
convenience, hereafter we call the frame used in the training
phase the training frame, where the location of the object
is determined (given in the initial frame or detected in the
following frames), and we call the frame used in the detection
phase the detection frame, where the location of the object
remains to be determined. In the training phase, by using
discriminative machine learning algorithms, a number of im-
age patches (samples) around the object are selected from
the training frame to train a classifier that can discriminate
between the object and its background. In the detection phase,
the classifier is then performed on several candidate patches
selected from the detection frame to calculate their responses.
The maximum response reveals the most probable position
of the object. The training-detection procedure is run succes-
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sively over every frame to track the object in the whole video,
during which the detection frame becomes the training frame
once the object is detected. The whole process is depicted in
Fig. 1. Despite various advanced and fast algorithms [1,2], VT
can be time consuming when the processed data size is large.

Quantum computing provides a paradigm that makes use of
quantum-mechanical principles, such as superposition and en-
tanglement, to perform computing tasks in quantum systems
(quantum computers) [6,7]. The most exciting thing about
quantum computing is that it can achieve significant speedup
over classical computing, in solving certain problems, such as
simulating quantum systems [8], factoring large numbers [9],
unstructured database searching [10,11], and solving linear
systems of equations by Harrow et al. (HHL algorithm) [12].
In recent years, the applicability of quantum computing has
been extended to the fields of machine learning and data
mining, resulting in a variety of related quantum algorithms
[13–19] for solving various machine learning and data mining
problems, such as linear regression [13–15], support vector
machine [17], and association rules mining [18]. These al-
gorithms are shown to achieve significant speedup over their
classical counterparts. Overviews on the recent progress in
this field can be found in the references [20,21].

Motivated by the progress in VT as well as quantum
computing, and especially in machine learning, we explore
whether and how quantum computing can be exploited to
implement VT more efficiently than classical computing. In
particular, we propose a quantum algorithm for VT based
on the well-known tracking-by-detection VT framework pro-
posed by Henriques et al. in 2015 (HCMB15 framework) [1].
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FIG. 1. Schematic of visual tracking by training and detection.
The (red) circles represent the object in the training and detection
frame. The (black) rectangles in the training frame denote sample
image patches for training, and those in the detection frame denote
the candidate image patches for detection. The training-detection
procedure is run successively over contiguous frames to track the
object in the video.

The earlier version of this framework is given in Ref. [2]. In
the training phase, the HCMB15 framework utilizes a base
sample patch to subtly produce a large number of virtual
sample patches which can be represented by a circulant data
matrix, and use these samples to train a ridge regression
classifier. In the detection phase, it uses a base candidate
patch to generate a large number of virtual candidate patches,
which can also be represented by a circulant matrix, performs
the classifier on those candidate patches, and obtains their
corresponding responses. The most probable location of the
object is revealed by the candidate patch with the maximum
response. The circulant structure of the data matrix has been
cleverly exploited in the HCMB15 framework and makes it
extremely efficient in both training and detection phases.

Our quantum algorithm also comprises the training phase
and the detection phase. In the training phase, a ridge regres-
sion classifier is trained in the quantum state form, where
the optimal fitting parameters of ridge regression are encoded
in the amplitudes. In the detection phase, the classifier is
then utilized to generate a quantum state whose amplitudes
encode the responses of all the candidate image patches.
The whole algorithm is built on the proposed subroutine
of simulating extended circulant Hamiltonians, which allows
the estimation of the singular values of generic circulant
matrices by phase estimation. Our algorithm generates both
states in polylogarithmic time when the data matrices have
low condition numbers, demonstrating its potential to achieve
exponential speedup over the classical counterpart. Moreover,
we also show that the output quantum state of our algorithm
can be fully used to efficiently implement two important
computer vision tasks: object disappearance detection and
motion behavior matching.

The rest of the paper is organized as follows. In Sec. II, we
review the HCMB15 framework in terms of its basic concepts,
notations, and classical algorithmic procedures. Section III
presents and analyzes our quantum algorithm. Section IV
gives two important applications of our algorithm. Finally,
conclusions are drawn in the last section.

II. HCMB15 FRAMEWORK

In this section, we review the basic idea and algorithms
in the HCMB15 framework [1,2]. For simplicity, we only
consider one-dimensional images with single channel. The
generalization to two-dimensional multiple-channel images
can be seen in [1,2].

The HCMB15 framework is one of the excellent candidates
for implementing VT. In the training phase, it takes a base
sample image patch of the training frame (where the object is
usually placed at the center) with n pixels that can be repre-
sented by a vector x = (x1, x2, . . . , xn)T , the size of which is,
for example, two times that of the object. By cyclic shifting x,
it can be used to generate n virtual samples corresponding to
a circulant matrix

X = C(x) =

⎡
⎢⎢⎣

x1 x2 x3 · · · xn

xn x1 x2 · · · xn−1
...

...
...

. . .
...

x2 x3 x4 · · · x1

⎤
⎥⎥⎦, (1)

where C(x) : Rn → Rn×n is a function which generates the
circulant matrix for a given vector x. The ith row of X is
denoted by xi with x1 = x, and corresponds to the ith training
sample.

In addition, each sample is assigned a label (or regression
target), a positive value ranging from 0 to 1, to quantify the
closeness between the sample and the base sample; the value
approximates to 1 if the sample is close to the base sample,
and reduces to zero as the distance between them increases.
The label of xi, denoted by yi, is commonly derived using the
Gaussian function

yi = e−d2
i /s2

, (2)

where di is the Euclidean distance of the ith sample to the base
sample in the image and s is the bandwidth and is commonly
taken as s = c

√
n for some constant c.

In the training phase, the goal is to train a linear func-
tion f (x) = wT x by ridge regression, which minimizes the
squared error over samples xi and yi,

min
w

n∑
i=1

| f (xi ) − yi|2 + α‖w‖2, (3)

where α is the regularization parameter that controls overfit-
ting. The solution is given by

w = (X T X + αI )−1X T y, (4)

where y = (y1, y2, . . . , yn)T is the vector of the regression
targets of all n samples, and X is called the data matrix [1].
After the solution w is obtained, one can predict the response
of a new image patch x̂ by calculating f (x̂) = wT x̂.

The HCMB15 framework takes advantage of the property
of the circulant matrix X that it can be written as X =
F diag[F (x)]F †. Here F is the unitary Fourier transformation
matrix, F (x) = √

nFx is the discrete Fourier transformation
(DFT), and diag(z) is the diagonal matrix formed by z. As a
result, the solution [Eq. (4)] can be efficiently obtained with
time complexity O(n log(n)) [1], which is significantly faster
than the currently prevalent method by matrix inversion and
products that has time complexity O(n3).

In the detection phase, a base candidate image patch of
the detection frame denoted by a n-dimensional vector z is
given, and is used to generate n virtual candidate patches
corresponding to the n × n matrix Z = C(z) with the ith row
corresponding to the ith candidate patch. Then the responses
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of these patches are predicted by

ŷ = Zw, (5)

where the ith element of ŷ corresponds to the response of
ith candidate patch. The index with maximum response in ŷ
reveals the target image patch that gives the best estimated
position of the object and serves as the new base sample for
the next training-detection procedure.

III. QUANTUM ALGORITHM

In this section, we present a quantum algorithm for
VT based on the HCMB15 framework with focus on one-
dimensional single-channel images. Just as the classical
HCMB15 framework, our algorithm also comprises two
phases: training and detection. In the first place, we propose
a technique of simulating the extended circulant Hamilto-
nians in Sec. III A. By taking this technique as the basic
subroutine, we construct our quantum algorithm to prepare
the quantum state |w〉 (normalized w) in the training phase
shown in Sec. III B, and then ultimately generate the state |ŷ〉
(normalized ŷ) in the detection phase shown in Sec. III C. We
perform runtime analysis on our algorithm in Sec. III D, and
finally extend it to two-dimensional single-channel images in
Sec. III E.

A. Extended circulant Hamiltonian simulation

Since Eq. (1) describes a general n × n circulant ma-
trix, we let X denote an arbitrary n × n circulant matrix.
In the case where X is Hermitian, i.e., X = X †, Zhou
and Wang [22] proposed an efficient quantum algorithm
that uses the unitary linear decomposition approach [23]
to implement e−iXt within spectral-norm error ε in time
O(t polylog(n) log(t/ε)/ log log(t/ε)), under the assump-
tions that the quantum oracle Ox|0〉⊗�log n� = ∑n

i=1
√

xi|i〉 that
can be efficiently implemented in time O(polylog(n)) is
provided, and

∑n
i=1 xi = 1. This algorithm is based on the

observation that X can be written as a linear combination of n
efficient-to-implement unitary operators, namely

X =
n∑

j=1

x jVj, (6)

where each Vj = ∑n−1
l=0 |(l − j + 1) mod n〉〈l| for j =

1, 2, . . . , n, and can be implemented using O(log n) one- or
two-qubit gates.

However, X in general is not Hermitian and cannot be
simulated directly by the algorithm [22]. To overcome this,
we take the extended circulant Hamiltonian of X ,

X̃ = |0〉〈1| ⊗ X + |1〉〈0| ⊗ X †

=
[

0 X
X † 0

]
. (7)

It is interesting and easy to see that X̃ can also be written as a
linear combination of simple unitary operators:

X̃ =
n∑

j=1

x j (|0〉〈1| ⊗ Vj + |1〉〈0| ⊗ V †
j )

=
n∑

j=1

x j (σX ⊗ I )(|0〉〈0| ⊗ Vj + |1〉〈1| ⊗ V †
j )

=
n∑

j=1

x jṼj, (8)

where σX is the Pauli-X gate (or NOT gate). Therefore, follow-
ing Zhou and Wang [22], we can also use the unitary linear
decomposition approach [23] to design an efficient quantum
algorithm that implements e−iX̃ t within some (spectral-norm)
error ε. We present the result in the following theorem.

Theorem 1. (Extended circulant Hamiltonian simulation).
There exists a quantum algorithm that implements e−iX̃ t

within error ε by taking O(t log(t/ε)/ log log(t/ε))
calls of controlled-Ox (|0〉〈0| ⊗ I + |1〉〈1| ⊗ Ox), and
O(t log(n) log(t/ε)/ log log(t/ε)) one- or two-qubit gates.

Proof. This theorem can be readily proved by follow-
ing the same argument as proving theorem 4.1 in [22]. In
that proof, a quantum algorithm which involves a series of
controlled-Ox together with controlled Vj and their inverse
was constructed. To prove the above theorem, we can con-
struct a similar quantum algorithm where Ṽj instead of Vj

are used. It is easy to see from Eq. (8) that Ṽj can also be
efficiently implemented by taking O(log n) one- or two-qubit
gates just as Vj . �

According to this theorem, e−iX̃ t can be efficiently
implemented within error ε with time complexity
O(t polylog(n) log(t/ε)/ log log(t/ε)), under the assumption
that Ox can be implemented in time O(polylog(n)). This
efficient implementation of e−iX̃ t for an arbitrary circulant
matrix X will serve as an elementary subroutine in both
phases of our algorithm as shown in the following.

B. Algorithm phase I: Training

The training phase aims to produce the quantum state |w〉.
To attain a more concise form of w (as well as |w〉), we write
X in the singular value decomposition form

X =
n∑

j=1

λ j |u j〉〈v j |,

where {λ j}n
j=1, {|u j〉}n

j=1, and {|v j〉}n
j=1 are respectively the

singular values, the left singular vectors, and the right singular
vectors of X . So, according to the definition of Eq. (7), X̃ has
2n eigenvalues {±λ j}n

j=1 and eigenvectors {|w±
j 〉}n

j=1, where

|w±
j 〉 = (|0〉|u j〉 ± |1〉|v j〉)/

√
2.

Since {|u j〉}n
j=1 constitutes an orthonormal basis of the Rn

space, y can be written as a linear combination of these
basis vectors, i.e., y = ∑n

j=1 β j‖y‖|u j〉. In this case, the ridge
regression solution w [Eq. (4)] can be rewritten as

w =
n∑

j=1

β jλ j‖y‖
λ2

j + α
|v j〉. (9)

It is notable that a good α, with which ridge regression can
achieve good predictive performance, can be chosen effi-
ciently by quantum cross validation [16].
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The training phase of our algorithm to generate |w〉 [nor-
malized Eq. (9)] is detailed as below, and the corresponding
quantum circuit is shown in Fig. 2.

(1) Prepare three quantum registers in the state
(|0〉|y〉)(|0〉⊗s0 )|0〉, where

|0〉|y〉 = |0〉
⎛
⎝ n∑

j=1

β j |u j〉
⎞
⎠

=
n∑

j=1

β j

( |w+
j 〉 + |w−

j 〉√
2

)
, (10)

where s0 denotes the number of qubits used for storing
eigenvalues in the next step. Consequently, the regression
targets (y1, y2, . . . , yn) of all the samples are encoded in the
amplitudes of |y〉. The details of preparing |y〉 are shown in
the Appendix.

(2) Performing phase estimation of e−iX̃ t0 on the first two
registers, we obtain the whole state

n∑
j=1

β j

( |w+
j 〉|λ j〉 + |w−

j 〉| − λ j〉√
2

)
|0〉. (11)

(3) Performing a controlled rotation on the last register
(qubit) conditioned on the eigenvalue register, we have

n∑
j=1

β j

⎛
⎜⎜⎜⎝

|w+
j 〉|λ j〉

[
Cλ j

λ2
j+α

|1〉 +
√

1 −
(

Cλ j

λ2
j+α

)2|0〉
]

√
2

+
|w−

j 〉| − λ j〉
[

−Cλ j

λ2
j+α

|1〉 +
√

1 −
(
− Cλ j

λ2
j+α

)2|0〉
]

√
2

⎞
⎟⎟⎟⎠. (12)

Here C = O(min j λ j ).
In other words, the last qubit is rotated by the angle

θ (λ) = arcsin

(
Cλ

λ2 + α

)
conditioned on |λ〉, where λ is the eigenvalue. To implement
this, we use the methodology presented in [24] to construct
the register |θ (λ)〉 from |λ〉, where θ (λ) is approximated by

1 2 3 4

FIG. 2. Quantum circuit for the training phase. Here the numbers
1, 2, 3, and 4 denote the sequence of four steps of the training
phase, “/” denotes a bundle of wires, H denotes the Hadamard
operation, FT represents the quantum Fourier transformation [6],
and controlled R0 denotes the controlled rotation in the training
step (3).

truncating the Taylor series of θ (λ) (of λ) to some order, and
|θ (λ)〉 is accordingly obtained by performing a sequence of
quantum multiplication and quantum addition operations as
described in [24].

(4) Undoing phase estimation and measuring the last qubit
to see the outcome |1〉, we obtain the state of the first register

|1〉
⎡
⎣ n∑

j=1

Cβ jλ j

λ2
j + α

|v j〉
/√√√√ n∑

j=1

(
Cβ jλ j

λ2
j + α

)2
⎤
⎦ = |1〉|w〉.

(13)

Discarding |1〉, we derive the quantum state |w〉 as desired.

C. Algorithm phase II: Detection

Obtaining |w〉 via the training phase of our algorithm
allows us to proceed to the next phase: detection. In the de-
tection phase, according to Eq. (5), we are to produce the final
state |ŷ〉 by performing the operation Z on |w〉. To see |ŷ〉 more
concisely, let Z be written in the singular value decomposition
form, Z = ∑n

j=1 γ j |p j〉〈q j |, where {γ j}n
j=1, {|p j〉}n

j=1, and
{|q j〉}n

j=1 are respectively the singular values, the left singular
vectors, and the right singular vectors of Z . Since |w〉 lies in
the space spanned by {|q j〉}n

j=1, |w〉 can be written as a linear
combination of them, i.e., |w〉 = ∑n

j=1 δ j |q j〉. So |ŷ〉 can be
rewritten as

|ŷ〉 =
n∑

j=1

γ jδ j |p j〉
/√√√√ n∑

j=1

γ 2
j δ

2
j . (14)

Similar to the training phase, this phase resorts to the
simulation of the extended circulant Hamiltonian of Z , Z̃ =
|0〉〈1| ⊗ Z + |1〉〈0| ⊗ Z†, which has 2n eigenvalues {±γ j}n

j=1

and eigenvectors {|r±
j 〉 = (|0〉|p j〉 ± |1〉|q j〉)/

√
2}n

j=1. Here
we also assume that a quantum oracle Oz that efficiently im-
plements |0〉log�n� 
→ ∑n

i=1
√

zi|i〉 in time O(polylog(n)) and
are provided in the controlled fashion, and that

∑n
i=1 zi = 1.

Under these assumptions, we are able to efficiently implement
e−iZ̃t by Theorem 1. Armed with this ability, the detection
phase of our algorithm to generate |ŷ〉 can be achieved by
the following steps, and the corresponding quantum circuit is
shown in Fig. 3.

1 2 3 4

FIG. 3. Quantum circuit for generating |ŷ〉. Here the numbers 1,
2, 3, and 4 denote the four sequential steps of the detection phase, and
controlled R1 denotes the controlled rotation in the detection step (3).
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(1) Prepare three quantum registers in the state
(|1〉|w〉)(|0〉⊗s1 )|0〉, where

|1〉|w〉 = |1〉
⎛
⎝ n∑

j=1

δ j |q j〉
⎞
⎠ =

n∑
j=1

δ j

( |r+
j 〉 − |r−

j 〉√
2

)
, (15)

and s1 denotes the number of qubits for phase estimation in
the following step. Note that |w〉 has been produced as shown
in the training phase.

(2) Performing phase estimation of e−iZ̃t1 on the first two
registers, we have

n∑
j=1

δ j

( |r+
j 〉|γ j〉 − |r−

j 〉| − γ j〉√
2

)
|0〉. (16)

(3) Similar to the third step of the training phase, we
also perform a controlled rotation operation on the last two
registers to obtain the whole state

n∑
j=1

δ j

( |r+
j 〉|γ j〉[C′γ j |1〉 + √

1 − (C′γ j )2|0〉]√
2

−|r−
j 〉| − γ j〉[−C′γ j |1〉 + √

1 − (−C′γ j )2|0〉]√
2

)
. (17)

Here C′ = O(max j γ j )−1.
The controlled rotation can be implemented by the same

approach presented in step (3) of the training phase, but the
function of angle θ (λ) is replaced by θ (γ ) = arcsin(C′γ ),
where γ represents the eigenvalue stored in the second (eigen-
value) register.

(4) Undo the phase estimation and measure the last qubit
to see the outcome |1〉. If successful, we obtain the state of the
first register,

|0〉
⎛
⎝ n∑

j=1

C′δ jγ j |p j〉
/√√√√ n∑

j=1

(
C′δ jγ j

)2

⎞
⎠ = |0〉|ŷ〉. (18)

Then, discarding |0〉, we derive the quantum state |ŷ〉 as
desired.

D. Runtime analysis

We respectively analyze the runtime in the training phase
and that in the detection phase of our algorithm, and discuss
the overall runtime.

In the training phase, the error occurs in the Hamiltonian
simulation of X̃ and in the phase estimation in step (2). Since
the complexity of Hamiltonian simulation scales sublogarith-
mically in the inverse of error, as shown in Theorem 1, and
that of the phase estimation scales linearly [6], the source of
error dominantly comes from the phase estimation. The phase
estimation induces error O(1/t0) in estimating λ (singular
value of X ), and relative error

O

(
λ2 − α

t0λ(λ2 + α)

)
= O(1/t0λ)

in estimating λ/(λ2 + α). Since
∑n

i=1 xi = 1, the spectral
norm of X is 1 and thus 1/κX � λ � 1, where κX is the
condition number of X . So t0 = O(κX /ε) induces final error

ε according to the analysis in HHL algorithm [12]. In step
(3), θ (λ) can be approximated within error ε by truncating
its Taylor series to the order O( log(1/ε)

log log(1/ε) ), meaning that

O( log(1/ε)
log log(1/ε) ) iterations of performing quantum multiplication

and quantum addition operations are required [24]. Since the
eigenvalue register |λ j〉 (and other ancilla registers storing
intermediate results) should be of O(log(κX /ε)) qubits to
ensure λ j being estimated within error O(ε/κX ) via phase
estimation [in step (2)] [6], each iteration takes O(log2(κX /ε))
and O(log(κX /ε)) elementary gates to implement quantum
multiplication and addition, respectively. So step (3) totally
takes time O( log(1/ε) log2(κX /ε)

log log(1/ε) ), which is relatively negligible
compared to the time taken in step (2). In step (4), the success
probability of obtaining |1〉 is

∑
j

(
Cβ jλ j

λ2
j + α

)2

= �
(
1/κ2

X

)
,

since Cλ j/(λ2
j + α) = �(1/κX ), which means O(κ2

X ) mea-
surements are required to obtain |1〉 with a high probability
and this can be improved to O(κX ) repetitions by amplitude
amplification. Here α is taken for convenience to be in the
range [1/κ2

X , 1], because from Eq. (4) it is easy to see that,
when α is too small, ridge regression is reduced to ordinary
linear regression and, when α is too large, it is the oper-
ation X that is performed in Eq. (4). Therefore, the total
time complexity for generating |w〉 in the training phase is
Tw = Õ(polylog(n)κ2

X /ε), where Õ is used to suppress the
lower growing terms, the polylogarithmic factors in simulat-
ing Hamiltonian as shown in Theorem 1, and in step (3).

In the detection phase, the source of error for generating
|ŷ〉 is also dominated by the phase estimation in step (2). The
phase estimation induces relative error O(1/γ ) in estimating
γ , where γ denotes the singular value of Z . Since

∑
i zi = 1,

the spectral norm of Z is also one and 1/κZ � γ � 1, where
κZ is the condition number of Z . Thus t1 = O(κZ/ε) induces
final error ε for generating |ŷ〉. Just as the step (3) of the
training phase, the step (3) of the detection phase also takes
relatively negligible time. In step (4), the success probability
of obtaining the outcome |1〉 is

∑n
j=1 (C′δ jγ j )

2 = �(1/κ2
Z ),

which means O(κZ ) repetitions are required to obtain |1〉,
with a high probability, by amplitude amplification. Tak-
ing into account the time for generating |w〉 (in the train-
ing phase) in step (1), the runtime of the detection phase
of our algorithm scales as Õ(κZ [polylog(n)κZ/ε + Tw]) =
Õ(polylog(n)κZ (κZ + κ2

X )/ε).
The overall time complexity of our algorithm has the same

scaling as that of the detection phase, because the training
phase to create |w〉 has been incorporated into the detection
phase in the sense that |w〉 is taken as the input in the detection
phase (as shown in its first step). This means that, compared
to the classical HCMB15 framework which takes the same
O(n log(n)) time to obtain both w and ŷ, our algorithm takes
only exponentially less time for generating their quantum-
state versions |w〉 and |ŷ〉, when κX , κZ , 1/ε = O(polylog(n)).
Comparisons between the classical HCMB15 framework and
our quantum algorithm are detailed in Table I.

Further runtime needs to be considered if we use the output
|ŷ〉 to implement other specific tasks. For example, let us
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TABLE I. Comparisons between our quantum algorithm and the classical HCMB15 algorithm, in terms of their inputs and outputs and
their time complexity.

Algorithms Inputs Outputs Time complexity

Classical algorithm x, z, y, α ŷ O(n log(n))
Quantum algorithm Controlled Ox, controlled Oz, |y〉, α |ŷ〉 Õ(polylog(n)κZ (κZ + κ2

X )/ε)

consider the ultimate task of the HCMB15 framework to
detect target candidate patch, which entails identifying the
index of largest squared amplitude (denoted by pmax) in |ŷ〉
by sampling the state. Then we require O(1/pmax) samples to
reveal pmax, which will be efficient if 1/pm = O(polylog(n)).
However, in practice, when the object is clearly visible in the
detection frame, the set of elements in ŷ will be approximately
equal to that in y [25]. In this case the largest squared ampli-
tude in |ŷ〉 is close to that in |y〉, that is, pmax = 1/(

∑n
i=1 y2

i ) ≈
2
√

2√
πs

= O(1/
√

n) according to the result of the Appendix. This

means that �(
√

n) copies of |ŷ〉 are required to reveal the
largest squared amplitude in |ŷ〉. As a result, the overall run-
time for this task would be �(

√
n polylog(n)κZ (κZ + κ2

X )/ε)
by our quantum algorithm, achieving quadratic improvement
at most over the classical HCMB15 framework. Hereafter we
focus on using |ŷ〉 to implement other interesting tasks related
to VT, which can achieve much more significant speedup over
their classical methods, as shown in the following Sec. IV,
rather than sampling it exhaustively.

E. Extension to two-dimensional images

For two-dimensional images, a base sample patch of size
n × m is represented by a n × m matrix x with the jth (1 �
j � m) row denoted by a n-dimensional vector x j . All the
samples correspond to cyclic shifts of the base sample in both
horizontal and vertical directions, and can be described by a
block circulant matrix with circulant blocks [2], resulting in
the nm × nm data matrix

X =

⎡
⎢⎢⎣
C(x1) C(x2) C(x3) · · · C(xn)
C(xn) C(x1) C(x2) · · · C(xn−1)

...
...

...
. . .

...
C(x2) C(x3) C(x4) · · · C(x1)

⎤
⎥⎥⎦, (19)

corresponding to the two-dimensional-image version of
Eq. (1). It can be decomposed as

X =
n∑

j=1

Vj ⊗ C(x j ) =
n∑

j=1

m∑
k=1

x jkVj ⊗ V
′

k , (20)

where V
′

k = ∑m−1
l=0 |(l − k + 1) mod m〉〈l| and can also be

efficiently implemented in time O(log(m)).
Given the quantum oracle Ox such that Ox|0〉⊗�log nm� =∑n
i=1

∑m
j=1

√
x jk| j〉|k〉 and under the assumption that∑

jk x jk = 1, the extended circulant Hamiltonian X̃ =
|0〉〈1| ⊗ X + |1〉〈0| ⊗ X † can be efficiently simulated as
shown in Theorem 1 by extending the dimension n to nm.
The ability of efficiently simulating X̃ allows us to perform
training and detection in the quantum computer as shown in
the previous two subsections, except that the dimension has
been extended from n to nm.

IV. APPLICATIONS

In this section, we show how the output response state
|ŷ〉 of our quantum algorithm can be fully used to efficiently
implement two important tasks related to VT: (1) object
disappearance detection and (2) motion behavior matching.

A. Object disappearance detection

The task of object disappearance detection is to detect
whether the object has already disappeared or not, in the can-
didate image patch of the detection frame. If not, as discussed
in the previous section, the set of elements in ŷ [Eq. (5)],
namely the output in the detection phase of HCMB15 frame-
work, will be approximately equal to that in y [25]. This
means that in this case the elements in ŷ also approximately
follow a Gaussian distribution with a peak. However, if the
object has disappeared from the video frame, the distribution
of the elements in ŷ becomes much more uniform [25]. This
implies that in this case the quantum state |ŷ〉 is closer to the
uniform superposition state |1〉 := ∑n−1

j=1 | j〉/√n. In order to
clearly discriminate these two cases, we estimate the overlap
between |ŷ〉 and |1〉, P1 = |〈ŷ|1〉|2, using swap test [14,17,26],
to determine and quantify the closeness between these two
states. The quantum circuit of the canonical swap test for
estimating the overlap of two quantum states is shown in
Fig. 4, the circuit depth of which scales linearly with the qubit
number of each state. The swap test has been implemented
in both quantum optics [27–29] and a gate-based quantum
computer [30]. The task of estimating the state overlap can
also be done by recent machine-learning-found quantum algo-
rithms [31], which have shorter and even constant depth and
thus may be more promising on near-term quantum computers
than the canonical swap test. These algorithms experimentally
exhibit more robustness and reliability, but their performances

FIG. 4. Quantum circuit of swap test for estimating the overlap,
Tr(ρ1ρ2), between two states with density matrices ρ1 and ρ2, where
SWAP denotes the SWAP unitary operation implemented by a series
of elementary one-qubit or two-qubit gates [6]. The probability of
obtaining the measurement outcome |0〉 after measuring the top
ancilla qubit is 1+Tr(ρ1ρ2 )

2 , which reveals the estimate of Tr(ρ1ρ2) by
repeating the circuit for a sufficient number of times. In our case, we
are to estimate the overlap between the two pure states ρ1 = |ŷ〉〈ŷ|
and ρ2 = |1〉〈1|, Tr(ρ1ρ2) = P1 = |〈ŷ|1〉|2.
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(a)

(b)

(c)

FIG. 5. Figure (a) is the training frame, where the object is placed
at the center. The black (bigger) rectangle denotes the image patch
and the red (smaller) rectangle denotes the object. Figure (b) is the
detection frame where the object moves 3 pixels to the right relative
to that in (a) but still exists in the patch. Figure (c) is the detection
frame where the object disappears relative to that in (b), and the
dashed rectangle denotes the position where the object should be. All
the three frames are one-dimensional gray scale images of 50 pixels.
The patch and the object are of 20 pixels and 10 pixels, respectively.

substantially depend on the connectivity and available quan-
tum gates of the actual quantum computers.

By setting a threshold ϑ1, the object is considered as
disappeared if the obtained P1 � ϑ1; otherwise, the object
is considered still in the video frame. Following [14,17,26],
P1 can be obtained to accuracy δ with O(1/δ2) repetitions
of swap test, so this task only takes O(1/δ2) copies of the
response state |ŷ〉 (as well as |1〉), as opposed to O(

√
n) copies

for sampling described in the last section. This means that,
compared with the task of sampling |ŷ〉, the task of object
disappearance detection takes exponentially fewer number of
|ŷ〉, if δ = O(1/ polylog n) is acceptable.

To show more intuitively how different the values of P1 are
in the above two cases, we carried out a numerical experiment
with an illustrative example, as shown in Fig. 5. In the
experiment, we manually and randomly generate one training
frame, and two detection frames in which the object is either
still there or disappeared. In this example, P1 = 0.577 for the
case where the object exists and P1 = 0.986 for the case where
the object disappears. We then run the experiment for 50 times
to yield 50 values of P1 for each case. These P1 values are
shown in Fig. 6. From this figure, we can see that P1 � 0.6 for
the case where the object exists, while P1 � 0.9 for the case
where the object disappears. Therefore, for this example, ϑ1

can satisfactorily take the value 0.75.

B. Motion behavior matching

The task of motion behavior matching is to determine
whether the motion behavior of the object in a video matches
a given motion behavior template. More specifically, it is
to determine whether the object in the video moves along
a given path or not. To see this task visually, we present a
simple example with two-dimensional images in Fig. 7. The

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
1

Object exists
Object disappears
Threshold

FIG. 6. Comparison between the 50 values of P1 for the case
where the object exists and those for the case where the object
disappears after running the experiment in Fig. 5 for 50 times.

procedure to implement this task using our quantum algorithm
is detailed in the following steps.

(1) Train the entire initial frame of the video (instead of an
image patch according to the standard HCMB15 framework)
by using the training part of our quantum algorithm and get
the classifier |w〉.

(2) Select K positions in the template including the position
of the object in the initial frame, generate K “template”
frames by just moving the object in the initial frame to these
positions, and perform the detection part of our quantum
algorithm, using the |w〉 obtained on these template frames,
to generate K response states, |ŷ1

t 〉, |ŷ2
t 〉, . . . , |ŷK

t 〉.
(3) Select K “actual” frames appropriately from the

video, where the object is supposed to be located at
the selective K positions if the object motion behav-

1 2 3

4

5 6 7

FIG. 7. Simple example for motion behavior matching. Here the
rectangle with blue border denotes the frame, the red circles denote
the object, the black arrowed lines correspond to the Z-shape motion
template, and the numbers 1, 2, . . . , 7 are to mark seven selected
positions in the template. The initial frame of the video contains the
object located in position 1. If the object motion behavior in the video
matches the template, the object in seven appropriately selected
frames of the video should be located at these seven positions.
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ior matches the template well, and perform the detec-
tion part of our quantum algorithm with the classi-
fier |w〉 on these frames, to generate K response states,
|ŷ1

a〉, |ŷ2
a〉, . . . , |ŷK

a 〉. Here we assume that the information of
the object moving speed is known so that these actual frames
can be appropriately selected.

(4) Evaluate the closeness between |ψt 〉 and |ψa〉 by
estimating the value of P2 = |〈ψt |ψa〉|2 using swap test
as shown in Fig. 4, where |ψt 〉 = ⊗K

k=1|ŷk
t 〉 and |ψa〉 =

⊗K
k=1|ŷk

a〉. Just as P1, P2 can also be estimated by shorter-
depth quantum algorithms [31]. Setting another threshold
ϑ2, if P2 � ϑ2, we regard the motion behavior of the ob-
ject in the video matches the template well; otherwise,
the matching fails.

In step (4), P2 can be obtained to accuracy δ with O(1/δ2)
copies of |ψt 〉 and |ψa〉 and each copy takes 2K response
states of the same size. Therefore, O(K/δ2) copies of re-
sponse states (|ψt 〉 and |ψa〉) are taken in total for imple-
menting this task. Moreover, O(K/δ2) = O(polylog(n)) if
K, 1/δ = O(polylog(n)) is acceptable. In practice, K can be
chosen to be very small relative to the number of frames
in the video, if we just want to roughly know the object’s
motion in the video. The choice for the threshold ϑ2 de-
pends on how well we require the object’s moving mo-
tion to match the template, but practically and reasonably
ϑ2 should be chosen to be close to 1, e.g., ϑ2 = 0.9. In
addition, the accuracy δ is generally chosen to be O(ϑ2),
e.g., δ = ϑ2/10. Therefore, the scaling O(K/δ2) can be
small in practice.

In addition to the above two applications, we expect
that this algorithm can be implemented for other tasks of
practical interest.

V. CONCLUSIONS

We have presented a quantum algorithm for visual track-
ing based on the well-known classical HCMB15 framework,
which can be applied to detect the object position as done in
the HCMB15 framework with quadratic speedup. Our algo-
rithm first trains a quantum-state ridge regression classifier,
where the optimal fitting parameters of ridge regression are
encoded in the amplitudes. The classifier is then performed
on the detection frame to generate a quantum state whose
amplitudes encode the responses of all the candidate image
patches. Taking full advantage of efficient extended circulant
Hamiltonian simulation, both states can be generated in time
polylogarithmic in their dimensionality, when the data matri-
ces have low condition numbers. This demonstrates that our
quantum algorithm has the potential to achieve exponential
speedup over the classical counterpart. Furthermore, we have
also shown how our algorithm can be applied to efficiently im-
plement two important tasks: object disappearance detection
and motion behavior matching.

We expect the techniques used in our algorithm, such as
extended circulant Hamiltonian simulation, to be helpful in
designing more quantum algorithms requiring manipulating
circulant matrices. We also hope this algorithm may inspire
more quantum algorithms for visual tracking as well as other
computer vision problems.
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APPENDIX: PREPARING THE QUANTUM STATE |y〉
IN THE TRAINING PHASE

According to the definition of y [Eq. (2)], for one-
dimensional images, it is easy to see that yi = e−(i−1)2/s2

for i = 1, 2, . . . , (n + 1)/2�, and yi = e−(n+1−i)2/s2
for i =

(n + 1)/2� + 1, (n + 1)/2� + 2, . . . , n. Since the elements
of y are generally not uniformly distributed, it is time con-
suming to create the quantum state |y〉 = ∑n

i=1 yi|i〉/‖y‖ in
the common way: yi are loaded into a quantum register in
parallel and a controlled rotation and measurement are then
conducted on an ancilla qubit so that yi/‖y‖ can be written
in the amplitudes. Another efficient way is referred to [32],
where

∑i2
i=i1

y2
i for any two i1 and i2, with 1 � i1 � i2 � n,

is required to be efficiently computable to create |y〉 [12].
However, yi cannot satisfy this condition because there is
no efficient formula for calculating

∑i2
i=i1

y2
i for any two i1

and i2 with 1 � i1 � i2 � n. In the following, we present an
approach that combines both of the two ways to efficiently
create |y〉.

Our approach is based on the observation that, for i =
2, . . . , (n + 1)/2�, yi can be approximated by integrating
some Gauss function in some appropriate range, that is,

y2
i ≈ ỹ2

i := s
∫ i−1

s

i−2
s

e−2t2
dt, (A1)

but y2
i � ỹ2

i . This is related to the error function E (x) =
2√
π

∫ x
0 e−t2

dt (x > 0) that can be approximated by some ele-
mentary functions. For example, E (x) ≈ G(x) := 1 − (a1t +
a2t2 + a3t3)e−x2

within error 2.5 × 10−5 [33], where t =
1

1+px , p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, and
a3 = 0.7478556. Since this error is very small and thus negli-
gible, we replace E (x) with G(x) and have

ỹ2
i =

√
π

2
√

2
s

[
G

(√
2(i − 1)

s

)
− G

(√
2(i − 2)

s

)]

for i = 2, . . . , (n + 1)/2�. This means that
∑i2

i=i1
ỹ2

i for any
two 2 � i1 � i2 � (n + 1)/2� is efficiently computable. Fur-
thermore, for i = 2, . . . , (n + 1)/2�, since y1 = 1 and yi =
yn+2−i, we can set ỹ2

1 = 1 and ỹ2
i = ỹ2

n+2−i; thus
∑i2

i=i1
ỹ2

i
for any two 1 � i1 � i2 � n is also efficiently computable.
Consequently, using the approach of [32], we can create the
state

|ỹ〉 :=
n∑

i=1

ỹi√∑n
i=1 ỹ2

i

|i〉 (A2)

efficiently in time O(log n) [32].
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Armed with the capability of efficiently creating |ỹ〉, we
can create the state |y〉 efficiently as well, by the following
procedure.

(1) Add two registers to the register of |ỹ〉 and load the ỹi

and yi in parallel to get the state
n∑

i=1

ỹi√∑n
i=1 ỹ2

i

|i〉|yi〉|ỹi〉.

Note that ỹi and yi can be computed efficiently.
(2) Add another qubit and perform the controlled rotation

to have the state
n∑

i=1

ỹi√∑n
i=1 ỹ2

i

|i〉|yi〉|ỹi〉
(

yi

ỹi
|1〉 +

√
1 − y2

i

ỹ2
i

|0〉
)

.

(3) Undo the first step and get the state

n∑
i=1

ỹi√∑n
i=1 ỹ2

i

|i〉
(

yi

ỹi
|1〉 +

√
1 − y2

i

ỹ2
i

|0〉
)

.

(4) Measure the last qubit to ensure the outcome of |1〉 and
the first register will be in the state |y〉 as desired. The success
probability of this postselection is

∑n
i=1 y2

i∑n
i=1 ỹ2

i

= �(1),

because

n∑
i=1

ỹ2
i ≈

n∑
i=1

y2
i ,

n∑
i=1

y2
i ≈

√
π

2
√

2
s

when n is sufficiently large. Consequently the time complexity
for creating |y〉 scales as O(log n).
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