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A system of linearly coupled quantum harmonic oscillators can be diagonalized when the system is
dynamically stable using a Bogoliubov canonical transformation. However, this is just a particular case of
more general canonical transformations that can be performed even when the system is dynamically unstable.
Specific canonical transformations can transform a quadratic Hamiltonian into a normal form, which greatly
helps to elucidate the underlying physics of the system. Here, we provide a self-contained review of the
normal form of a quadratic Hamiltonian as well as step-by-step instructions to construct the corresponding
canonical transformation for the most general case. Among other examples, we show how the standard two-mode
Hamiltonian with a quadratic position coupling presents, in the stability diagram, all the possible normal forms
corresponding to different types of dynamical instabilities.
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I. INTRODUCTION

Quadratic quantum Hamiltonians ubiquitously appear
whenever one describes coherent quantum dynamics of a
system near an equilibrium point. The quantum fluctuations
of every degree of freedom near equilibrium can be described
by a quantum harmonic oscillator through a process known as
linearization; see, e.g., Ref. [1]. In this context, the possibility
to perform a canonical transformation that diagonalizes the
quadratic Hamiltonian, namely a Bogoliubov transformation
[2,3], is equivalent to the statement that the system is dynam-
ically stable; see, e.g., Ref. [4]. Interestingly, whenever the
system is dynamically unstable, it is still possible to perform
a canonical transformation which, albeit not diagonalizing the
Hamiltonian, brings it to a simple form, the so-called normal
form [5,6].

The normal form is defined such that the matrix giving the
linear equations of motion of the canonical variables of the
system is in a real Jordan normal form, which is a very sparse
matrix. The real Jordan normal form of a matrix depends on its
spectral properties, in particular, whether it is diagonalizable
or not, and on the type of its eigenvalues: real, complex, zero,
or imaginary. The Bogoliubov canonical transformation [2,3],
for which the normal form Hamiltonian is diagonal, can only
be constructed whenever the equation-of-motion matrix is
diagonalizable and it has only imaginary eigenvalues. For any
of the other many possibilities, a different normal form exists,
with a specific canonical transformation, that is associated to a
specific type of dynamical instability. For instance, the normal
form unveils, among others, which modes of the system are
free particles, which are squeezed, which are interacting via a
beam-splitter type of interaction or via a two-mode squeez-
ing interaction, etc. Thus the normal form of a quadratic
Hamiltonian is an enlightening tool to understand the type of
quantum many-mode dynamics in unstable regions as well as
to identify the normal dynamical modes of the system.

Motivated by this possibility, in this article we revisit
previous literature, in particular the results of Laub and Meyer

[7], to provide a self-contained material on the normal form
of quadratic quantum Hamiltonians as well as detailed expla-
nations on how to construct the canonical transformation for
any type of dynamical instability. In particular, in Sec. II we
review the key properties of quadratic quantum Hamtilonians.
In Sec. III, we discuss the spectral properties of the equation-
of-motion matrix, which are used in Sec. IV to define the nor-
mal form of a quadratic quantum Hamiltonian. Step-by-step
instructions to construct the generic canonical transformation
to transform a quadratic Hamiltonian into its normal form are
presented in Sec. V. Some required technical details are given
in Appendix A, and the simplified instructions to perform the
Bogoliubov transformation for dynamically stable regimes are
reviewed in Appendix B. In Sec. VI, we discuss, as an exam-
ple, the stability diagram of two harmonic quantum oscillators
coupled via their canonical position that presents all types
of normal forms associated to different (in)stability regions.
We also include the detailed example on how to construct
the real canonical transformation to obtain the normal form
of a quadratic Hamiltonian describing the interaction of four
coupled quantum harmonic oscillators. Finally, we draw our
conclusions in Sec. VII.

II. QUADRATIC HAMILTONIAN

Let us consider a set of N quantum harmonic oscillators
described by the Hermitian operators x̂i = x̂†

i and p̂i = p̂†
i for

i = 1, . . . , N , which are the dimensionless position and mo-
mentum operators of each oscillator. These operators, which
we call quadratures hereafter, satisfy the canonical commu-
tation relations [x̂i, p̂ j] = iδi j and [x̂i, x̂ j] = [ p̂i, p̂ j] = 0 for
∀i, j = 1, . . . , N , where we choose h̄ = 1 for convenience. A
quadratic quantum Hamiltonian is then defined as

Ĥ = 1
2 R̂T MR̂, (1)

where R̂ = (x̂1, . . . , x̂N , p̂1, . . . , p̂N )T . The Hamiltonian
Eq. (1) is specified by the elements of the real symmetric
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matrix M = MT ∈ R2N×2N , which has units of frequency. We
remark that the same matrix M can be used to describe the
classical limit of this system [8].

Instead of writing the quadratic Hamiltonian Eq. (1) using
quadrature operators, one can use non-Hermitian creation and
annihilation operators defined by x̂i = (a†

i + ai )/
√

2 and p̂i =
i(a†

i − ai )/
√

2. These operators satisfy bosonic commutation
relations [âi, â†

j ] = δi j and [âi, â j] = [â†
i , â†

j ] = 0 for ∀i, j =
1, . . . , N . In this bosonic representation, the Hamiltonian
Eq. (1) can be written in the quadratic form

Ĥ = 1
2 �̂

†
MC�̂, (2)

where �̂ = (â1, . . . , âN , â†
1, . . . , â†

N )T and MC = M†
C ∈

C2N×2N is a Hermitian matrix. The quadrature and the bosonic
representation are related by R̂ = G�̂ and M = GMCG†,
where

G = 1√
2

(
1N 1N

−i1N i1N

)
(3)

is a unitary matrix and 1N a N × N identity matrix.
An important property of a quadratic Hamiltonian is that

the system of equations of motion is linear. Indeed, the
quadrature Heisenberg equations of motion corresponding to
Eq. (1) can be written as

d

dt
R̂ = JMR̂ ≡ KR̂, (4)

where J ∈ R2N×2N is an antisymmetric matrix defined as

J =
(

0 1N

−1N 0

)
, (5)

with the property J−1 = JT = −J . In this notation, the com-
mutation rules of the quadratures are given by [R̂i, R̂ j] =
iJi j for ∀i, j = 1, . . . , 2N . The matrix defined as K = JM ∈
R2N×2N is the equation-of-motion matrix containing all the
information about the time evolution of the system (note that
M = −JK). Indeed, Eq. (4) can be formally integrated to

R̂(t ) = exp(Kt )R̂(0). (6)

At this point, it is clear that the dynamical stability of the
system, characterized by the fact that none of the mean val-
ues |〈R̂i(t )〉|, |〈R̂i(t )R̂ j (t )〉| for ∀i, j = 1, . . . , 2N grow indef-
initely as a function of time, depends on the spectral properties
of the equation-of-motion matrix K . These properties are
dictated by the defining condition of K :

JK + KT J = 0, (7)

which guarantees that commutation relations are preserved
during the time evolution, namely [R̂i(t ), R̂ j (t )] = iJi j for
∀i, j = 1, . . . , 2N . As further discussed in Sec. III, the prop-
erty Eq. (7) allows K to have real, complex, zero, or imaginary
eigenvalues, as well as to be diagonalizable or nondiagonaliz-
able. As we will show later, dynamical stability corresponds
to K being diagonalizable and only having imaginary eigen-
values [9].

As commonly done in mechanics, one can find a new
set of coordinates in which the system can be more con-
veniently described. That is, one can perform a change of

coordinates via a 2N × 2N transformation matrix T , such that
R̂ = T ρ̂, where ρ̂ = (X̂1, . . . , X̂N , P̂1, . . . , P̂N )T are the new
coordinates. In order to guarantee that the new operators are
Hermitian ρ̂

†
i = ρ̂i and fulfill canonical commutation rules

[ρ̂i, ρ̂ j] = iJi j for ∀i, j = 1, . . . , 2N , then the so-called real
canonical transformation T has to (1) be real T ∈ R2N×2N

and (2) satisfy T JT T = J , which is known as the symplectic
condition.

The Hamiltonian in terms of the new quadratures is then

Ĥ = 1
2 ρ̂T N ρ̂, (8)

with N = T T MT . The equations of motion for ρ̂ have the
same structure as Eq. (4), with the equation-of-motion matrix
KN = JN , which is obtained from K via

KN = T −1KT . (9)

The transformation of the equation-of-motion matrix K
Eq. (9), called a similarity transformation, is the one used
to diagonalize a diagonalizable matrix by rewriting it in an
eigenbasis. Note, however, that even if K is diagonalizable
via a similarity transformation, it does not mean that this
can be achieved with a real canonical transformation. Fi-
nally, the canonical transformation in the bosonic represen-
tation is given by TC = G†T G, with �̂ = TC�̂, where �̂ =
(b̂1, . . . , b̂N , b̂†

1, . . . , b̂†
N )T are the new bosonic operators with

[b̂i, b̂†
j] = δi j and [b̂i, b̂ j] = [b̂†

i , b̂†
j] = 0 for ∀i, j = 1, . . . , N .

The goal is to construct a real canonical transformation
that gives an equation-of-motion matrix K that is as sparse
as possible. How to achieve this depends on the spectral
properties of K , which we discuss in the following Sec. III.

III. SPECTRAL PROPERTIES OF THE
EQUATION-OF-MOTION MATRIX K

In this section, the spectral properties of the equation-of-
motion matrix K are analyzed and the different possibilities
classified. This information is used to define the normal form
of a quadratic Hamiltonian (Sec. IV) as well as to explain how
to construct real canonical transformations that bring a general
quadratic quantum Hamiltonian to its normal form (Sec. V).

A. Eigenvalues of K

The equation-of-motion matrix K ∈ R2N×2N has complex
eigenvalues that we denote as λi. A given eigenvalue λi has
an algebraic multiplicity ai (the number of times λi is the root
of the characteristic polynomial of K) and a geometric mul-
tiplicity mi (the number of linearly independent eigenvectors
of λi; see Sec. III B). We remark that mi � ai, and the matrix
K is diagonalizable if and only if mi = ai for all eigenvalues
λi [10].

The defining condition Eq. (7) restricts the form of K to

K =
(

AI AR

AL −AT
I

)
, (10)

where AI , AR, AL ∈ RN×N and AR = AT
R , AL = AT

L [11]. More
importantly, it restricts the complex eigenvalues λi of K in the
following way [12].
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(i) If λi is nonzero and real, −λi is also an eigenvalue with
the same multiplicities ai and mi. We call Ri = {λi,−λi} a
real pair and NR the total number of real pairs.

(ii) If λi has a nonzero real and imaginary part, λ̄i, −λi,
and −λ̄i are also eigenvalues with the same multiplicities ai

and mi. We call Ci = {λi,−λi, λ̄i,−λ̄i} a complex quadruplet
and NC the total number of complex quadruplets.

(iii) If λi = 0, its algebraic multiplicity ai is even. Through-
out this article we will assign the label i = 0 to the zero
eigenvalue, namely λi = 0 if and only if i = 0.

(iv) If λi is nonzero and purely imaginary, λ̄i = −λi is also
an eigenvalue with the same multiplicities ai and mi. We call
Ii = {λi, λ̄i} an imaginary pair and NI the total number of
imaginary pairs.

Note that by summing the degeneracies of the zero case,
every real pair, every complex quadruplet, and every imagi-
nary pair, one has that

2N = a0 + 2
∑
Ri

ai + 4
∑
Ci

ai + 2
∑
Ii

ai. (11)

B. Generalized eigenvectors of K

For every eigenvalue λi of K there are mi eigenvectors,
which we denote as g(1)

i j ∈ C2N , for j = 1, . . . , mi. The eigen-
vectors span an mi-dimensional eigenspace, which we denote
as H(1)(λi ). In case mi < ai, one can introduce generalized
eigenvectors (GEVs) g(k)

i j , which are defined by [13]

(K − λi1)kg(k)
i j = 0, (K − λi1)k−1g(k)

i j �= 0, (12)

where 1 ≡ 12N . The superindex k labels the rank of the GEV
and hence a GEV with k = 1 is an eigenvector. For a given
eigenvalue λi and an eigenvector g(1)

i j , there are Di j linearly

independent GEVs: {g(1)
i j , . . . , g(Di j−1)

i j , g(Di j )
i j }, that form a so-

called Jordan chain of length Di j . A Jordan chain can be
constructed from the generating GEV (gGEV), which is the
GEV of the highest rank that we denote for later convenience
as gi j ≡ g(Di j )

i j , by [13]

g(k)
i j = (K − λi1)Di j−kgi j, k = 1, . . . , Di j . (13)

The algebraic multiplicity of an eigenvalue λi is given by the
sum of all its Jordan chain lengths, namely

ai =
mi∑
j=1

Di j . (14)

The GEVs in all the Jordan chains of an eigenvalue λi span
an ai-dimensional generalized eigenspace that we denote as
H(λi ). Hence the eigenspace spanned by the eigenvectors
with eigenvalue λi, namely H(1)(λi ), is a subspace of H(λi).
When K is diagonalizable, all the Jordan chains contain only
one element (Di j = 1 ∀i, j), and thus g(1)

i j = gi j .
For the discussion of the normal form in the following sec-

tions, it is convenient to make some definitions and introduce
some notation as follows.

(i) Real pair Ri = {λi,−λi}: there are mi gGEVs gi j ∈
H(λi ) and mi gGEVs g̃i j ∈ H(−λi ).

(ii) Complex quadruplet Ci = {λi,−λi, λ̄i,−λ̄i}: there
are mi gGEVs gi j ∈ H(λi) and mi gGEVs g̃i j ∈ H(−λi ).

Consequently, there are also mi gGEVs ḡi j ∈ H(λ̄i ) and mi

gGEVs ¯̃gi j ∈ H(−λ̄i ).
(iii) Zero {λ0 = 0}: there are m0 gGEVs g0 j ∈ H(0).
(iv) Imaginary pair Ii = {λi, λ̄i}: there are mi gGEVs gi j ∈

H(λi ) and mi gGEVs g̃i j = ḡi j ∈ H(λ̄i ).
We remark that by a proper ordering, one has that for any

j = 1, . . . , mi both gi j and g̃i j have the same rank Di j .
It is convenient to define the complex number

αλ(x, ỹ) ≡ [(K − λ1)D−1x]T J ỹ, (15)

where x ∈ H(λ) is a gGEV of rank D and ỹ ∈ H(−λ). In the
definition Eq. (15), x and ỹ do not have to be of the same rank
and for zero eigenvalue λ0 = 0 it should be understood that
ỹ ∈ H(0). Equation (15) can be understood as a special type of
a scalar product of the form vvvT Ju, where vvv = (K − λ1)D−1x
and u = ỹ. Indeed, this form is called the standard symplectic
inner product [7,14]. It arises naturally in this context because
the commutation relations of the quadratures are defined by
the matrix Eq. (5). It is always possible to transform a set of
gGEVs gi j to a new set of gGEVs ei j with the same Di j such
that they fulfill the following properties [7,14].

(i) Real pair Ri = {λi,−λi}: one transforms gi j → ei j and
g̃i j → ẽi j such that αλi (ei j, ẽi j′ ) = δ j j′ .

(ii) Complex quadruplet Ci = {λi,−λi, λ̄i,−λ̄i}: one trans-
forms gi j → ei j and g̃i j → ẽi j such that αλi (ei j, ẽi j′ ) = δ j j′ .

(iii) Zero {λ0 = 0}: one transforms g0 j → e0 j such that

α0(e0 j, e0 j ) =
{±1, D0 j = even,

0, D0 j = odd.
(16)

When j �= j′, then α0(e0 j, e0 j′ ) = 0 if D0 j or D0 j′ is even;
otherwise, α0(e0 j, e0 j′ ) can be different from zero.

(iv) Imaginary pair Ii = {λi, λ̄i}: one transforms gi j → ei j

such that αλi (ei j, ēi j′ ) = δ j j′σi j , where if Di j is even (odd),
then σi j = ±1 (σi j = ±i).

The transformation gi j → ei j can be understood as an
orthonormalization of the gGEVs with respect to the form
Eq. (15). How to perform this transformation, which we call
generalized symplectic orthonormalization, is explained in
Appendix A. Hereafter, we assume that the gGEVs are in the
symplectic orthonormalized form ei j .

At this point, one can make a classification of the gGEVs
in the symplectic orthonormalized form ei j that will be used
to define the normal form in Sec. IV as well as the general
canonical transformation in Sec. V. We define six cases de-
noted by c = 1, . . . , 6.

(1) ei j belongs to case c = 1 if ei j is the gGEV of a real pair
Ri. For each Ri, there are mi gGEVs ei j of the type c = 1.

(2) ei j belongs to case c = 2 if ei j is the gGEV of a complex
quadruplet Ci. For each Ci, there are mi gGEVs ei j of the type
c = 2.

(3) e0 j belongs to case c = 3 if e0 j is the gGEV of a zero
eigenvalue with an even rank D0 j . There are l0 gGEVs e0 j of
the type c = 3 and they have α0(e0 j, e0 j ) = ±1.

(4) e0 j belongs to case c = 4 if e0 j is the gGEV of a zero
eigenvalue with an odd rank D0 j . There are 2n0 gGEVs e0 j

of the type c = 4 and they have α0(e0 j, e0 j ) = 0. Note that
m0 = l0 + 2n0.

(5) ei j belongs to case c = 5 if ei j is the gGEV of
an imaginary pair Ii with an even rank Di j . For each
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Ii, there are li gGEVs ei j of the type c = 5 and they
have αλi (ei j, ēi j ) = ±1.

(6) ei j belongs to case c = 6 if ei j is the gGEV of an
imaginary pair Ii with an odd rank Di j . For each Ii, there are
ni gGEVs ei j of the type c = 6 and they have αλi (ei j, ēi j ) =
±i. Note that mi = li + ni.

Let us make a remark about the notation used in this
article. In indexing the gGEVs, we do not specify the exact
case they belong to in order to ease the notation. Whenever
we refer to a particular eigenvalue λi and its correspond-
ing case c, then it should be clear that symbols such as
ei j and Di j denote the gGEVs and ranks belonging to this
case.

At this point, we have all the ingredients to define the
normal form of a quadratic Hamiltonian given in Sec. IV.

IV. NORMAL FORM DEFINITION

We define the normal form of a quadratic Hamiltonian
as the form obtained by a real canonical transformation T
such that the equation-of-motion matrix K is in a real Jordan
normal form [6].

Using all the ingredients and notation discussed in Sec. III,
one has that the real Jordan normal form of K is

KN =
(

OI OR

OL −OT
I

)
, (17)

where Oχ ∈ RN×N (χ = I, L, R), OR = OT
R , and OL = OT

L .
The matrices Oχ can each be expressed as a direct sum of
blocks over different eigenvalue types

Oχ = O(R)
χ ⊕ O(C)

χ ⊕ O(0)
χ ⊕ O(I )

χ , (18)

where

O(R)
χ =

⊕
Ri

[
mi⊕
j=1

I (1)
χ (λi, Di j )

]
, (19)

O(C)
χ =

⊕
Ci

[
mi⊕
j=1

I (2)
χ (λi, Di j )

]
, (20)

O(0)
χ =

l0⊕
j=1

I (3)
χ (0, D0 j )

n0⊕
j=1

I (4)
χ (0, D0 j ), (21)

O(I )
χ =

⊕
Ii

[
li⊕

j=1
I (5)
χ (λi, Di j )

ni⊕
j=1

I (6)
χ (λi, Di j )

]
. (22)

The 18 matrices I (c)
χ (λi, Di j ) for c = 1, . . . , 6 and χ = I, L, R

are given in Table I. Note that eight out of the 18 matrices are
zero.

To construct the normal form of the equation-of-motion
matrix KN , as given in Eq. (17), one requires to find all the
gGEVs of K in the symplectic orthonormalized form ei j (see
Appendix A), their ranks Di j , and classify them within the six
different cases defined in Sec. III B.

The normal form of a generic quadratic quantum
Hamiltonian, Ĥ = (1/2)ρ̂T N ρ̂, can be readily obtained as

N = −JKN , which reads

Ĥ =
∑
Ri

mi∑
j=1

Ĥ (1)(λi, Di j ) +
∑
Ci

mi∑
j=1

Ĥ (2)(λi, Di j )

+
l0∑

j=1

Ĥ (3)(0, D0 j ) +
n0∑

j=1

Ĥ (4)(0, D0 j )

+
∑
Ii

⎡
⎣ li∑

j=1

Ĥ (5)(λi, Di j ) +
ni∑

j=1

Ĥ (6)(λi, Di j )

⎤
⎦. (23)

The six possible types of quadratic Hamiltonians Ĥ (c)(λ, D)
for c = 1, . . . , 6 are given, in quadrature representation, in
Table II. Note that there are actually nine different Hamilto-
nians since Ĥ (3)(0, D) and Ĥ (5)(λ, D) can be either with σ =
+1 or σ = −1, and Ĥ (6)(λ, D) can be either with iσ = 1 or
iσ = −1 [here σ = αλ(e, ẽ), where e is the gGEV associated
to each case]. These nine Hamiltonians are canonically in-
equivalent [5,6,11]; namely they are not related by a canonical
transformation matrix. We emphasize that in Eq. (23) one
should notice that every term Ĥ (c)(λi, Di j ) acts on different
modes such that the total Hamiltonian acts on the N modes of
the system.

As can be seen from Table II, a quadratic quantum Hamil-
tonian in the normal form can have the following terms.

(i) Independent harmonic oscillator (in c = 6)

X̂ 2
k + P̂2

k = 2b̂†
kb̂k + 1. (24)

(ii) Independent free particle, either in the form (in c = 3, 5)

X̂ 2
k = 1

2

(
2b̂†

kb̂k + b̂2
k + b̂†2

k + 1
)

(25)

or in the form (in c = 5)

P̂2
k = 1

2

(
2b̂†

kb̂k − b̂2
k − b̂†2

k + 1
)
. (26)

(iii) Single mode squeezing (in c = 1, 2)

X̂kP̂k = i

2

(
b̂†2

k − b̂2
k

)
. (27)

(iv) Two-mode beam-splitter interaction, either in the form (in
c = 2)

X̂kP̂l − P̂kX̂l = i(b̂k b̂†
l − b̂†

kb̂l ) (28)

or in the form (in c = 5, 6)

X̂kX̂l + P̂kP̂l = b̂†
kb̂l + b̂k b̂†

l . (29)

(v) Two-mode beam-splitter and two-mode squeezing interac-
tion (in c = 1, 2, 3, 4):

X̂kP̂l = i

2
(b̂k b̂†

l − b̂†
kb̂l ) + i

2
(b̂†

kb̂†
l − b̂k b̂l ). (30)

The normal form of a quadratic quantum Hamiltonian
greatly simplifies whenever the equation-of-motion
matrix K is diagonalizable, namely ai = mi and Di j = 1
for ∀i, j. In that case all the eigenvectors are gGEVs,
namely e(1)

i j = ei j . The Hamiltonian Eq. (23) then
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TABLE I. Blocks for the real Jordan normal form of the equation-of-motion matrix K . We denote λ = μ + iν (with μ, ν ∈ R) and σ =
αλ(e, ẽ), where e is the generating generalized eigenvector (gGEV) associated to the block. Note that in c = 6, iσ ∈ R.

c I (c)
I (λ, D) I (c)

R (λ, D) I (c)
L (λ, D) Dimension

1

⎛
⎜⎝

λ

1 λ

. . .
. . .

1 λ

⎞
⎟⎠ 0 0 D

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ ν

−ν μ

1 0 μ ν

0 1 −ν μ

. . .
. . .

1 0 μ ν

0 1 −ν μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

0 0 2D

3 σ

⎛
⎜⎝

0

1 0
. . .

. . .

1 0

⎞
⎟⎠ 0 σ

⎛
⎜⎝

0

0
. . .

(−1)D/2

⎞
⎟⎠ D/2

4

⎛
⎜⎝

0

1 0
. . .

. . .

1 0

⎞
⎟⎠ 0 0 D (odd)

5 0 σ

⎛
⎜⎜⎜⎜⎜⎝

ν

ν 1

−1

. .
.

. .
.

ν −1

ν 1

⎞
⎟⎟⎟⎟⎟⎠ σ

⎛
⎜⎜⎜⎜⎜⎝

−1 −ν

1 −ν

. .
.

. .
.

1

−1 −ν

−ν

⎞
⎟⎟⎟⎟⎟⎠ D (even)

6

⎛
⎜⎝

0

1 0
. . .

. . .

1 0

⎞
⎟⎠ iσ

⎛
⎜⎜⎜⎝

ν

−ν

. .
.

−ν

ν

⎞
⎟⎟⎟⎠ iσ

⎛
⎜⎜⎜⎝

−ν

ν

. .
.

ν

−ν

⎞
⎟⎟⎟⎠ D (odd)

simplifies to

Ĥ =
∑
Ri

ai∑
j=1

Ĥ (1)(λi, 1) +
∑
Ci

ai∑
j=1

Ĥ (2)(λi, 1)

+
a0/2∑
j=1

Ĥ (4)(0, 1) +
∑
Ii

ai∑
j=1

Ĥ (6)(λi, 1). (31)

[Here, the
∑ai

j=1 Ĥ (c)(λi, 1) is not a trivial sum since every
term acts on a different mode X̂ j, P̂j .] In Eq. (31) there are
only four types of Hamiltonian (c = 1, 2, 4, 6) since D =
1 is odd. Furthermore, note that for the zero eigenvalue
Ĥ (4)(0, 1) = 0, which corresponds to a0/2 zero frequency
modes [15,16]. Notice that Eq. (31) is, in general, still a
dynamically unstable Hamiltonian since only the last term
of Eq. (31) represents a set of noninteracting harmonic

TABLE II. Normal form of a quadratic quantum Hamiltonian in the quadrature representation. We denote λ = μ + iν (with μ, ν ∈ R) and
σ = αλ(e, ẽ), where e is the generating generalized eigenvector (gGEV) associated to each case. If a generic normal form consists of multiple
cases, then the summation in each case is over different modes.

c Ĥ (c)(λ, D) = ρ̂T N (c)ρ̂/2

1 Ĥ (1)(λ, D) = λ
∑D

k=1 X̂kP̂k + ∑D−1
k=1 X̂kP̂k+1

2 Ĥ (2)(μ + iν, D) = μ
∑2D

k=1 X̂kP̂k + ν
∑D

k=1 (X̂2kP̂2k−1 − X̂2k−1P̂2k ) + ∑2D−2
k=1 X̂kP̂k+2

3 Ĥ (3)(0, D even) = σ
∑D/2−1

k=1 X̂kP̂k+1 + (−1)D/2+1(σ/2)X̂ 2
D/2

4 Ĥ (4)(0, D odd) = ∑D−1
k=1 X̂kP̂k+1

5 Ĥ (5)(iν, D even) = (σ/2)
∑D−1

k=1 (−1)k+1(X̂kX̂D−k + P̂k+1P̂D+1−k ) + σ (ν/2)
∑D

k=1 (X̂kX̂D+1−k + P̂kP̂D+1−k )

6 Ĥ (6)(iν, D odd) = iσ (ν/2)
∑D

k=1(−1)k+1(P̂kP̂D−k+1 + X̂kX̂D−k+1) + ∑D−1
k=1 X̂kP̂k+1
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oscillators. Hence, as mentioned before, the fact that the
equation-of-motion matrix K is a diagonalizable matrix is a
necessary but not sufficient condition for dynamical stabil-
ity. Dynamical stability further requires that the equation-of-
motion matrix K only has imaginary eigenvalues such that
the Hamiltonian Eq. (31) further simplifies to a sum of N
independent harmonic oscillators

Ĥ =
∑
Ii

ai∑
j=1

Ĥ (6)(λi, 1)

=
∑
Ii

Im(λi )
ai∑

j=1

(iσi j )

2

(
X̂ 2

i j + P̂2
i j

)
, (32)

where σi j = αλi (ei j, ēi j ) = eT
i jJ ēi j = ±i. The double

subindex in the quadrature operators used in Eq. (32)
simply denotes the different modes of the system.

In the next Sec. V, we provide step-by-step instructions
to construct a real canonical transformation that brings any
quadratic quantum Hamiltonian in the normal form defined in
this section, namely Eq. (23). The Bogoliubov transformation
[2,3,17,18] will be thus only a particular case that leads
to Eq. (32) whenever the equation-of-motion matrix K is
diagonalizable and has only imaginary eigenvalues.

V. NORMAL FORM TRANSFORMATION

In this section we provide instructions to construct a real
canonical transformation T ∈ R2N×2N such that it transforms
a generic equation-of-motion matrix, via Eq. (9), in the corre-
sponding real Jordan normal form KN as defined in Eq. (17).
In the following, concise instructions are given and their
mathematical background is left for the more specialized
literature [7,14].

To give the instructions, it is convenient to make some
definitions. The columns of the matrix T will be denoted as

T = (t1 . . . tn . . . t2N ) = (T+ T−), (33)

where dim (tn) = 2N × 1 for n = 1, . . . , 2N and dim (T±) =
2N × N . The matrix T represents a real canonical transforma-
tion according to the definition in Sec. II if the vectors tm are
real and fulfill tT

mJtn = Jmn, for m, n = 1, . . . , 2N . The two
rectangular matrices T± are further split into six rectangular
matrices as

T± = (T (1)
± T (2)

± T (3)
± T (4)

± T (5)
± T (6)

± ), (34)

where dim(T (c)
± ) = 2N × Nc for c = 1, . . . , 6, with Nc to be

defined below. As the notation indicates, each T (c)
± corre-

sponds to one of the different six cases introduced in Sec. III,
and one has that N = ∑6

c=1 Nc. In the following we show how
to construct T (c)

± for every case.

A. Transformation for real pair c = 1

In this case, T (1)
± , of dimension 2N × N1, is further split

into

T (1)
± = (

T (1)
1± . . . T (1)

i± . . . T (1)
NR±

)
, (35)

where there is a T (1)
i± for every real pair Ri = {λi,−λi} (i =

1, . . . , NR) of dimension 2N × ai. Let us assume that for
every real pair Ri we have already obtained the gGEVs (in
the symplectic orthonormalized form) ei j ∈ H(λi ) and ẽi j ∈
H(−λi ) and their corresponding ranks Di j , for j = 1, . . . , mi.
Then, the matrices T (1)

i± are given by

T (1)
i+ = (

t (1)
i1 . . . t (Di1 )

i1 . . . t (1)
imi

. . . t
(Dimi )
imi

)
,

T (1)
i− = (

s(1)
i1 . . . s(Di1 )

i1 . . . s(1)
imi

. . . s
(Dimi )
imi

)
, (36)

where

t (k)
i j = (K − λi1)k−1ei j,

s(k)
i j = (−1)Di j−k (K + λi1)Di j−k ẽi j, (37)

for k = 1, . . . , Di j . Note that N1 = ∑NR
i=1 ai.

B. Transformation for complex quadruplet c = 2

In this case, T (2)
± , of dimension 2N × N2, is further split

into

T (2)
± = (

T (2)
1± . . . T (2)

i± . . . T (2)
NC±

)
, (38)

where there is a T (2)
i± for every complex quadruplet Ci =

{λi,−λi, λ̄i,−λ̄i} (i = 1, . . . , NC) of dimension 2N × 2ai. Let
us assume that for every complex quadruplet we have already
obtained the gGEVs (in the symplectric orthonormalized
form) ei j ∈ H(λi ) and ẽi j ∈ H(−λi ) and their corresponding
ranks Di j , for j = 1, . . . , mi. Then, the matrices T (2)

i± are given
by

T (2)
i+ = (

t (1)
i1 . . . t (2Di1 )

i1 . . . t (1)
imi

. . . t
(2Dimi )
imi

)
,

T (2)
i− = (

s(1)
i1 . . . s(2Di1 )

i1 . . . s(1)
imi

. . . s
(2Dimi )
imi

)
, (39)

where

t (k)
i j =

{√
2 Re

(
z((k+1)/2)

i j

)
k = odd,√

2 Im
(
z(k/2)

i j

)
k = even,

s(k)
i j =

{√
2 Re

(
www

((k+1)/2)
i j

)
k = odd,

−√
2 Im

(
www

(k/2)
i j

)
k = even,

(40)

with

z(k)
i j = (K − λi1)k−1ei j,

www
(k)
i j = (−1)Di j−k (K + λi1)Di j−k ẽi j, (41)

for k = 1, . . . , Di j . Note that N2 = 2
∑NC

i=1 ai.

C. Transformation for zero eigenvalues c = 3

In this case, T (3)
± , of dimension 2N × N3, does not need to

be further split. Let us assume that we have already obtained
l0 gGEVs (in the symplectric orthonormalized form) e0 j ∈
H(0), their even ranks D0 j , and the values σ0 j = α0(e0 j, e0 j )
for j = 1, . . . , l0. Then, the matrices T (3)

± are given by [7,14]

T (3)
+ = (

t (1)
01 . . . t (D01/2)

01 . . . t (1)
0l0

. . . t
(D0l0 /2)
0l0

)
,

T (3)
− = (

s(1)
01 . . . s(D01/2)

01 . . . s(1)
0l0

. . . s
(D0l0 /2)
0l0

)
, (42)
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where

t (k)
0 j = σ k−1

0 j Kk−1e0 j, s(k)
i j = (−σ0 j )

D0 j−kKD0 j−ke0 j,

(43)
for k = 1, . . . , D0 j/2. Note that N3 = ∑l0

j=1 D0 j/2.

D. Transformation for zero eigenvalues c = 4

Compared to the other cases, case c = 4 re-
quires an additional step [7,14]. As explained in
Appendix A 2 b, the set of gGEVs (after having
performed the generalized symplectic orthonormalization)
{e01, . . . , e02n0} of odd rank D0 j is transformed to a new
set of gGEVs { f 01, . . . , f 0n0

, h01, . . . , h0n0}, which satisfy
α0( f 0 j, h0 j′ ) = δ j j′ and α0( f 0 j, f 0 j′ ) = α0(h0 j, h0 j′ ) = 0 for
j, j′ = 1, . . . , n0. After this additional step has been done,
one can proceed.

T (4)
± , of dimension 2N × N4, can be obtained from the 2n0

gGEVs { f 01, . . . , f 0n0
, h01, . . . , h0n0} by [7,14]

T (4)
+ = {

t (1)
01 , . . . , t (D01 )

01 , . . . , t (1)
0n0

, . . . , t
(D0n0 )
0n0

}
,

T (4)
− = {

s(1)
01 , . . . , s(D01 )

01 , . . . , s(1)
0n0

, . . . , s
(D0n0 )
0n0

}
, (44)

where

t (k)
0 j = Kk−1 f 0 j, s(k)

i j = (−1)D0 j−kKD0 j−kh0 j, (45)

for k = 1, . . . , Di j . Note that N4 = ∑n0
j=1 D0 j and N3 + N4 =

a0/2.

E. Transformation for imaginary pair c = 5

In this case, T (5)
± , of dimension 2N × N5, is further split

into

T (5)
± = (

T (5)
1± . . . T (5)

i± . . . T (5)
LI±

)
, (46)

where there is a T (5)
i± for every imaginary pair Ii =

{λi,−λi} (i = 1, . . . , LI ) of dimension 2N × a(5)
i , where

a(5)
i = ∑li

j=1 Di j . LI is the number of distinct imaginary pairs
with the gGEVs belonging to the case c = 5. Let us assume
that for every imaginary pair Ii we have already obtained
the gGEVs (in the symplectic orthonormalized form) ei j ∈
H(λi ), ēi j ∈ H(λ̄i ), their corresponding even ranks Di j and
the values σi j = αi(ei j, ēi j ) for j = 1, . . . , li. Then, the matri-
ces T (5)

i± are given by [7,14]

T (5)
i+ = {

t (1)
i1 , . . . , t (Di1 )

i1 , . . . , t (1)
ili

, . . . , t
(Dili )
ili

}
,

T (5)
i− = {

s(1)
i1 , . . . , s(Di1 )

i1 , . . . , s(1)
ili

, . . . , s
(Dili )
ili

}
, (47)

where

t (k)
i j =

{√
2 Re

(
z(k)

i j

)
, k = odd,√

2 Im
(
z(k)

i j

)
, k = even,

s(k)
i j =

{√
2 Re

(
www

(k)
i j

)
, k = odd,

−√
2 Im

(
www

(k)
i j

)
, k = even,

(48)

with

z(k)
i j = (K − λi1)k−1ei j, www

(k)
i j = σi j (−1)k z̄(Di j+1−k)

i j , (49)

for k = 1, . . . , Di j . Note that N5 = ∑NI
i=1 a(5)

i .

F. Transformation for imaginary pair c = 6

In this case, T (6)
± , of dimension 2N × N6, is further split

into

T (6)
± = (

T (6)
1± . . . T (6)

i± . . . T (6)
SI±

)
, (50)

where there is a T (6)
i± for every imaginary pair Ii =

{λi,−λi} (i = 1, . . . , SI ) of dimension 2N × a(6)
i , where

a(6)
i = ∑ni

j=1 Di j . SI is the number of distinct imaginary pairs
with the gGEVs belonging to the case c = 6. We remark that,
in general, an imaginary pair Ii can have gGEVs of both
cases c = 5, 6, such that LI + SI � NI . Let us assume that for
every imaginary pair Ii we have already obtained the gGEVs
(in the symplectric orthonormalized form) ei j ∈ H(λi), ēi j ∈
H(λ̄i ), their corresponding odd ranks Di j , and the values
σi j = αi(ei j, ēi j ) for j = 1, . . . , ni. Then, the matrices T (6)

i± are
given by [7,14]

T (6)
i+ = {

t (1)
i1 , . . . , t (Di1 )

i1 , . . . , t (1)
ini

, . . . , t
(Dini )
ini

}
,

T (6)
i− = {

s(1)
i1 , . . . , s(Di1 )

i1 , . . . , s(1)
ini

, . . . , s
(Dini )
ini

}
, (51)

where

t (k)
i j =

√
2 Re

(
z(k)

i j

)
, s(k)

i j =
√

2 Im
(
w̄ww

(k)
i j

)
, (52)

with

z(k)
i j = (K − λi1)k−1ei j, www

(k)
i j = σi j (−1)k z̄(Di j+1−k)

i j ,

(53)

for k = 1, . . . , Di j . Note that N6 = ∑SI
i=1 a(6)

i and a(5)
i +

a(6)
i = ai.

VI. EXAMPLES

To illustrate the tools presented so far, in this section we
provide two examples. In Sec. VI A we discuss the stability
diagram of two quantum harmonic oscillators with a quadratic
position coupling. The different normal forms throughout
the stability diagram are given. In Sec. VI B, we provide
an example of a particular quadratic Hamiltonian of four
harmonic oscillators and we give details on the derivation
of the canonical transformation that brings it into its normal
form, following the instructions given in Sec. V.

A. Stability diagram of the two-mode Hamiltonian
with position coupling

Let us consider the following standard two-mode quadratic
Hamiltonian

Ĥ = 1

2

(
x̂2

1 + p̂2
1

) + η

2

(
x̂2

2 + p̂2
2

) + ξ x̂1x̂2, (54)

which depends on the dimensionless real parameters η and ξ .
The M matrix [recall Eq. (1)] is given by

M =

⎛
⎜⎜⎜⎝

1 ξ 0 0

ξ η 0 0

0 0 1 0

0 0 0 η

⎞
⎟⎟⎟⎠ (55)
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η

ξ

−2 −1 0 1 2−2

−1

0

1

2

FIG. 1. Spectrum of K as function of dimensionless parameters
η and ξ . White area: two imaginary pairs, diagonalizable. Hatched
area: a complex quadruplet, diagonalizable. Gray area: an imaginary
pair and a real pair, diagonalizable. Red line: degenerate imaginary
pair, nondiagonalizable. Blue dashed line: an imaginary pair and zero
eigenvalue, nondiagonalizable.

and hence the equation-of-motion matrix K by

K = JM =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 η

−1 −ξ 0 0

−ξ −η 0 0

⎞
⎟⎟⎟⎠. (56)

Depending on the values of (η, ξ ) one can encounter
different normal forms, see Fig. 1, as follows.

White area. One has two nondegenerate imaginary pairs
I1 = {λ1, λ̄1} and I2 = {λ2, λ̄2}, with ai = mi = Di = 1 for
i = 1, 2. Since Di is odd, both pairs correspond to c = 6.
σi j depends on the value of η. For arbitrary gGEVs at
any point, one has if η > 0, σi1 = i sgn[αλi (gi1, ḡi1)/i] = −i,
and if η < 0, σ11 = i sgn[αλ1 (g11, ḡ11)/i] = −i and σ21 =
i sgn[αλ2 (g21, ḡ21)/i] = i. The normal form Hamiltonian is
then

Ĥ = iσ11
Im(λ1)

2

(
X̂ 2

1 + P̂2
1

) + iσ21
Im(λ2)

2

(
X̂ 2

2 + P̂2
2

)
, (57)

which represents two independent harmonic oscillators.
Hence the white area is the region where the system is
dynamically stable.

Gray area. One has one nondegenerate imaginary pair
I1 = {λ1, λ̄1} and one real pair R2 = {λ2,−λ2}, with ai =
mi = Di = 1 for i = 1, 2. Since D1 is odd, I1 corre-
sponds to case c = 6. For an arbitrary gGEV at any point,
σ11 = i sgn[αλ1 (g11, ḡ11)] = −i. The real pair R2 corresponds
to c = 1. Hence the normal form Hamiltonian is

Ĥ = Im(λ1)

2

(
X̂ 2

1 + P̂2
1

) + λ2X̂2P̂2, (58)

which represents two uncoupled modes, one being squeezed.
The single-mode squeezing term induces dynamical
instability.

White hatched area. One has one nondegenerate complex
quadruplet C = {λ,−λ, λ̄,−λ̄} with a = m = D = 1 of case
c = 2. The normal form of the quadratic Hamiltonian is thus

Ĥ = Re(λ)(X̂1P̂1 + X̂2P̂2) + Im(λ)(X̂2P̂1 − X̂1P̂2), (59)

which corresponds to two modes that are independently
squeezed and interact via a beam-splitter interaction. The
single-mode squeezing terms induce dynamical instability.

Dashed blue line (except the point η = ξ = 0; see below).
One has a nondegenerate imaginary pair I1 = {λ1, λ̄1} with
a1 = m1 = D1 = 1 and σ11 = −i, which corresponds to case
c = 6, and one zero eigenvalue λ0 = 0 with a0 = 2, m0 = 1,
and hence D0 = 2, which corresponds to case c = 3. σ01

depends on the value of η. For an arbitrary gGEV at any point,
one has if η > 0 (η = 0), then σ01 = sgn[α0(g01, g01)] =
1(−1). The normal form of the quadratic Hamiltonian is given
by

Ĥ = Im(λ1)

2

(
X̂ 2

1 + P̂2
1

) + σ01

2
X̂ 2

2 . (60)

This Hamiltonian corresponds to a harmonic oscillator and an
uncoupled free particle, which induces dynamical instability.
The dashed blue lines correspond to η = 0 and ξ = ±√

η for
η > 0.

Solid red line (except the point η = −1, ξ = 0; see below).
One has a degenerate imaginary pair I1 = {λ1, λ̄1} with a1 =
2, m1 = 1, and D1 = 2. Since D1 = 2 is even, this corre-
sponds to case c = 5. σ11 depends on the value of η. For an
arbitrary gGEV at any point, one has if η > −1 (η < −1),
then σ11 = i sgn[α0(g01, g01)/i] = i(−i). The normal form of
the quadratic Hamiltonian is then given by

Ĥ = σ11

2

(
X̂ 2

1 + P̂2
2

) + σ11
Im(λ1)

2
(X̂1X̂2 + P̂1P̂2). (61)

This Hamiltonian corresponds to two free particles coupled
by a beam-splitter type interaction. The free particle terms
generate dynamical instability. The solid red lines correspond
to ξ = ±

√
(2η2 − η4 − 1)/(4η) for η < 0.

Special point η = ξ = 0. The matrix M as given in Eq. (55)
is trivially in the normal form Ĥ = (1/2)(x̂2

1 + p̂2
1) but recall

that the Hamiltonian still describes the dynamics of two
modes. The eigenvalues of K are one nondegenerate imagi-
nary pair I1 = {i,−i} with a1 = m1 = 1 = D1 and σ11 = −i,
which corresponds to case c = 6, and one zero eigenvalue
λ0 = 0, but now with a0 = m0 = 2, and hence D0 = 1, which
corresponds to case c = 4. The zero eigenvalues appearing at
this point describe a zero frequency mode [15,16].

Special point η = −1, ξ = 0. The matrix M as given in
Eq. (55) is already in the normal form, which consists of the
two independent harmonic oscillators: Ĥ = (1/2)(x̂2

1 + p̂2
1) −

(1/2)(x̂2
2 + p̂2

2). One has a degenerate imaginary pair I1 =
{i,−i} but now with a1 = m1 = 2, and D11 = D12 = 1. Since
D1 = 1 is odd, this corresponds to case c = 6. The values of
σi j are σ11 = −i and σ12 = i, as can immediately be seen from
the signs in the Hamiltonian.

With the above list one therefore sees that the simple ex-
ample of two harmonic oscillators coupled in position covers
all nine nonequivalent types of normal forms of a quadratic
Hamiltonian.
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B. Detailed example

In this subsection, we consider a four-mode quadratic
Hamiltonian Ĥ = (1/2)R̂T MR̂, with the matrix M given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−21 −11 −17 −45 16 7 −3 22

−11 2 −6 −15 3 6 −3 9

−17 −6 −3 −29 8 4 0 16

−45 −15 −29 −60 19 16 0 33

16 3 8 19 −5 −6 0 −11

7 6 4 16 −6 −1 0 −8

−3 −3 0 0 0 0 3 0

22 9 16 33 −11 −8 0 −17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(62)

and R̂ = (x̂1, x̂2, x̂3, x̂4, p̂1, p̂2, p̂3, p̂4)T the physical modes.
The corresponding equation-of-motion matrix is then ob-
tained as K = JM, and it has the following eigenvalues.

(i) One degenerate real pair R1 = {λ1,−λ1} = {2,−2}
with the multiplicities a1 = 2 and m1 = 1. To the eigenvalue
λ1 = 2 corresponds a gGEV g1 = (−1, 2, 0, 1, 3,−1, 1, 0)T

and to the eigenvalue −λ1 = −2 corresponds a gGEV g̃11 =
(3,−6, 0,−2,−12, 8,−3, 0)T . Both have the rank D11 = 2.
This is the case c = 1.

(ii) One zero eigenvalue with multiplicities a0 = 2 and
m0 = 2. The corresponding gGEVs, which are at the same
time also eigenvectors, are g01 = (2, 2,−1, 1, 1, 0, 4, 4)T and
g02 = (0, 0, 1, 1, 3, 2, 0, 0)T . Since their rank is D01 = 1, they
are in case c = 4.

(iii) One nondegenerate imaginary pair I2 = {λ2,−λ2} =
{3i,−3i} with the multiplicities a2 = 1 and m2 = 1.
To the eigenvalue λ2 = 3i corresponds a gGEV g21 =
(1, 1,−i, 1, 2 − i, 1 − i, 3, 2)T and to the eigenvalue λ̄2 =
−3i corresponds a gGEV ḡ21 = (1, 1, i, 1, 2 + i, 1 + i, 3, 2)T .
Both have the rank D21 = 1, so this is the case c = 6.

Let us start with the real pair. The product Eq. (A4) in
the vector form has two elements because D11 = 2 and it
is �λ1 (g11, g̃11) = −101 + 13(K − 21). Doing the symplectic
orthonormalization as described in Appendix A 1 gives two

new gGEVs:

e11 = −1

10
(3, 2, 0, 23, 43, 3, 23, 26)T ,

ẽ11 = −1

40
(14, 37, 0, 34, 74,−6, 51, 65)T , (63)

for which �λ1 (e11, ẽ11) = 1. Moreover, following the instruc-
tions given in Eq. (37), one obtains that t (1)

11 = e11, s(2)
11 = ẽ11,

and

t (2)
11 = (−2, 0, 0,−2,−2,−2,−2,−4)T ,

s(1)
11 = −1

2
(2, 1, 0, 2, 2, 2, 3, 5)T . (64)

From here, using Eq. (36) one obtains T1+ = (t (1)
11 t (2)

11 ) and
T1− = (s(1)

11 s(2)
11 ).

Let us now look at the zero eigenvalue. The rank D01 is
odd, so this is c = 4. The product Eq. (A4) in the vector
form for both gGEVs has just a single element because
D0 = 1 and this element is simply Eq. (15). Moreover, since
c = 4, for both gGEVs g01 and g02 it is α0(g01, g01) = 0 and
α0(g02, g02) = 0, but α0(g01, g02) = 2. Doing the symplectic
orthonormalization for c = 4 as described in Appendix A 2 b
gives the two new gGEVs

f 01 = (2, 2,−1, 1, 1, 0, 4, 4)T ,

h01 = (0, 0, 1/2, 1/2, 3/2, 1, 0, 0)T , (65)

for which α0( f 01, f 01) = α0(h01, h01) = 0 and
α0( f 01, h01) = 1. T0± as given in Eq. (44) is then simply
T0+ = ( f 01) and T0− = (h01).

Finally, in the case of the imaginary eigenvalue, the rank
D21 is odd, so this is c = 6. The product Eq. (A4) in the vector
form again has just a single element because D21 = 1 and
this element is simply Eq. (15), with the value αλ2 (g21, ḡ21) =
−2i. Note that this means that σ21 = −i. Doing the symplectic
orthonormalization for c = 6 as described in Appendix A 3
gives us a new gGEV

e21 = 1/
√

2(1, 1,−i, 1, 2 − i, 1 − i, 3, 2)T , (66)

with αλ2 (e21, ē21) = −i. T2± as given in Eq. (51) is then T2+ =
(
√

2 Re[e21]) and T2− = (−√
2 Im[e21]).

Constructing the total transformation as in Eq. (33), where
T± = (T1±T0±T2±), one obtains the canonical transformation

T = 1

40

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−12 −80 80 40 −40 −14 0 0

−80 0 80 40 −20 −37 0 0

0 0 −40 0 0 0 20 −40

−92 −80 40 40 −40 −34 20 0

−172 −80 40 80 −40 −74 60 −40

−12 −80 0 40 −40 6 40 −40

−92 −80 160 120 −60 −51 0 0

−104 −160 160 80 −100 −65 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (67)
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The normal form of the equation-of-motion matrix is KN =
T −1KT , and of the matrix in the Hamiltonian

N = T T MT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 2 1 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0

2 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (68)

which can be compared with Eq. (62). The normal form of the
Hamiltonian Eq. (62) is

Ĥ = 2(X̂1P̂1 + X̂2P̂2) + X̂1P̂2 + 3

2

(
X̂ 2

4 + P̂4
4

)
. (69)

The normal modes ρ̂ = (X̂1, X̂2, X̂3, X̂4, P̂1, P̂2, P̂3, P̂4)T are a
linear combination of the physical modes, and can be obtained
using the transformation Eq. (67) as ρ̂ = T −1R̂. Note that the
normal mode (X̂3, P̂3) is a zero-frequency mode and it does
not appear in the normal form Hamiltonian.

VII. CONCLUSIONS

To summarize, in this article we have revisited the discus-
sion of the normal form of a quadratic quantum Hamiltonian
describing the linear interaction of quantum harmonic oscilla-
tors. We have provided step-by-step instructions to construct
a real canonical transformation that can transform a generic
quadratic Hamiltonian into its normal form. These tools can
be used to unveil the quantum dynamical regimes of a many-
mode coupled system as well as to identify the normal modes.
This has been illustrated with a minimal example of two
harmonic quantum oscillators coupled with a quadratic term
in the position operators. Remarkably, this example already
shows the appearance of all the possible normal forms of a
quadratic Hamiltonian that correspond to different types of
dynamical instabilities.

The discussion of this article is relevant for conservative
systems whose dynamics can be described by a Hamiltonian.
In nature, these systems are difficult to find since it is easy
to interact with the environment. That is, perhaps, the reason
that in the literature one typically finds the discussion of the
normal form of quadratic Hamiltonians in the context of ce-
lestial mechanics [14,19]. However, in current quantum optics
scenarios, systems in nature can be so well isolated from the
environment that they can also be described by pure Hamil-
tonians during some relevant time scales. In particular, in
the field of quantum nanomechanics [20], several mechanical
degrees of freedom in mesoscopic systems are so well isolated
from the environment that they can be brought and controlled
in the quantum regime. We thus believe that it is timely to
recall the tools presented in this article to be able to describe
the quantum dynamics of current mechanical systems in the
quantum regime. These tools can be used to understand and
exploit unstable quantum dynamics for a variety of potential
applications: from generating squeezing and entanglement via
optimal coherent dynamics to using dynamical instabilities for

metrological purposes, something that we plan to study in the
future.
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APPENDIX A: GENERALIZED SYMPLECTIC
ORTHONORMALIZATION

The generalized symplectic orthonormalization of the
gGEVs is an important step in the procedure presented in
Sec. V to build the symplectic transformation which trans-
forms the initial Hamiltonian in its normal form. Here, we
describe in detail how such an orthonormalization procedure
is carried out. To this end, we start by introducing necessary
mathematical tools.

For a given eigenvalue λ of the equation-of-motion matrix
K , we introduce a matrix of the form [7,14]

�λ =
D∑

k=1

φk (K − λ1)k−1, (A1)

where φk ∈ C and D ∈ N. �λ is a matrix, but for a given
eigenvalue it is completely specified by the vector � =
(φ1, . . . , φD)T . Note that acting with �λ on a gGEV x ∈ H(λ)
of rank D gives another gGEV �λx ∈ H(λ) of the same rank
[7,14]. Additionally, from Eq. (A1) we define [7,14]

��
λ =

D∑
k=1

φ̃k (−1)k−1(K − λ1)k−1, (A2)

where φ̃k = φ̄k if λ is purely imaginary and φ̃k = φk oth-
erwise. It is convenient to remark that the matrix multi-
plication of two matrices of the form Eq. (A1) with the
same λ, say �λ�λ, can be efficiently computed as follows:
if � = (φ1, . . . , φD)T and � = (θ1, . . . , θD)T , then �� =
(γ1, . . . , γD)T , with

γk =
k∑

l=1

φlθk+1−l . (A3)

For an eigenvalue λ and two gGEVs x ∈ H(λ) and ỹ ∈ H(−λ)
it is convenient to define [7,14]

�λ(x, ỹ) ≡
D∑

k=1

αk (K − λ1)k−1, (A4)

where D is the rank of x and

αk ≡ [(K − λ1)D−kx]T J ỹ. (A5)

Note that for k = 1, α1 ≡ αλ(x, ỹ); see Eq. (15). �λ(x, ỹ) is
a matrix of the form Eq. (A1), and it can be considered as a
generalization of the symplectic inner product Eq. (15) [7]. As
shown in [7,14], Eq. (A4) has many useful properties, such as
�λ(x,�−λỹ) = �λ(��

λx, ỹ) and �λ(�λx, ỹ) = �λ�λ(x, ỹ).
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Moreover, for imaginary and zero eigenvalue and two gGEVs
of the rank D, one has that �(x, ȳ) = (−1)D��(y, x̄) [7,14].

1. Generalized symplectic orthonormalization
for real and complex eigenvalues, c = 1, 2

In this subsection, we describe how to perform a general-
ized symplectic orthonormalization for c = 1, 2. For a given
eigenvalue λi, we start with a set of corresponding gGEVs
{gi1, . . . , gimi

, g̃i1, . . . , g̃imi
} with ranks Di j , where gi j ∈ H(λi )

and g̃i j ∈ H(−λi ). It is supposed that the gGEVs are ordered
such that αλi (gi j, g̃i j ) �= 0 for j = 1, . . . , mi. In the process of
generalized symplectic orthonormalization, this set is trans-
formed to a new set of gGEVs {ei1, . . . , eimi , ẽi1, . . . , ẽimi}
which satisfy �λi (ei j, ẽi j′ ) = δ j j′1. This set is obtained as
follows.

(1) Normalize g̃i1 → g̃i1/αλi (gi1, g̃i1). Find �λi of the form
of Eq. (A1) such that

�2
λi

= �λi (gi1, g̃i1). (A6)

The coeficients φk defining �λi can be found by solving a
recursive system of equations given by Eq. (A3). Then, define

ei1 = �−1
λi

gi1, ẽi1 = (
��

−λi

)−1
g̃i1. (A7)

Note that by construction �λi (ei1, ẽi1) = 1 and αλi (ei1,

ẽi1) = 1.
(2) Redefine the rest of the GEVs as

gi j → gi j − �λi (gi j, ẽi1)ei1,

g̃i j → g̃i j − ��
−λi

(ei1, g̃i j )ẽi1, (A8)

for j = 2, . . . , mi. Note that by construction �λi (ei1, g̃i j ) =
αλi (gi j, ẽi1)1 = 0.

(3) Repeat the above steps for the redefined set
{gi2, . . . , gimi

, g̃i2, . . . , g̃imi
} and keep repeating for j =

2, . . . , mi until �λi (ei j, ẽi j′ ) = δ j j′1∀ j, j′.

2. Generalized symplectic orthonormalization for zero
eigenvalues, c = 3, 4

Let us now describe a process of generalized symplectic or-
thonormalization for c = 3, 4. We start with a set of all gGEVs
corresponding to zero eigenvalue, {g01, . . . , g0m0

} ∈ H(0). In
the process of generalized symplectic orthonormalization, this
set is transformed to a new set of gGEVs {e01, . . . , e0m0}, with
the property that

�0(e0 j, e0 j′ ) = δ j j′σ0 j1, �0(e0 j, e0k ) = 0, (A9)

where j, j′ = 1, . . . , l0, k = l0 + 1, . . . , m0, and σ0 j = ±1.
The first l0 gGEVs belong to case c = 3 and have an even
rank D0 j . The 2n0 = m0 − l0 gGEVs belong to case c = 4 and
have an odd rank D0 j . Note that the number of c = 4 gGEVs
is always even. Obtaining the set of gGEVs with the property
Eq. (A9) is done in the following way [7,14].

(1) Search for a gGEV g0 j in the list such that

α0(g0 j, g0 j ) �= 0, (A10)

and place it at the beginning of the list of gGEVs by g0 j →
g01. If none of the gGEVs in the list satisfies Eq. (A10)

proceed to step (4). Otherwise, define

σ01 = sgn[α0(g01, g01)] = ±1. (A11)

Find a matrix �0 of the form Eq. (A1) such that

�2
0 = σ01�0(g01, g01). (A12)

�0 can be represented by a vector and found using Eq. (A3).
Define

e01 = �−1
0 g01. (A13)

Note that by construction �0(e01, e01) = σ011.
(2) Redefine all the remaining gGEVs in the total set

{g02, . . . , g0m0
} as

g0 j → g0 j − σ01�
�
0(e01, g0 j )e01, (A14)

for j = 2, . . . , m0. By construction �0(e01, g0 j ) = 0.
(3) Update the list of gGEV to {g02, . . . , g0m0

} and go to
step (1).

(4) After the iteration of steps (1)–(3) is completed, the list
of gGEVs can be ordered as {e01, . . . , e0l ′0 , g0l ′0+1, . . . g0m0

},
where l ′

0 ∈ [0, l0], such that Eq. (A9) is satisfied for j, j′ =
1, . . . , l ′

0 and k = l ′
0 + 1, . . . , m0. If l ′

0 = l0, rename g0k →
e0k , for k = l0 + 1, . . . , m0 and apply to these gGEVs the
procedure outlined in Appendix A 2 b. If l ′

0 < l0, then there
are l0 − l ′

0 redefined gGEVs with even rank which do not
satisfy Eq. (A10). In this case, apply only to these vectors the
procedure outlined in Appendix A 2 a.

a. There are gGEVs of case c = 3 with α0(g0 j, g0 j ) = 0

Whenever l ′
0 < l0, the gGEVs in the redefined list

{g0l ′0+1, . . . , g0l0} belong to c = 3, but they do not satisfy
Eq. (A10). In this case, for any j ∈ [l ′

0 + 1, l0], there exist an-
other j′ ∈ [l ′

0 + 1, l0] such that D0 j = D0 j′ and α0(g0 j, g0 j′ ) �=
0. This is guaranteed by the nondegeneracy of Eq. (A4) [7,14].
Consequently, l0 − l ′

0 is even. In this situation, one should
proceed as follows.

(1) Suppose, by reordering the gGEVs if necessary,
that D0 j = D0 j+1 and α0(g0 j, g0 j+1) �= 0, for j = l ′

0 + 1, l ′
0 +

3, . . . , l0 − 1.
(2) Redefine the gGEVs in the following way:

g0 j → g0 j + g0 j+1, g0 j+1 → g0 j − g0 j+1. (A15)

Since α0(x, y) is linear in both arguments and α0(x, y) =
(−1)Dα0(y, x) [7,14], it follows that the superpositions
Eq. (A15) have a nonvanishing α0(g0 j, g0 j ):

α0(g0 j, g0 j ) → 2α0(g0 j, g0 j+1),

α0(g0 j+1, g0 j+1) → −2α0(g0 j, g0 j+1). (A16)

With the redefined gGEVs g0 j, j = l ′
0 + 1, . . . , l0, one

can continue with the orthonormalization steps to obtain
{e01, . . . , e0m0} satisfying Eq. (A9). From here, one can now
proceed to construct the canonical normal form transforma-
tion for c = 3; see Sec. V C.

b. Further transformation of the gGEVs e0 j of case c = 4

Let us analyze the remaining 2n0 = m0 − l0 gGEVs in c =
4. To ease the notation, we relabel them as {e01, . . . , e02n0}. In
this case, α0(e0 j, e0 j ) = 0 for j = 1, . . . , 2n0 and it cannot be
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transformed to some other value like in the case of gGEVs in
c = 3. Here we describe a transformation of {e01, . . . , e02n0}
to a new set { f 01, . . . , f 0n0

, h01, . . . , h0n0} which satisfies

�0( f 0 j, f 0 j′ ) = �0(h0 j, h0 j′ ) = 0,

�0( f 0 j, h0 j′ ) = δ j j′1, (A17)

for j, j′ = 1, . . . , n0. Obtaining the gGEVs of the form
Eq. (A17) is done as follows [7,14].

(1) Suppose, by reordering the gGEVs if necessary, that
D01 = D02 and α0(e01, e02) �= 0. Such a pair can always be
found [7,14]. Normalize e02 → e02/α0(e01, e02). Find a ma-
trix �0 of the form Eq. (A1) such that

�2
0 = �0(e01, e02). (A18)

Make the following transformation:

e01 → �−1
0 e01, e02 → (��

0)−1e02. (A19)

By construction, �0(e01, e02) = 1.
(2) Calculate �0(e01, e01) and �0(e02, e02) for the rede-

fined gGEVs. Find a matrix �0 of the form Eq. (A1) that
satisfies

�0(e01, e01) − 2�0 − �2
0�0(e02, e02) = 0. (A20)

This equation can be written in the form Eq. (A3) and solved
recursively for the coefficients of the matrix �0.

(3) Define

f 01 = e01 + �0e02. (A21)

By construction, �0( f 01, f 01) = 0. Repeat step (1) for the
pair { f 01, e02} to obtain �0( f 01, e02) = 1. This step keeps
�0( f 01, f 01) = 0.

(4) Define

h01 = e02 − 1
2�0(e02, e02) f 01. (A22)

By construction, �0(h01, h01) = 0 and �0( f 01, h01) = 1.
(5) Redefine the rest of the gGEVs as

e0 j → e0 j + ��
0(h01, e0 j ) f 01 − ��

0( f 01, e0 j )h01, (A23)

for j = 3, . . . , 2n0. By construction, �0( f 01, e0 j ) =
�0(h01, e0 j ) = 0.

(6) Repeat the above steps for the redefined set
{e03, . . . , e02n0} and keep repeating until Eq. (A17) is satisfied.

With so obtained gGEVs, one can now proceed to con-
struct the canonical normal form transformation for c = 4; see
Sec. V D.

3. Generalized symplectic orthonormalization
for imaginary eigenvalues, c = 5, 6

Let us now describe a process of generalized symplectic
orthonormalization for c = 5, 6. For a given eigenvalue λi, we
start with a set of all corresponding gGEVs {gi1, . . . , gimi

} ∈
H(λi ). In the process of generalized symplectic orthonor-
malization, this set is transformed to a new set of gGEVs
{ei1, . . . , eimi}, with the property that

�λi (ei j, ēi j′ ) = δ j j′σi j1, j, j′ = 1, . . . , mi, (A24)

where σi j can have the following values:

σi j =
{±1, c = 5,

±i, c = 6.
(A25)

Obtaining the set of gGEVs with the property Eq. (A24) is
done in the following way [7,14].

(1) Suppose, by reordering the gGEVs if necessary,
that the first gGEV in the list satisfies αλi (gi1, ḡi1) �= 0. If
all are zero, one should skip these steps and proceed to
Appendix A 3 a. Otherwise, define

σi1 =
{

sgn
[
αλi (gi1, ḡi1)

] = ±1, c = 5,

i sgn
[
αλi (gi1, ḡi1)/i

] = ±i, c = 6.
(A26)

Find a matrix �λi of the form Eq. (A1) such that

�2
λi

= σi1�λi (gi1, ḡi1). (A27)

�λi can be represented by a vector and found using Eq. (A3).
Define

ei1 = �−1
λi

gi1. (A28)

Note that by construction �λi (ei1, ēi1) = σi11.
(2) Redefine all the remaining gGEVs in the total set

{gi2, . . . , gimi
} by

gi j → gi j − σi1�
�
λi

(ei1, ḡi j )ei1, (A29)

for j = 2, . . . , mi. By construction �λi (ei1, ḡi j ) = 0.
(3) Repeat the above steps for the redefined set

{gi2, . . . , gimi
} and keep repeating for j = 2, . . . , m′

i � mi.
If m′

i = mi, this completes the procedure. The new set
{gi1, . . . , gimi

} satisfies Eq. (A24). The gGEVs can now be
separated into two lists, one for each of the cases c = 5, 6.
One can now proceed to construct the canonical normal form
transformation for c = 5, 6; see Sec. V E and Sec. V F.

The case m′
i < mi happens if αλi (gi j, ḡi j ) = 0 for j > m′

i,
after the redefinition Eq. (A29) has been carried out m′

i times.
In that case, proceed to Appendix A 3 a.

a. There are gGEVs gi j with αλi (gi j, ḡi j ) = 0

The redefined list of gGEVs {gim′
i+1, . . . , gimi

} contains
vectors which do not satisfy Eq. (A24). In this case, for any
j ∈ [m′

i + 1, mi], there exist another j′ ∈ [m′
i + 1, mi] such

that Di j = Di j′ and αλi (gi j, ḡi j′ ) �= 0. This is guaranteed by the
nondegeneracy of Eq. (A4) [7,14]. Consequently, mi − m′

i is
even. In this situation, one should proceed as follows.

(1) Suppose, by reordering the gGEVs if necessary, that
Di j = Di j+1 and αλi (gi j, ḡi j+1) �= 0, for j = m′

i + 1, m′
i +

3, . . . , mi − 1.
(2) Redefine the gGEVs in the following way:

gi j → gi j + gi j+1, gi j+1 → gi j − gi j+1. (A30)

Since αλi (x, ȳ) is linear in both arguments and it has the
property that αλi (x, ȳ) = (−1)Dᾱλi (y, x̄) [7,14], it follows that
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the superpositions Eq. (A30) have a nonvanishing αλi (gi j, ḡi j ):

αλi (gi j, ḡi j ) →
{

2 Re
[
αλi (gi j, ḡi j+1)

]
, c = 5,

2i Im
[
αλi (gi j, ḡi j+1)

]
, c = 6,

αλi (gi j+1, ḡi j+1) →
{

−2 Re
[
αλi (gi j, ḡi j+1)

]
, c = 5,

−2i Im
[
αλi (gi j, ḡi j+1)

]
, c = 6.

(A31)

With the redefined gGEVs gi j, j = m′
i + 1, . . . , mi, one

can continue with the orthonormalization steps to obtain
{ei1, . . . , eimi} satisfying Eq. (A24).

APPENDIX B: BOGOLIUBOV TRANSFORMATION

In this Appendix, we provide the instructions to perform a
Bogoliubov real canonical transformation [2,3,17] that can be
performed when the equation-of-motion matrix K is diagonal-
izable and only has purely imaginary eigenvalues. That is, K
has NI imaginary pairs Ii = {λi, λ̄i}, for i = 1, . . . , NI with
algebraic and geometric multiplicities ai = mi. One hence
needs to use the generalized symplectic orthonormalization
(Appendix A 3) and the instructions for c = 6 (Sec. V F) with
Di j = 1. Note that there are ai eigenvectors corresponding to
each λi and it is not needed to introduce the GEVs.

In the diagonalizable case, the form Eq. (A4) introduced
in Appendix A simply reduces to �λi (x, ȳ) = αλi (x, ȳ)1.
Moreover, αλi (x, ȳ) as defined in Eq. (15) further reduces to
αλi (x, ȳ) = xT J ȳ, without dependence on the eigenvalue λi.
We will therefore denote it simply as α(x, ȳ). This is the
only mathematical object needed in the construction of the
normal form transformation in the diagonalizable case. One
can show that α(x, ȳ) = −ᾱ(y, x̄) and hence α(x, x̄) is purely
imaginary.

Assuming that for each pair Ii the corresponding eigenvec-
tors {gi1, . . . , giai

} ∈ H(λi ) are found, one needs to proceed as
follows. For each Ii, do the symplectic orthonormalization as
follows.

(1) Assume that α(gi j, ḡi j ) �= 0 for j = 1, . . . , ai. If this
is not the case and ∃ j such that α(gi j, ḡi j ) = 0, then the

number of such eigenvectors is even and there can always be
found another j′ such that α(gi j′ , ḡi j′ ) = 0, but α(gi j, ḡi j′ ) �= 0
[7,14]. Then, redefine the corresponding eigenvectors as

gi j → gi j + gi j′ , gi j′ → gik − gi j′ , (B1)

such that α(gi j, ḡi j ), α(gi j′ , ḡi j′ ) �= 0. See Eq. (A30) and
Eq. (A31) for more details.

(2) Define σi1 = i sgn[α(gi1, ḡi1)/i] = ±i. Note that
−σi1α(gi1, ḡi1) > 0. Define

ei1 = gi1/
√−σi1α(gi1, ḡi1). (B2)

By construction, α(ei1, ēi1) = σi1.
(3) Redefine the rest of the eigenvectors as

gi j → gi j − σi1ᾱ(ei1, ḡi j )ei1, (B3)

for j = 2, . . . , ai. By construction α(gi j, ēi1) = 0.
(4) Repeat the above steps for the redefined set

{gi2, . . . , gimi
} and keep repeating for j = 2, . . . , ai until

α(ei j, ēi j ) = 1 ∀ j.
The Bogoliubov transformation is T = (T+T−), where the

matrices T± of dimension 2N × N are further split into

T± = (T1± . . . Ti± . . . TNI±), (B4)

where there is a Ti± for every imaginary pair Ii = {λi, λ̄i} (i =
1, . . . , NI ) of dimension 2N × ai. The matrices Ti± are given
by

Ti+ = (
t i1 . . . t iai

)
, Ti− = (

si1 . . . siai

)
, (B5)

where

t i j =
√

2 Re(ei j ), si j = iσi j

√
2 Im(ei j ). (B6)

We remark that the matrix KN = T −1KT is not diagonal, but
instead it is in the real Jordan normal form (see Table I).
The transformation N = T T MT diagonalizes the matrix M,
leading to the normal form quadratic Hamiltonian consisting
only of independent harmonic oscillators. The Bogoliubov
transformation in the bosonic representation is obtained as
TC = G†T G, with G as defined in Eq. (3).
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