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Infinite-dimensional optimization applied to pair creation from the vacuum
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We examine the electron-positron pair-creation process from the vacuum for general time-dependent external
fields. By applying the framework of optimal control theory, we determine those temporal pulse shapes, which
can maximize the final number of created positrons for a given set of momenta. In the perturbative regime
of sufficiently small pulse energies or short interaction times, we obtain analytical forms that match the
computational data of the optimal fields for the chosen sets of positronic momenta.
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I. INTRODUCTION

The subject of electron-positron pair creation from the
quantum vacuum state triggered by strong electromagnetic
fields has become a widely studied research area. Since the
early pioneering works by Heisenberg and Euler [1], Sauter
[2], Hund [3], and Schwinger [4], there have been countless
articles published that examine the fundamental dynamical
features manifest in the spatial and momentum distributions
and the total yield for a wide variety of space- and time-
dependent electromagnetic field configurations. As this is an
intensively studied area, there are also numerous reviews
available [5,6]. However, only recently, some first works have
been reported that aim to examine how one can possibly
tailor the temporal [7–9] or spatial [10] dependence of the
external field with the goal to maximize the number of created
particles [7–10] after the interaction. This limited number of
investigations is surprising, as similar types of optimization
questions have been studied routinely for quite a while in
many areas of engineering and science [11–18]. For example,
in atomic and molecular physics [19–24], the goal is to tailor
laser-pulse shapes to control the final outcome of complex
chemical reactions or to create or break a particular bond in
a molecule or atom. Also, recent experiments have exploited
rather sophisticated adaptive laser-pulse-shaping techniques
including closed-loop learning algorithms that also permit
the independent shaping of the laser’s polarization [22] and
amplitude, as well as phase.

In the context of the quantum field theoretical pair creation,
the recent works of Kohlfürst et al. [7,8] and Hebenstreit
and Fillion-Gourdeau [9] have suggested that the powerful
framework of optimal control theory could be employed to
determine the time dependence of the optimal electromagnetic
field configuration that leads to the largest number of created
electron-positron pairs. Due to the enormous requirements on
CPU time, all studies so far in this research have focused on a
finite-dimensional optimization, where typically a few phases,
amplitudes, or spatial length scales [10] were optimized.
While these studies have contributed significantly to open up
this research area, the search was naturally confined to opti-

mize only two or three parameters that therefore characterize
only a rather restricted space of possible electric fields.

In order to examine the optimization problem from a more
fundamental perspective, we aim in this work to explore the
space of more general functional forms for the external field.
This leads to a computationally much more difficult infinite-
dimensional optimization problem, where the sole constraint
on permitted pulse shapes is provided by fixing their energy.
Also, the time dependence of the particle yield has to be
consistent with the electron-positron field operator that has to
satisfy the Dirac equation.

The main purpose of this work is threefold. First, it sug-
gests that it is computationally feasible to apply an infinite-
dimensional optimal control theory to pair creation. Second,
we show that the time dependence for the optimum pulse
shapes that maximize the positron yield with a given range
of momenta can be approximated by simple analytical ex-
pressions with remarkable accuracy. Third, part of this work
was also motived by a recent article [25], where a superpo-
sition principle for the simultaneous optimization (SPSO) for
collective responses of sets of classical oscillatorlike systems
was introduced [26]. We suggest that this principle is also
applicable to the pair-creation dynamics. We find that the
particular field that optimizes the total final yield for positrons
with a chosen set of momenta can be related directly to a
simple linear superposition of those fields, which maximize
the positron yield for a specific momentum separately. We
show that the corresponding expansion coefficients can be
obtained from an eigenvalue problem.

This work is structured as follows. In Sec. II, we introduce
the model and its notation, and review how the pair-creation
dynamics in spatially homogeneous fields can be mapped
onto mutually decoupled sets of two-level-like equations,
each describing the positron yield for a given momentum. In
Sec. III, we introduce four different optimization schemes and
examine the optimal fields in the perturbative (analytical) and
nonperturbative regime. In Sec. IV, we examine how the par-
ticular type of constraint on the field affects the optimal field.
In Sec. V, we derive analytical expressions for the optimal
field that lead to a global maximum of the total pair-creation
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yield for a given set of positrons’ momenta. In Sec. VI, we
justify the validity of these expressions by comparing their
predictions with the computationally obtained optimal fields
for a concrete situation. We finish this article in Sec. VII with
a summary and an outlook into future challenges.

II. THE MODEL SYSTEM

If the electric field does not have a spatial inhomogeneity,
then the pair-creation dynamics can be described in the tem-
poral gauge by a time-dependent vector potential A(t ). In one
spatial dimension and in atomic units, the Dirac Hamiltonian
takes the form [27,28]

H = cσ1[P − qA(t )/c] + c2σ3, (2.1)

where we assume the coupling to a positron with charge q =
+1. Here, P is the momentum operator, and σ1 and σ3 denote
the 2 × 2 Pauli matrices.

In this work, we will use as a basis set the eigenstates
of the force-free Hamiltonian, defined as H0|p; u〉 = ep|p; u〉
and H0|p; d〉 = −ep|p; d〉 with energy ep ≡ [c4 + c2 p2]1/2.
For momentum p, the spatial representation of the set
is given by the two-component spinors, 〈x | p; u〉 =
N{[c2 + ep]1/2

, [ep − c2]1/2
p/|p|} exp[ipx] and 〈x | p; d〉 =

N{−[ep − c2]1/2
, [c2 + ep]1/2

p/|p|} exp[ipx], where N is
the corresponding normalization factor. As the canonical
momentum is conserved, i.e., [P, H ] = 0, the external field
A(t ) can couple only states with the same momentum |p; d〉
and |p; u〉. In other words, the entire pair-creation dynamics
is equivalent to the collective dynamics of an infinite set of
mutually independent two-level systems. We can therefore
rewrite H as a sum of independent Hamiltonians over all
momenta,

H ≡
∑

p

[ep|p; u〉〈p; u| − ep|p; d〉〈p; d|

− A(t )Vdia − A(t )Voff ]. (2.2)

Here the on- and off-diagonal couplings are given by

Vdia (t ) ≡ 〈p; u|σ1|p; u〉|p; u〉〈p; u|
+ 〈p; d|σ1|p; d〉|p; d〉〈p; d|, (2.3a)

Voff (t ) ≡ 〈p; d|σ1|p; u〉|p; d〉〈p; u|
+ 〈p; u|σ1|p; d〉|p; u〉〈p; d|. (2.3b)

Using the functional form of the energy eigenstates
from above, the four matrix elements for each p take
the form 〈p; u|σ1|p; u〉 = cp/ep ≡ ap, 〈p; d|σ1|p; d〉 = −ap

and 〈p; d|σ1|p; u〉 = 〈p; u|σ1|p; d〉 = c2/ep ≡ bp. For a sin-
gle momentum p, the state is a superposition of the lower
and upper level, |�p(t )〉 = Cp;d(t )|p; d〉 + Cp;u(t )|p; u〉. The
time-dependent amplitudes follow from the Dirac equation
i ∂|�p(t )〉/∂t = H |�p(t )〉 as [29]

i d Cp;u(t )/dt = [ep − A(t )ap]Cp;u(t )

− A(t )bpCp;d(t ), (2.4a)

i d Cp;d(t )/dt = −A(t )bpCp;u(t )

− [ep − A(t )ap]Cp;d(t ). (2.4b)

From a computational perspective, we found it advan-
tageous to convert the complex amplitudes into three real
variables, defined as

S1(t ) ≡ Cp;d(t )Cp;u(t )∗ + Cp;d(t )∗Cp;u(t ), (2.5a)

S2(t ) ≡ −i[Cp;d(t )Cp;u(t )∗ − Cp;d(t )∗Cp;u(t )], (2.5b)

S3(t ) ≡ |Cp;u(t )|2 − |Cp;d(t )|2. (2.5c)

This set of Bloch variables [30,31] satisfies the following
set of equations:

d S1(t )/dt = −2α(t ) S2(t ), (2.6a)

d S2(t )/dt = 2α(t )S1(t ) − 2β(t )S3(t ), (2.6b)

d S3(t )/dt = 2β(t )S2(t ), (2.6c)

where we abbreviated the couplings α(t ) ≡ ep − A(t )ap

and β(t ) ≡ −A(t )bp. The initial conditions are S1(t = 0) =
S2(t = 0) = 0 and S3(t = 0) = −1. The number density of
the created positrons with momentum p is therefore given by
N (p, t ) ≡ |Cp;u(t )|2 = [1 + S3(t )]/2.

III. OPTIMIZATION FOR A SINGLE MOMENTUM

In this section, we examine how we can construct the
time dependence of the optimal electric field pulse that can
maximize the final number N (p, T ) of created positrons for
a given momentum p. In order to avoid infinite solutions for
A(t ), we constrain the time integral of the vector potential to
take a finite value E = ∫

dt A(t )2, with the integration limits
extending from t = 0 to T. Even though E does not corre-
spond to the true electromagnetic energy of the associated
electric field (see the more detailed discussion in Sec. IV
on this), we denote it below for simplicity as “energy.” This
means that this optimization problem is relatively universal,
as it is characterized by only two given parameters E and
T . In the first two appendices, we have summarized the
numerical algorithms to determine the optimum pulse shape
Aopt (t ) for a given E and T . These algorithms include a
predictor-corrector-type (Appendix A), a steepest ascent [32],
a Fletcher-Reeves [33], and the Polak-Ribiere [34] based
conjugate-gradient method (Appendix B). They differ by
computational efficiency, accuracy, as well as their ability to
find global maxima and to distinguish between saddle-point
solutions and maxima. They require an initial guess for A(t ),
which is then iteratively improved until the corresponding
N (p, T ) no longer grows with the number of iterations.

For example, in Fig. 1 we show the final population
N (p, T ) for p = 60 a.u. as a function of the number of iter-
ations for E = 6000 and T = 2 × 2π/(2c2). The time unit
2π/(2c2) is suggested by the smallest energy spacing 2c2 be-
tween the upper and lower energy states with momentum p =
0. All four computational schemes used the same temporally
constant field A(0)(t ) = (E/T )1/2 as the initial guess, which
generates a low yield of N (p, T ) = 7.96 × 10−4. We see that
all four methods converge nicely to the maximum N (p, T ) =
0.661, as indicated by the dashed horizontal reference line.
In order to guarantee that the algorithms converge to a global
maximum N (p, T ), we have varied the choice of the initial
guesses for A(t ).
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FIG. 1. The final population N (p, T ) as a function of the num-
ber of iterations for four different computational optimization al-
gorithms. We used the momentum p = 60 a.u., and the initial
guess A(t ) = (E/T )1/2. The pulse energy was constrained to E =
6000 a.u. and the total interaction time was T = 2 × 2π/(2c2).

A. The optimal pulses Aopt (t ) for the perturbative regime

To begin our analytical investigation, we focus first on the
perturbative regime, where the field does not have a sufficient
time T or energy E to fully excite the upper level. In order to
examine which momentum states are easiest to populate under
optimal conditions, we have calculated in Fig. 2 the optimum
pulse for each p and then graphed the corresponding (largest
possible) particle number N (p, T ) after the interaction with
the (optimal) pulse. Due to the obvious symmetry p → −p,
we can focus on positive momenta.

The nearly monotonic decrease of N (p, T ) with increasing
p shows that it is easiest to create positrons that are at rest.
This is consistent with the fact that the off-diagonal coupling
elements −A(t ) bp in Eq. (2.4) fall off monotonically with
increasing p. For comparison, we have included in Fig. 2, by
the dot-dashed line, the (scaled) squares of the coupling |bp|2.
The agreement of |bp|2 with the scaling of the optimal final
population N (p, T ) with increasing momentum is very good,
i.e., N (p, T ) ∼ |bp|2.

We also note an unexpected oscillatory structure that is
superimposed on the decreasing function. This additional
structure is related to the changing nature of each optimal field

FIG. 2. The largest possible population of the upper level
N (p, T ) as a function of the momentum (open circles). The con-
tinuous and dashed lines are the solutions for two given external
fields (3.1a) and (3.1b). For comparison, the dot-dashed line is
0.00167 |bp|2. The pulse energy was constrained to E = 10 a.u. and
the total interaction time to T = 2 × 2π/(2c2).

as the momenta increase. It disappears with increasing p and
also with increasing interaction time T .

Let us now examine the form of the optimal field A(t ) that
maximizes N (p, T ). Using the framework of optimal control
theory (see Appendix A), it is possible in the perturbative
regime to derive the following two possible candidates for the
optimal field (see Appendix C):

AC(t ) = A0C cos[2ep(t − T/2)], (3.1a)

AS(t ) = A0S sin[2ep(t − T/2)]. (3.1b)

Here, A0C ≡ E1/2[T/2 + sin(2epT )/(4ep)]−1/2 and A0S ≡
E1/2[T/2 − sin(2epT )/(4ep)]−1/2 are the corresponding nor-
malization factors for the even and odd functions (with regard
to t = T/2).

We have accompanied the final populations for the exact
(numerically found) optimal fields with the corresponding
populations associated with the two given fields of Eqs. (3.1).
The superb match indicates that the optimal solutions change
back and forth between (3.1a) to (3.1b). For example, for the
slowest created positrons (0 < p < 103 a.u.), the true optimal
field is graphically indistinguishable from the even function
given by Eq. (3.1a). For the next band of momenta (103 <

p < 153 a.u.), the odd function given by Eq. (3.1b) becomes
the optimal field, and so on.

As one could have expected, both trigonometric solutions
oscillate in time with a frequency 2ep that corresponds pre-
cisely to the energy difference of the two coupled levels.
However, the phase factor corresponding to a shift by T/2 is
less expected.

Equivalently, one might wonder why for some momenta p
the even solution (3.1a) leads to a maximal N (p, T ), while
other groups of momenta require the odd solution (3.1b).
In order to examine several possible physical properties that
could determine the phase φ for the optimal field, we have
computed the N (p, T ) for the (energy) normalized function,

A(t ; φ) ≡ A0(φ) cos[2ep(t − T/2) + φ], (3.2)

with A0(φ) = E1/2[T/2 + cos(2φ) sin(2epT )/(4ep)]−1/2 . We
found that neither the amplitude A0(φ) nor the (more physical)
energy ∫ dt (dA/dt )2 can provide the correct criterion. How-
ever, we found that for a given momentum, the magnitude of
the Fourier component of A(t, φ) for the resonant frequency
2ep is actually largest for the corresponding optimal solution
Aopt (t ). For example, A(ω = 2ep, φ) takes a maximum for the
phase φ = 0 for p = 60, favoring the even solution (3.1a),
while for p = 110, the amplitude A(ω = 2ep, φ) is maximal
at φ = π/2, thus favoring the odd solution (3.1b).

Obviously, if 2epT is a multiple of π , then
A0(φ) becomes entirely independent of the phase φ,
i.e., A0(φ) = E1/2(T/2)−1/2. This occurs when p =
[π2n2/(4T 2) − c4]1/2/c, which takes the numerical values
p = 102.777 (for n = 5), p = 153.211 (for n = 6), and
p = 196.803 (for n = 7). These predictions precisely match
the locations of the observed crossing points of the two
solutions in Fig. 2.

To examine this interesting relevance of the phase φ on
the final population of the created positrons, we have graphed
in the inset the final population N (p, T ; φ) for p = 60 as
a function of this phase φ. The final population oscillates
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FIG. 3. (a) The final population of the upper level N (p, T )
as a function of the momentum for five different pulse energies
E . The total interaction time to T = 2 × 2π/(2c2). (b) The ratio
N (p, T ; E )/N (p, T ; E = 1 a.u.) as a function of p for the four en-
ergies. For comparison, the horizontal dashed lines are the ratios
expected from the linear scaling of the perturbative regime.

between N (p, T ) = 1.50 × 10−3 for φ = 0 and φ = π and
N (p, T ) = 1.31 × 10−3 for φ = π/2 and φ = 3π/2. The fact
that the odd solutions (φ = π/2 and φ = 3π/2) correspond-
ing to Eq. (3.1b) lead to minima in N (p, T ) in this one-
parameter (= φ) function space does not mean that this
field is also a local minimum in the corresponding infinite-
dimensional space of all permittable fields A(t ). In fact, it
corresponds to a saddle point. If we use this particular solution
as the initial guess for the predictor-corrector-based numerical
optimization scheme, this solution becomes unstable and the
consecutive iterations evolve the field A(t ) to its global op-
timum, given by the form (3.1a). However, as the functional
gradient of the final population with regard to the field A(t ),
i.e., δN (p, T )/δA(t ) vanishes at this saddle-point solution, the
two gradient-based methods (steepest ascent and conjugate
gradient) are less useful as they cannot move the solution
away from a saddle point to the true maximum.

B. The transition into the nonperturbative regime

In this section, we probe the nonperturbative domain by
increasing the pulse energy E such that the field A(t ) can
transfer the population completely to the upper level, i.e.,
N (p, T ) = 1. In Fig. 3, we show the optimal final population
N (p, T ) as a function of the positron’s momentum p for
five different pulse energies E . Generalizing our findings in
Sec. III A for E = 10, we see that independent of the energy
E , it is always easiest to maximize the yield for positrons with
a low momentum.

If the energy exceeds about E = 13 025, then the optimal
field for p = 0 can excite the upper level almost completely,

FIG. 4. The optimum field Aopt (t ) for three different energies
E and momentum p = 60. The total interaction time was T = 2 ×
2π/(2c2).

N (p = 0, T ) > 0.99. In the perturbative low-energy region,
the final population depends linearly on the energy E and,
as a result, the functions N (p, T ) all take the same shape. In
order to illustrate this behavior, we have graphed in Fig. 3(b)
the ratio N (p, T ; E )/N (p, t ; E = 1 a.u.) as a function of p.
The constant graphs for small E confirm the linear scaling
of the final positron yield with the energy E . For larger E ,
we see the expected deviations from the linearity, as N (p, T )
approaches its maximum possible value of unity. As this upper
limit is approached more likely for small p, we see that the
nonperturbative corrections occur first for small p as E is
increased.

While the change of the scaling of N (p, T ) with increasing
E suggests a different regime, the corresponding functional
form of the optimal field Aopt (t ) also deviates from its simple
periodic form given by Eq. (3.1a).

In Fig. 4, we show how the optimal pulse begins to differ
from Eq. (3.1a) as the energy moves us into the nonpertur-
bative regime. For E = 1.5 × 104, the optimum field (circles)
is still nearly identical to the perturbative form (continuous
graph) even though it can induce a nearly perfect final popula-
tion of N (p, T ) = 0.9952. For E = 2 × 104, corresponding
to N (p, T ) = 0.9999, we begin to see clear deviations from
the simple cosine function as the optimal Aopt (t ) takes a rather
different shape, which is still even around t = T/2.

For even larger energies, we enter an interesting regime
in which the search for a unique global maximum Aopt (t )
becomes irrelevant. Here there are numerous and rather dif-
ferent functional forms, all of which can excite the final
positron yield for a given momentum to the optimal value
N (p, T ) > 0.9999. Here the set of functions Aopt (t ) become
equivalent to each other, even though (due to their different
time dependence) the pathways for N (p, T ) to approach unity
[from the initial value N (p, t = 0) = 0] can be very different.

IV. IMPACT OF THE ENERGY CONSTRAINT
ON THE OPTIMAL FIELD

In this section, we show that the theoretical framework
is rather universal in the sense that the basic approach leads
to similar conclusions even for different constraints for the
external field. In the prior discussion, we have given analytical
forms of the optimal field in the class of functions A(t ) that
satisfy E = ∫ dt A(t )2. This led in the perturbative limit to
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the main control given by Eq. (C5), A(t ) = −λ−1
0 bp[S2(t ) +

λ2(t )], which could be solved self-consistently with the solu-
tions given in Eqs. (3.1).

If the constraint is modified to the slightly more phys-
ical form where the electric energy is kept invariant, i.e.,
E = ∫ dt (dA/dt )2, then the required functional gradient
δ[∫ dt (dA/dt )2]/δA(t ) becomes equal to −2d2A/dt2 for
variations δA that do not change at the boundaries t = 0 and
t = T . As a result, the main control equation contains the
second derivative of the field,

d2A/dt2 = bpλ
−1
0 [S2(t ) + λ2(t )]. (4.1)

We have shown at the end of Appendix C that the solutions
S2(t ) + λ2(t ) for any external field A(t ) are given by the linear
superposition of cos[2ep(t − T/2)] and sin[2ep(t − T/2)],
where the specific functional form of A(t ) determines only the
two expansion coefficients. Therefore, the following ansatz
for Aopt (t ) could be a solution of Eq. (4.1),

Aopt (t ) = c0 + c1(t − T/2) + c2 cos[2ep(t − T/2)]

+ c3 sin[2ep(t − T/2)]. (4.2)

Due to the normalization constraint, E = ∫ dt[dA/dt]2, the
three (of the four) coefficients have to satisfy

E = c2
1T + 2

(
c2

2 + c2
3

)
e2

pT + 4c1c3 sin(epT )

− (
c2

2 − c2
3

)
ep sin(2epT ). (4.3)

Similarly, as in the derivation in Appendix C, for the
particular field β(t ) = −bpAopt (t ) given by Eq. (4.2), we can
solve the corresponding equations (C1) for S2(t ) and (C2) for
λ2(t ) forward and backward in time, respectively. Then the
combined solution [required for Eq. (4.1)] turns out to be

S2(t ) + λ2(t ) = {c0δ0 + c2δ2} cos[2ep(t − T/2)]

+{c1δ1 + c3δ3} sin[2ep(t − T/2)], (4.4)

where the time-independent coefficients are abbreviated
as δ0 ≡ 2 sin(epT )/ep, δ1 ≡ −[epT cos(epT ) − sin(epT )]/e2

p,
δ2 ≡ [2epT + sin(epT )]/(2ep) and δ3 ≡ [2epT − sin(epT )]/
(2ep). Using the ansatz of Eq. (4.2), the left-hand side (lhs)
of the control equation becomes

d2A/dt2 = −(2ep)2{c2 cos[2ep(t − T/2)]

+ c3 sin[2ep(t − T/2)]}. (4.5)

It takes the same functional time dependence as Eq. (4.4).
By equating the cofactors of the same trigonometric functions,
we can now find the coefficients to satisfy

−(2ep)2c2 = bpλ
−1
0 (c0δ0 + c2δ2), (4.6a)

−(2ep)2c3 = bpλ
−1
0 (c1δ1 + c3δ3). (4.6b)

As a side issue, we note that the original constraint, E =
∫ dt A(t )2, leads immediately to c0 = c1 = 0 as the right-
hand side (rhs) [Eq. (4.4)] does not contain any constant or
linear term in time. Furthermore, Eqs. (4.6) (for c0 =c1 =0)
can only be satisfied simultaneously if sin(epT ) = 0 (or in
the limit T → ∞) because only then we have δ2 = δ3. For
sin(epT ) 
= 0, we have only consistent solutions if either
c2 or c3 vanishes, corresponding to the either an even or
odd solution; see Eqs. (3.1). In this case, the value of the

momentum determines which of the two extremal solutions
A(t ) is just a saddle point or a maximum for N (p, T ).

In contrast, due to the additional degrees of freedom, the
constraint E = ∫ dt[dA/dt]2 permits a very wide variety of
solutions for A(t ) that are extrema, i.e., δJ/δA = 0 . To learn
which numerical values for the parameters c0, c1, c2, and c3

are permitted, we can use Eqs. (4.6) to formally eliminate two
degrees of freedom, given by c0 and c1,

c0 = c2
(−4λ0e2

p − δ2bp
)
/(δ0bp), (4.7a)

c1 = c3
(−4λ0e2

p − δ3bp
)
/(δ1bp). (4.7b)

Furthermore, if we insert c1 = c1(c3, λ0) from Eq. (4.7b)
into the energy constraint (4.3), we can solve the corre-
sponding quadratic equation for λ0. It has the two solutions
λ0 = �1(c2, c3; E ) and λ0 = �2(c2, c3; E ), whose functional
forms are rather complicated, as presented in Appendix D.

In order to have physically meaningful (and noncomplex)
expressions, it turns out that the two free parameters {c2, c3}
have to be inside an ellipse, i.e., (c2/L2)2 + (c3/L3)2 � 1,
where the two semi-axes are given by

L2 = {
E T/

[
2e2

pT 2 − EpT sin(2epT )
]}1/2

, (4.8a)

L3 = {
E T/

[ − 2 + 2 cos(2epT ) + 2e2
pT 2

+ epT sin(2epT )
]}1/2

. (4.8b)

This means that we can now formally eliminate λ0 by
introducing E and finally express two of the four coeffi-
cients as complicated functions of the other two, i.e., c0 =
c0(c2, λ0) = c0[c2,�i(c2, c3; E )] ≡ C0(c2, c3; E ) and c1 =
c1(c2, λ0) = c1[c3,�i(c2, c3; E )] ≡ C1(c2, c3; E ).

Next, if we insert the particular solution
S2(c0, c1, c2, c3; t ) = S2[C0(c2, c3; E ),C1(c2, c3; E ), c2, c3; t]
into the rhs of Eq. (2.6c), dS3(t )/dt = 2β(t )S2(t ), then we
can find S3(t ). This gives us the desired form for the optimal
N (p, T ) = [1 + S3(T )]/2 as a direct function of only the four
parameters (c2, c3; E , T ). Its analytical expression is given
by a cumbersome superposition of weighted trigonometric
functions with arguments epT , 2epT , and 3epT , so we omit
its specific form here and give the analytical expression in
Appendix D.

However, in Fig. 5, we graph N (p, T ) as a func-
tion of c2 and c3 for p = 60 a.u. and E = 109 a.u.

based on �1(c2, c3; E ). The corresponding graph based on
�2(c2, c3; E ) (not shown) is very similar. In both cases, the
final population is largest for c2 = ±43.64 and c3 approaching
zero. This corresponds to c1 = 8.72 × 104 and c0 approaching
infinity.

While the perturbative estimation of the four parameters
permits unbound final values for N (p, T ), which is unphys-
ical, it still can serve as a good guideline for the parameters
for the nonperturbative system, where 0 < N (p, T ) < 1. It is
obvious that c0 cannot approach infinity here. For example,
we can examine the suggested values c3 = 0, c2 = ±43.6,
and c1 = 8.7 × 104, which guarantee that the energy is E =
109 a.u., and still vary c0. For example, we found more than
N (p, T ) > 99% with the choices c0 = 3.245 × 104, 3.99 ×
104, and 4.696 × 104. In these cases, the optimal final value is
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FIG. 5. The final population N (p, T ) for the optimum fields
A(t ) parametrized by the field coefficients c2 and c3. [The total
interaction time is 2 × 2π/(2c2), the pulse energy is E = 109, and
the momentum is p = 60 a.u.; the two semi-axes are L2 = 61.72 and
L3 = 58.08.]

reached after 4.5, 5.5, and 6.5 cycles of complete population
inversions in time, respectively.

V. OPTIMIZATION FOR COLLECTIVE MOMENTUM
STATES IN THE PERTURBATIVE LIMIT

In the prior sections, we have seen that for a given pulse
energy E and interaction time T , each momentum p leads to
its own characteristic optimal field Aopt (t, p). It is obvious that
a specific field that can optimize the final yield of positrons
with lower momenta would not necessarily be the same one
that maximizes the yield for more energetic positrons. So the
key question in this section is if the information contained in
the individual optimal fields Aopt (t, p) can be used to predict
the functional form of the (single) optimal field that would
collectively optimize an entire set of different momenta. The
goal is therefore to collectively maximize the total final parti-
cle yield, which is given by the sum of the individual yields for
each momentum,

∑
pN (p, T ). If we generalize the framework

of optimal control theory derived in Appendix A, the main
control given by Eq. (A4) for the optimal field A(t ) would
take the form

A(t ) = λ−1
0

∑
p

{λ1(p)apS2(p) + λ2(p)[−apS1(p)

+ bpS3(p)] − λ3(p)bpS2(p)}, (5.1)

where we have explicitly indicated that the sets of the La-
grange functions λi(p) as well as the state variables Si(p)
depend on the momentum. This transcendental equation of
A(t ) simplifies significantly if we again enter the perturbative
regime as outlined in Appendix C, leading to

A(t ) = −λ−1
0

∑
p

bp[S2(p, t ) + λ2(p, t )], (5.2)

which is the straightforward generalization of Eq. (C5). In
this regime, the equations of motion (C1) and (C2) for the
variables λ2(p, t ) and S2(p, t ) can be solved analytically in
forward and backward time for any source term field A(t ),
respectively. If we insert these general solutions (containing
the integrals over the corresponding Green’s functions and
the source term) into the rhs of Eq. (5.2), they simplify

significantly and the corresponding equation becomes

A(t ) = λ−1
0

∫ T

dτ
∑

p

b2
p cos[2ep(τ − t )] A(τ ). (5.3)

This integral equation for the optimal field A(t ) is one of
the key findings of this work. It is also the generalization for
the optimal solutions of Eqs. (3.1) to sets of momenta. In
other words, the goal is to construct a specific function A(t )
that reproduces itself up to a factor of λ0 under the action of
the linear integral operator

∫ T dτ K (τ − t )], with the kernel
K (t ) ≡ ∑

pb2
p cos(2ept ). We therefore have to calculate the set

of eigenfunctions Aμ(t ) that satisfy
∫ T dτ K (τ − t )]Aμ(τ ) =

μAμ(t ) with the eigenvalues denoted by μ, which then au-
tomatically give us the permitted values for the Lagrange
multiplier λ0. The required normalization of the eigenvectors
Aμ(t ) to fulfill E = ∫

dt Aμ(t )2 can be performed at the very
end of the calculation.

This computational task can be performed rather easily
on a N-dimensional temporal grid, i.e., tn ≡ (n − 1)�t with
�t ≡ T/(N − 1) and n = 1, 2, . . . , N . The integral operator
is then represented naturally by a N × N matrix Kn,m =
�t K (τn − tm ), and the resulting eigenvalue problem is given
by

∑
mKn,mAμ(tm ) = μAμ(tn).

For the special case of a single momentum (as discussed in
Sec. III), i.e., K (t ) = b2

p cos(2ept ), it turns out that only two
of the N eigenvalues μ of Kn,m are nonzero. The two resulting
eigenvectors are identical to the solutions proportional to
cos[2ep(t − T/2)] and sin[2ep(t − T/2)] as derived alterna-
tively in Eqs. (3.1). More generally, for a total number of Ptot

different momenta, we find exactly 2Ptot nonzero eigenvalues
of Kn,m.

Alternatively, we can also come to the same conclusion by
using the fact that A(t ) is real. We therefore have A(t ) =
λ−1

0

∑
pRe{exp[i2ep(t − T/2)]

∫ T dτ b2
p exp[− i2ep(τ−T/2)]

A(τ )}. If we define the time-independent terms as

χC

∫ T

dτ b2
p cos[2ep(τ − T/2)]A(τ ), (5.4a)

χS

∫ T

dτ b2
p sin[2ep(τ − T/2)]A(τ ), (5.4b)

then this expression for A(t ) simplifies and the most general
solutions to the integral given by Eq. (5.3) take the simple
functional form

Aopt (t ) = λ−1
0

∑
p

χC(p) cos[2ep(t − T/2)]

+χS(p) sin[2ep(t − T/2)]. (5.5)

This result is quite remarkable. It suggests that the col-
lective optimizing field that simultaneously maximizes the
total yield of positrons with many momenta p can be directly
related to linear superpositions of the individual optimizing
fields Aopt (p, t ) for each momentum separately. For the special
case of two momenta (Ptot = 2), the characteristic weight
factors χ (p) can be constructed analytically, but they are
complicated functions of p1, p2, E , and T . This remarkable
finding is also directly related to the superposition principle
for the simultaneous optimization for collective responses
(SPSO) that was recently proposed for general dynamical
systems [25].
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We note that Eq. (5.5) is only the general functional form
required for the optimal field, but as the expansion coefficients
are still a function of A(t ), this is not a concrete solution. That
means as a next step, we have to determine the corresponding
expansion coefficients χ for a larger number of momenta Ptot

(up to the overall normalization associated with
∫

dt A2
opt =E ).

If we insert Eq. (5.5) into Eqs. (5.4), we obtain χC(p) ≡
λ−1

0

∑
qCp,qχC(q) and χS(p) ≡ λ−1

0

∑
qSp,qχS(q). This means

we can choose the even- and odd-parity manifolds separately
from each other. The optimal fields have therefore again a
well-defined even- or odd-parity symmetry under reflections
around the midpoint t = T/2. The expansion coefficients are
given by

Cp,q ≡
∫ T

dτb2
p cos[2ep(t − T/2)] cos[2eq(t − T/2)],

(5.6a)

Sp,q ≡
∫ T

dτ b2
p sin[2ep(t − T/2)] sin[2eq(t − T/2)],

(5.6b)

leading to

Cp,q = b2
p{sin[(ep − eq )T ]/[2(ep − eq )]

+ sin[(ep + eq )T ]/[2(ep + eq )]}, (5.7a)

Cp,p = b2
p[2epT + sin(2epT )]/(4ep), (5.7b)

Sp,q = b2
p{sin[(ep − eq )T ]/[2(ep − eq )]

− sin[(ep + eq )T ]/[2(ep + eq )]}, (5.7c)

Sp,p = b2
p[2epT − sin(2epT )]/(4ep). (5.7d)

In order to determine the coefficients satisfying χC(p) ≡
λ−1

0

∑
qCp,qχC(q) and χS(p) ≡ λ−1

0

∑
qSp,qχS(q), we have to

diagonalize the corresponding two Ptot × Ptot matrices, whose
eigenvalues are the permitted values for λ0. As both Ptot × Ptot

matrices Cp,q and Sp,q are real but not symmetric, one could
worry that their eigenvalues are not real and merely complex
conjugates of each other, which is undesirable. However,
the form in Eqs. (5.7) shows that both matrices can be ex-
pressed as a product of a (real) diagonal matrix Diag and a
real symmetric matrix M, for example, Sp,q = (Diag M )p,q =∑

rb
2
r dp,rMr,q. This means that the original eigenvalue prob-

lem based on Sp,q can be expressed equivalently as a gen-
eralized eigenvalue problem based on the Hermitian matrix
Mr,q, i.e., (Diag M )Aμ = μAμ. By multiplying both sides with
Diag−1, and then multiplying (from the left) with the adjoint
eigenvector A†

μ, we obtain A†
μM Aμ = μA†

μ Diag−1Aμ. On
the other hand, if we take the adjoint of the original equa-
tion, use M = M† and Diag = Diag†, and multiply (from the
right) with Diag−1Aμ, we obtain A†

μM Aμ = μ∗A†
μDiag−1Aμ.

Comparing the two expressions shows that the spectrum of
Sr,q is still real (μ = μ∗), as desired, despite the lack of the
symmetry S† = S.

VI. NUMERICAL EXAMPLE FOR THE OPTIMIZATION
FOR COLLECTIVE MOMENTUM STATES

In this section, we will test the validity of this remarkably
simple Eq. (5.5) for the optimal field for a set of momenta and
also examine the nonperturbative corrections when the pulse

energy is large. As the individual optimal fields Aopt (p, t ) for
momenta p that are close to each other are very similar, the re-
sulting collective optimal field Aopt (t ) associated with the col-
lective response is not too interesting. We therefore illustrate
the collective optimizing field for a concrete example, where
the momenta are different from each other. In our analytical
as well as numerical example, we will construct the global
field that maximizes the final yield

∑
pN (p, T ) summed

over the three momenta p1 = 1, p2 = 50, and p2 = 100. We
also restrict the interaction time to T = 20 × 2π/(2c2) and
the total pulse energy E = 1. The corresponding integration
kernel K (t ) = ∑

pbp
2cos(2ept ) was represented on a 2000-

dimensional temporal grid, and the corresponding 2000 ×
2000 matrix Kn,m = �t K (τn − tm ) was diagonalized numeri-
cally. As pointed out earlier, only 6 out of the 2000 eigenval-
ues were nonzero, leading to the set of nonvanishing eigenval-
ues given by {1.93, 1.90, 1.28, 1.26, 1.06, 1.05} × 10−3.

In order to examine the three-dimensional subspace
spanned by the nonvanishing even (cosine) solutions [com-
pare Eq. (5.5) above], we have diagonalized the corresponding
3 × 3 matrix Cp,q, where the matrix elements are given by
Eqs. (5.7a) and (5.7b). Consistent with the prior finding based
on the temporal basis states, here we find the three eigenvalues
{1.93, 1.26, 1.05} × 10−3 associated with the three eigen-
vectors {0.806, −0.580, 0.121}, {0.646, 0.735, −0.204}, and
{0.0441, 0.321, 0.946}, respectively.

According to Eq. (5.5), the first eigenvector corre-
sponds to the even superposition Aopt (t ) = λ0

−1 ∑
pχC(p)

cos[2ep(t − T/2)] with the three coefficients χC(p1) = 0.806,
χC(p2) = −0.580, and χC(p3) = 0.121, where λ0

−1 was cho-
sen such that

∫
dtAopt (t )2 = E . We have determined nu-

merically that it corresponds to a final yield
∑

pN (p, T ) =
1.926 × 10−3, while the second and third eigenvector leads
to

∑
pN (p, T ) = 1.263 × 10−3 and

∑
pN (p, T ) = 1.054 ×

10−3, respectively. The relative ranking of the magnitudes of
the three yields could have been guessed from the three weight
factors χC(pi ) for each eigenvector. As bp1

2 > bp2
2 > bp3

2,
the momentum state with p1 is the most important one. It can
contribute with the largest population N (p1, T ) to the com-
bined yield

∑
pN (p, T ); see also Fig. 2. Therefore, it is not

surprising that the first eigenvector [for which χC(p1) = 0.806
is largest] leads to the largest yield. As the three corresponding
final yields associated with the three eigenvectors of the odd
(sine-based) submanifold are all less than 1.926 × 10−3, we
conclude that the superposition based on the first eigenvector
χC(pi ) is the global maximum of the system.

As an independent test, we have also performed the numer-
ical optimization based on the algorithms discussed in Sec. III.
For simplicity, we started the numerical iteration with an
initial guess for the field A(t ) = const, which is, of course, far
from optimal as it leads to a final yield of only

∑
pN (p, T ) =

5.818 × 10−7. However, after only 12 iterations (based on the
steepest ascent method), the field A(t ) has evolved to one that
leads to

∑
pN (p, T ) = 1.926 × 10−3, fully consistent with

our theoretical prediction based on perturbation theory.
For comparison, we present in Fig. 6(a) the analytical

prediction for the optimal field Aopt (t ), based on the linear
superposition of the three cosine functions and including the
energy normalization, which fixes the value of λ0. We see that
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FIG. 6. The optimum field Aopt (t ) that maximizes the combined
total yield for positrons with momenta p1 = 1, p2 = 50, and p3 =
100 a.u. for a total interaction time T = 20 × 2π/(2c2) and pulse
energy E . (a) The analytical prediction according to Eq. (5.5) for E =
1. (b) The computationally obtained global optimal field based on the
steepest ascent method, using an initial field A(t ) = const and E = 1.
(c) The nonperturbative optimum field obtained computationally for
a larger field energy E = 1000.

due to the particular numerical values of the three coefficients,
χC(pi ), the resulting optimal form is remarkably different
from the three underlying cosinelike functions Aopt (p1, t ),
Aopt (p2, t ), and Aopt (p3, t ). For comparison, we graph in
Fig. 6(b) the computationally obtained optimum field, based
on the infinite-dimensional optimization. The two graphs are
indistinguishable from each other.

In order to show how corrections due to nonperturbative
effects affect the optimum yield, we have repeated the nu-
merical optimization but increased the field energy E to 1000.
This leads to an optimal yield of

∑
pN (p, T ) = 1.436, which

is clearly in the nonperturbative regime as the linear energy
scaling of the yield based on perturbation theory (see Fig. 3)
would predict

∑
pN (p, T ) = 1.926. In Fig. 6(c), we show the

corresponding global optimum field Aopt (t ), which is different
from the perturbative prediction.

VII. SUMMARY AND OPEN QUESTIONS

This work illustrates how infinite-dimensional optimiza-
tion schemes can be applied to the quantum field theoret-
ical problem of maximizing the final particle yield for the
strong-field-induced pair-creation process. One of the main
purposes was to suggest that the application of optimal control
theory in the perturbative limit permits us to derive analytical
expressions for the temporal pulse shapes for the optimal field
for positrons with a given single momentum as well as for
entire sets of momenta. In order to scan through a space of
permissible fields A(t ) that is as large as possible, we have
tried to minimize the number of restrictions on A(t ), choosing
the simple constraint E = ∫

dt A(t )2 [or E = ∫
dt (dA/dt )2

in Sec. IV]. As a result of these large degrees of freedom,
the obtained optimal fields did not necessarily vanish at t = 0
or t = T , which one might expect for an external physical
field that can be realized in a laboratory. In order to examine
those fields that vanish at the boundaries, one can either
introduce additional constraints using new Lagrange functions
or possibly by introducing penalty functions to the functional
objective.

As an experimental electromagnetic field with high fre-
quency would also have a spatial dependence, an infinite-
dimensional optimization based on the control theory has not
reached the desired stage yet, where it can provide a direct
guidance for practical laser field configurations. This is in con-
trast to atomic, molecular, and optical physics, where related
theoretical techniques were substantial to provide quantitative
guidance with regard to temporal laser profiles.

Another purpose of the work was to illustrate the recently
predicted [25] superposition principle for the simultaneous
optimization (SPSO) for a quantum field theoretical system.
Quite remarkably, in the perturbative limit of this system,
the optimal field that simultaneously optimizes the collec-
tive response of several two-level systems [

∑
pN (p, T )] can

be constructed from a suitable linear superposition of the
individual optimal fields Aopt (p, t ) that maximize the yield
for each momentum separately. We showed that the corre-
sponding expansion coefficients for each Aopt (p, t ) can be
obtained from the eigenvectors of a real but asymmetric
finite-dimensional matrix. We expect that this superposition
principle might also generalize if the spatial inhomogeneity
of the fields is included, but obviously more studies are
required.

Our numerical analysis was simplified by the fact that
spatially homogeneous fields preserve the total momentum
such that the dynamics can be described by a set of mutually
decoupled two-level systems. To lowest order, small spatial
inhomogeneities would couple these sets of equations. One
could use this feature to possibly generalize the infinite-
dimensional optimization schemes to include the more gen-
eral function space of space-time-dependent fields.

This article focuses on the optimization of the time depen-
dence of an electric field. For more realistic laser arrange-
ments, the corresponding magnetic field components need to
be included as well. In an earlier work [35], it was suggested
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that the pair-creation process can be seriously reduced or
even brought to a complete halt if an additional (and inde-
pendent) spatially localized magnetic field accompanies the
supercritical electric field. In contrast to the present work,
however, both external fields were independent of time and
the suppression was associated with the emergence of (static)
electrically dressed Landau levels. Furthermore, in order to
observe a significant pair suppression for this configuration, a
much larger magnetic field was required than the one naturally
associated with an electromagnetic laser pulse. Therefore,
the effect of the associated (in our present work neglected)
magnetic field component of the oscillatory electric field with
regard to the suppression mechanism should be negligible.
In fact, the correction to the pair-creation process due to
the laser’s magnetic field component can even enhance the
pair-creation rate for some parameters. The interplay between
the dynamical effect of the two field components of electro-
magnetic spatially localized field is certainly very interesting
and deserves future investigations.
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APPENDIX A: OPTIMAL CONTROL THEORY BASED
ON THE PREDICTOR-CORRECTOR METHOD

For notational simplicity, here we maximize S3(T ), which
is, of course, equivalent to maximizing the number density
N (p, T ) = [1 + S3(T )]/2. The predictor-corrector scheme re-
lies on the fact that most constrained optimization problems
can be converted to an unconstrained system if Lagrange
functions are introduced. As defined in Eqs. (2.5), our dynam-
ical variables [given by the three-component vector S(t ) ≡
(S1, S2, S3)] have to fulfill the constraints (state equations)
given by Eqs. (2.6), i.e., dS/dt = B[S(t ), A(t )] with the initial
condition S(t = 0) = (0, 0,−1). In order to account for this
constraint, we can introduce the three Lagrange functions
λ(t ) ≡ (λ1, λ2, λ3) (called co-states) and the multiplier λ0 to
account for the energy constraint. This leads to the objective
J to be extremalized,

J = S3(T ) + λ0

[
E −

∫
dt A(t )2

]
+

∫
dt λ · (B − dS/dt ).

(A1)

We should note here that due to the linear dependence of
J on the Lagrange functions, the field that maximizes S3(T )
does not necessarily maximize J , but leads to a saddle point in
J . As it is difficult to develop search algorithms that converge
to saddle points, the direct application of standard optimiza-

tion methods for J is nontrivial. The theoretical analysis and
its notation can be simplified if we define a “Hamiltonian”
H ≡ λ · B. If we compute the functional variation of the
objective δJ , we obtain

δJ = δS3(T ) + δλ0

[
E −

∫
dt A(t )2

]
− λ0

∫
dt 2AδA

−
∫

dt[δλ · dS/dt + λ · δ[dS/dt]+
∫

dt δH, (A2)

where δH = (∂H/∂A)δA + (∂H/∂S) · δS + (∂H/∂λ) · δλ.
We can apply integration by parts for the terms containing
δ[dS/dt] using the boundary δS(t = 0) = 0. For the specific
definition of H , the partial derivatives simplify to ∂H/∂λ = B.
For the optimal solution, we require that the variation
δJ is zero, which means the cofactor of each variation,
δA, δλ0, δλ, δS, and δS(T ), has to vanish, i.e., we require

−λ0 2A + ∂H/∂A = 0, (A3a)

E −
∫ T

0
dtA(t )2 = 0, (A3b)

dS/dt = ∂H/∂λ = B with S(0) = (0, 0,−1), (A3c)

dλ/dt = −∂H/∂S = −λ · ∂B/∂S with λ(T ) = (0, 0, 1).

(A3d)

Equation (A3a) is the main control equation and can be
solved formally for A(t ) leading to A(t ) = (2λ0)−1∂H/∂A.
In the general case, this is a transcendental equation that
any candidate for the optimal field A(t ) has to satisfy. Using
Eq. (2.6), this amounts to

A(t ) = (2λ0)−1 λ · ∂B(S, A)/∂A

= λ0
−1[−λ1 ∂α/∂A S2 + λ2(∂a/∂A S1 − ∂β/∂A S3)

+ λ3∂β/∂A S2]

= λ0
−1[λ1apS2 + λ2(−apS1 + bpS3) − λ3bpS2]. (A4)

In the predictor-corrector scheme, we start with an initial
guess for A(t ), denoted by A(0)(t ) [with E = ∫

dt A(0)(t )2]
for which the state and co-state Eqs. (A3c) and (A3d) are
solved to compute S(t ) and λ(t ). We found that the usual
Runge-Kutta fourth-order algorithm [32] with about 2000–
10 000 temporal step sizes was sufficient. As this particular
integration scheme, which iteratively evolves the solutions
from S(tn) to S(tn+1) [and λ(tn+1) to λ(tn)], requires the
evaluation of the generator of the differential equations at
intermediate times, the field A(t ) had to be represented on a
finer temporal grid with the double number of grid points.

If we insert these two numerical solutions S(t ) and λ(t )
into the rhs of the main control given by Eq. (A4), the
resulting time-dependent function (lhs) is then interpreted as
a “corrected prediction,” which we denote by A(1)(t ). This
field is then used as an improved guess to solve the state
and co-state equations again until the difference between
A(n)(t ) and A(n+1)(t ) is less than a desired numerical tolerance.
We should mention that the Lagrange multiplier λ0 can be
obtained easily at each step by requiring the square of the rhs
of (A4) to be normalized to E . The chosen sign of λ0 depends
on the specific parameters being studied. Interestingly, the
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incorrect choice of this sign manifests itself in the occurrence
of unphysical two- (or higher) cycle fixed point solutions, such
as A(n)(t ) = A(2n)(t ), instead of the desired optimum solution
A(n)(t ) = A(n+1)(t ). This iterative predictor-corrector scheme
converges nicely in the perturbative regime, but fails to work
if the final population S3(T ) approaches unity.

APPENDIX B: GRADIENT-BASED SCHEMES

The parameter regimes where the iterative predictor-
corrector scheme converges is unfortunately rather limited.
In order to access a wider range of parameters E and T , it
is necessary to employ search algorithms that can approach
local or (hopefully) global maxima more systematically. The
group of algorithms suitable for our dynamics scans through
the entire infinite-dimensional function space of permitted
functions A(t ) by computing an initial search direction D(0)(t )
associated with an initial guess A(0)(t ) and then performing a
one-dimensional line search J = J[A(0)(t ) + κD(0)(t )] to find
a maximum along this line. In order to restrict the search
to only those input fields A(0)(t ) + κD(0)(t ) that satisfy the
energy constraint given by Eq. (A3b), we have energy renor-
malized each field for each search parameter κ . This step gen-
eralizes this commonly used scheme to a “curved line” search.
To find κ we first tested the usual golden-ratio-based bisection
technique, but found that one has to be careful not to exclude
a true global maximum along this curved line and not to settle
into a local maximum instead. Overall, the gradient-based al-
gorithms usually converged nicely after a few iterations, after
which the search parameter κ turns to zero. Depending on
the specific method to determine the search direction for each
step, we have compared the predictions of three techniques:
the usual steepest ascent technique where the search direction
is identical to the functional gradient (Appendices B1 and B2)
and the more sophisticated conjugate-gradient-based Fletcher-
Reeves and Polak-Ribiere techniques (Appendices B3 and
B4). All of these approaches require the determination of the
functional derivative δS3(T )/δA(t ) for a given A(t ).

1. Brute-force approach to compute δS3(T )/δA(t )

Rather than employing any sophisticated strategy to com-
putationally simplify the algorithm, this particular approach
is based on computing the functional gradient of S3(T )
numerically without any Lagrange parameters or any other
simplifications. The function A(t ) was discretized at M points
on a temporal grid, with tm = T (m − 1)/(M − 1) and m =
1, 2, . . . , M, such that the objective S3(T ) becomes a function
of M parameters A(tm ) ≡ Am. For simplicity, we denote the
resulting M-dimensional vector (A1, A2, ..., AM) ≡ {Am}. This
means that the number S3(T ) depends on the entire set of
all M parameters {Am}, denoted by S3(T, {Am}). The required
functional gradient δS3(T )/δA is a function of time and there-
fore represented on the same temporal grid by another M-
component vector. The jth component of this gradient vector,
denoted by δS3(T )/δA(tj ), represents the partial derivative
of S3(T ) with regard to a small variation of the field A(t )
at particular time t j . This means we can approximate the
functional gradient δS3(T )/δA(tj ) by the partial derivative
∂S3(T )/∂A(tj ) divided by the grid spacing �t = T/(M − 1).

This partial derivative can be obtained by using the symmetric
three-point finite-difference formula [32],

∂S3(T )/∂A(tj ) = [S3(T, {Am + �δm,j )})

− S3(T, {Am − �δm,j )})]/(2�) + O(�2),

(B1)

where δm,j denotes the usual Kronecker-delta symbol (δm,j =
1 if j = m and δm,j = 0 otherwise) and � is a small variation
in Aj . We should note that this evaluation of the M compo-
nents requires, unfortunately, a significant amount of CPU
time, as for each set {Am + �δm,j )} (with j = 1, 2, . . . , M)
the differential equations (A3c) have to be solved to determine
S3(T ) from S3(t = 0). Numerically, the variational parameter
� had to be chosen sufficiently small such that the derivative
∂S3(T )/∂A(t j ) became independent of �. On the other hand,
� had to be chosen sufficiently large to avoid round-off errors
due to subtractive cancellation. We found that � in the wide
range 10−2 < � < 10−5 was more than sufficient to satisfy
both conditions.

In order to avoid any confusion, we should stress again
that our optimization problem does not require us to find
A(t ) such that δS3(T )/δA(t ) = 0. This equation would be true
only if the field was unconstrained. The goal is to find the
largest δS3(T ) only based on those fields A(t ) that satisfy the
energy constraint. For the desired optimal field, we will have
δS3(T )/δA(t ) 
= 0 in general.

2. Approximate but analytical approach
to compute δS3(T )/δA(t )

The direct brute-force approach to calculate the required
functional gradient δS3(T )/δA(t ) is computationally very in-
volved. However, we can invoke the formalism of optimal
control theory based on the auxiliary functional J ′ ≡ S3(T ) +∫

dt[λ · (B − dS/dt ). This involves significantly less compu-
tational effort, as it will require only the solution to the state
and co-state equation for a given A(t ). For these specific so-
lutions S(t ) and λ(t ), the integrand vanishes and we naturally
have J = S3(T ), such that the desired gradient δS3(T )/δA(t )
is identical to δJ ′/δA(t ). The calculation of δJ ′/δA(t ) is possi-
ble, if we assume first that the four arguments of the functional
J ′ = J ′[S3(T ),λ(t ), S(t ), A(t )] are completely independent
of each other, i.e., δS3(T )/δA = δS/δA = δλ/δA = 0, and
therefore they are general functions. Under this assumption,
the functional derivative can be determined analytically lead-
ing to δJ ′/δA(t ) = λ · ∂B/∂A, as the dependence of B on A
is given by the state equations (2.6). If we then restrict this
general expression to the special case that λ(t ), S(t ) are actual
solutions to the state and co-state equations, we naturally
obtain the final expression δS3(T )/δA(t ) = λ · ∂B/∂A. More
specifically, we obtain

δS3(T )/δA(t ) = λ1 apS2 + λ2(−apS1 + bpS3) − λ3bpS2.

(B2)

Except for the energy normalization factor λ0, this expression
is surprisingly identical to the rhs of the main control equation
(A4), which was a transcendental equation for Aopt (t ). This
means that the functional gradient δJ ′/δA, when evaluated at
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the state and co-state solutions λ(t ) and S(t ) for a particular
A(t ), takes the similar form as the optimum Aopt (t ) itself.

3. Steepest ascent and conjugate-gradient technique
based on Fletcher-Reeves

For the standard steepest ascent technique, one usually
takes the functional gradient evaluated for A(n)(t ) as the new
search direction, i.e., D(n)(t ) = ∂J/∂A. As is well known and
thoroughly discussed in the literature [33], this algorithm is
characterized [for a (noncurved) line search] by the fact that
two consecutive search directions are perpendicular to each
other. In some cases, this is problematic and can lead to a very
high number of required iterations to achieve convergence to
the optimum solution. Also, once the line search parameter κ

happens to vanish for one iteration (one particular curved-line
search direction), then the whole iteration comes to an end and
one can no longer explore other regions in the Hilbert space
of possible A(t ).

The more sophisticated conjugate-gradient scheme avoids
this problem by involving all prior search directions into
the new one. There are numerous ways in which this can
be accomplished. We have examined the Fletcher-Reeves
approach [32], where the new search direction D(n)(t ) is a
linear superposition of the prior search direction and the
direction provided by the gradient associated with A(n)(t ), i.e.,
D(n)(t ) = ∂J/∂A(n) + μ(n−1)D(n−1)(t ). Here the expansion co-
efficient can be computed from the dimensionless ratio μ(n) =∫ T

0 dt[∂J/∂A(n)]2/
∫ T

0 dt[∂J/∂A(n−1)]2. This means that any
new search direction is different and depends on all prior
search directions. It also follows that in contrast to the steepest
ascent method, if μ happens to be zero for a particular search
direction, the iteration does not necessarily come to a halt as
μ can change to a nonzero value again for later iterations.

4. Conjugate-gradient technique based on Polak-Ribiere

Very similar to the Fletcher-Reeves approach, also for
the Polak-Ribiere technique [33] is the new search direction
D(n)(t ) given by a superposition of the prior search direction
and the direction provided by the gradient associated with
A(n)(t ), i.e., D(n)(t ) = ∂J/∂A(n) + μ(n−1) D(n−1)(t ). The two
methods vary only in the particular way the weight factor
μ(n) associated with D(n)(t ) is computed. In the Polak-Ribiere
scheme, it is determined as μ(n) = ∫ T

0 dt ∂J/∂A(n)(∂J/

∂A(n) − ∂J/∂A(n−1))/
∫ T

0 dt[∂J/∂A(n−1)]2, so the gradients of
the last two iterations need to be taken into account.

APPENDIX C: THE OPTIMAL PULSE
IN THE PERTURBATIVE LIMIT

In this appendix, we will show that both solutions for A(t )
given by Eq. (3.1) extremalize the “action” J of Eq. (A1) in the
perturbative limit, i.e., they satisfy the main control given by
Eq. (A3a). In this limit, the field’s energy E (or the time T ) is
not sufficiently large to fully populate the upper level and both
the main control given by Eq. (A4) as well as the state and
co-state equations (A3c) and (A3d) can be simplified, which
permits analytical solutions.

If we approximate S3(t ) ≈ −1 in Eq. (2.6b) and as-
sume that the coefficient α(t ) ≈ ep, the state equations (2.6)
simplify to

d S1(t )/dt = −2epS2(t ), (C1a)

d S2(t )/dt = 2epS1(t ) + 2β(t ). (C1b)

The same argument applies also to the co-state equations
(A3d), which take the same form as Eq. (2.6). If we assume
that λ3(t ) ≈ 1 the co-state equations become

dλ1(t )/dt = − 2epλ2(t ), (C2a)

dλ2(t )/dt = 2epλ1(t ) − 2β(t ). (C2b)

For the particular function A(t ) = A0C cos[2ep(t − T/2)],
i.e., β(t ) = −bpA(t ), both sets of equation can be solved,
leading to

S2(t ) = −bpA0C {2ept cos[2ep(t − T/2)]

+ cos[epT ] sin[2ept]}/(2ep), (C3a)

λ2(t ) = bpA0C{4ep(t − T ) cos[2ep(t − T/2)]

+ sin[2ep(t − 3T/2)] + sin[2ep(t − T/2)]}/(4ep).

(C3b)

As both equations were driven by a force that is in res-
onance with the system, each solution contains a term that
grows linearly in time. However, if we add both solutions (as
will be required by the main control equation; see below), this
resonant term cancels out, leading to

S2(t ) + λ2(t ) = −bp[2epT + sin(2epT)]/(2ep)A0C

× cos[2ep(t − T/2)]. (C4)

In the same perturbative spirit, also the main control equa-
tion (A3a), A = (2λ0)−1∂H/∂A, can be simplified under the
same assumptions, leading to

A = (2λ0)−1[λ1∂B1/∂A + λ2∂B2/∂A + λ3∂B3/∂A]

≈ (2λ0)−1[−2λ2bp − 2 bpS2]

= −bpλ0
−1[S2(t ) + λ2(t )]. (C5)

If we insert the expression for S2(t ) + λ2(t ) into the rhs and
choose the Lagrange parameter λ0 such that the prefactor
bpλ0

−1 bp[2epT + sin(2epT )]/(2ep) = 1, then the right-hand
side of (C5) is equal to A0Ccos[2ep(t − T/2)]. This proves
that this particular field A(t ) solves the main control equation
exactly, which is a necessary condition to extremalize the
objective function J . The same sequence of arguments can
be applied to prove that Aopt (t ) = A0S sin[2ep(t − T/2)] also
extremalizes J .

As a next step, we can even find an analytical expression
for the largest possible density N (p, T ). If we insert the par-
ticular solutions into Eq. (2.6c), i.e., d S3(t )/dt = 2β(t )S2(t ),
then we can obtain the solution

S3(t ) = [bpA0C/(4ep)]2
{(

1 + 8ep
2 t2

) − cos(4ept )

+ 8 ep t cos[2ep(t − T )] sin(2ept )]
} − 1, (C6)

which for t = T takes a remarkable simple form. We finally
obtain for N (p, T ) = [1 + S3(T )]/2,

N (p, T ) = [bpA0C/(4ep)]2[4epT + sin(2epT)]2. (C7)
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This is the absolute maximum final number of positrons
with momentum p. It is generated by the optimum field
A(t ) = A0C cos[2ep(t − T/2)]. The same analysis for the
case, where A(t ) = A0S sin[2ep(t − T/2)] is the optimum
field, leads to

N (p, T ) = [bpA0S/(4ep)]2[4epT − sin(2epT )]2. (C8)

Both analytical expressions are graphed in Fig. 1.
As a side issue, we should point out that the structure of

the solution (C4) is not so unexpected. In fact, it is valid for
any functional form of A(t ). If we add Eqs. (C1b) and (C2b),
the external force β(t ) cancels out and we we obtain d (S2 +
λ2)/dt = 2ep(S1 + λ1). Similarly, adding Eqs. (C1a) and
(C2a) gives us d (S1 + λ1)/dt = −2ep(S2 + λ2). When we
combine them, we see that the resulting equation for (S2 + λ2)
follows that of a simple harmonic oscillator motion, d2(S2 +
λ2)/dt2 = −4ep

2 (S2 + λ2). However, the “initial” and
“final” conditions for this equation are mixed [S2(t = 0) = 0
and λ2(t = T ) = 1] and therefore S2(t ) + λ2(t ) depends
nontrivially on the specific form of the original external
field A(t ).

APPENDIX D

In this appendix, we summarize the cumbersome analyt-
ical expressions for the discussion of Sec. IV. If we insert
the expressions for c0 and c1 [Eqs. (4.7)] into the energy
constraint given by Eq. (4.3), we obtain for the two solu-
tions of the resulting quadratic equation λ1,2 = �1,2(c2, c3) =
−4c3(c3 z1 ± δ1z2

1/2)/z3, where

z1 ≡ δ3 T − 2 δ1 sin(epT ), (D1)

z2 ≡ 2 c3
2 + E T − 2

(
c2

2 + c3
2
)

ep
2 T 2 − 2 c3

2cos(2epT )

+ (
c2

2 − c3
2
)

epT sin(2epT ), (D2)

z3 ≡ δ1
2
[−E + 2

(
c2

2 + c3
2
)

ep
2 T

] + c3
2 T δ3

2

+ δ1
[−4 c3

2 δ3 sin
(
ep T

)]+(
c3

2−c2
2
)

ep δ1 sin(2epT ).

(D3)

If we insert the solution S2(t ) obtained for the
parametrized field A(t ) = A(t ; c0, c1, c2, c3) into Eq. (2.6c),
i.e., d S3(t )/dt = 2β(t )S2(t ), then we can solve for S3(T ).
When this solution is evaluated at the final time T , it is given
by the form

S3(p, T ; c0, c1, c2, c3)

= (
16ep

6
)−1

[w0 + w1cos(epT )

+w2cos(2epT ) + w3cos(3epT ) + w4cos(4epT )

+w5sin(epT ) + w6sin(2epT ) + w7 sin(3epT )], (D4)

with the eight coefficients

w0 ≡ −16 ep
6 + c4

{
4 c1

2
(
1 + ep

2 T 2
) + ep

2
[
16 c0

2

+ (
c2

2 + c3
2)(1 + 8 ep

2 T2)]}, (D5)

w1 ≡ −4 epc4
[−2c0c2ep + c1c3

(
1 + 4ep

2 T 2
)]

, (D6)

w2 ≡ 4 c4
[−4c0

2ep
2 + c1

2
(−1 + ep

2 T 2
)]

, (D7)

w3 ≡ 4 c4ep(c1c3 − 2 c0c2ep), (D8)

w4 ≡ −c4ep
2
(
c2

2 + c3
2
)
, (D9)

w5 ≡ 4 c4 ep
2 T (5 c1 c3 + 8 c0c2ep), (D10)

w6 ≡ −8 c4 ep T
[
c1

2 + (
c3

2 − c2
2)ep

2], (D11)

w7 ≡ 4 c4ep
2 T c1 c3. (D12)
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