
PHYSICAL REVIEW A 99, 022126 (2019)

Minimum-uncertainty states and completeness of non-negative quasiprobability of
finite-dimensional quantum systems

T. Hashimoto, A. Hayashi, and M. Horibe
Department of Applied Physics, University of Fukui, Fukui 910-8507, Japan

(Received 15 January 2019; published 25 February 2019)

We construct minimum-uncertainty states and a non-negative quasiprobability distribution for quantum
systems on a finite-dimensional space. We reexamine the theorem of Massar and Spindel for the uncertainty
relation of the two unitary operators related by the discrete Fourier transformation. It is shown that some
assumptions in their proof can be justified by the use of the Perron-Frobenius theorem. The minimum-uncertainty
states are the ones that saturate this uncertainty inequality. The continuum limit is closely analyzed by
introducing a scale factor in the limiting scheme. Using the minimum-uncertainty states, we construct a
non-negative quasiprobability distribution. Its marginal distributions are smeared out. However, we show that
this quasiprobability is optimal in the sense that there does not exist a non-negative quasiprobability distribution
with sharper marginal properties if the translational covariance in the phase space is assumed. Generally, it is
desirable that the quasiprobability is complete, i.e., it contains full information of the state. We show that the
obtained quasiprobability is indeed complete if the dimension of the state space is odd, whereas it is not if the
dimension is even.
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I. INTRODUCTION

The uncertainty principle [1] is arguably one of the most
fundamental features that differentiate quantum mechanics
from classical mechanics. It states that the product of un-
certainties in complementary physical observables (e.g., po-
sition and momentum) has an inherent finite lower bound,
and it has a profound influence on our view of the physical
world. Because of the uncertainty principle, the dynamics of
a quantum system is qualitatively different from a classical
one; for example, an atom would collapse without this prin-
ciple. Furthermore, recent studies show that the uncertainty
principle also plays an important role in a variety of types of
quantum information processings [2]. For example, quantum
cryptography [3], one of the most remarkable applications
of quantum information, exploits the uncertainty principle
together with the no-cloning theorem [4] to ensure its provable
security.

The uncertainty relation of the position and momentum
in the continuous quantum mechanics is expressed by an
inequality involving the standard deviations of their distri-
butions [5]; that is, �x�p � 1/2. The states that attain the
minimum are called minimum-uncertainty states, and they
are given by the coherent states. The coherent states, the
eigenstates of the annihilation operator, have interesting prop-
erties and useful applications in various fields of physics (see,
e.g., Ref. [6]). Using the coherent states, one can define a
quasiprobability distribution for the position and momentum
variables, which is called the Husimi function (Q-distribution)
[7]. The Husimi function is always non-negative, in contrast
to the Wigner function [8], which is another quasidistribution
function and may take negative values except for the case of
Gaussian wave functions [9].

In this paper, we study analogous minimum-uncertainty
states and a non-negative quasiprobability distribution for

finite-dimensional quantum systems (qudits). To define the
position and momentum coordinates, we take two bases re-
lated by the discrete Fourier transformation. The modulus of
the expectation value of the position (momentum) translation
operator is suitable for quantifying the uncertainty of the posi-
tion (momentum) distribution [10–12]. For other approaches
using the Jacobi θ function to construct analogous minimum-
uncertainty states for a qudit, see, e.g., [13–15].

Massar and Spindel derived an inequality for the expecta-
tion values of the above two translation operators (Theorem 2
in [12]). They also discussed the minimum-uncertainty states
saturating their inequality (Theorem 3 in [12]), which involves
two assumptions for the greatest eigenvalue and the associated
eigenvector of the Harper operator. We will show that these
two assumptions can be justified using the Perron-Frobenius
theorem (see, e.g., [16]), and we provide a detailed proof of a
theorem combining those of Massar and Spindel (Sec. II B).

We call the states saturating this inequality minimum un-
certainty states, which comprise an overcomplete set in the
state space. In Sec. III, we will give a close analysis to show
that these minimum-uncertainty states approach the coherent
states as the dimension of the state space goes to infinity.

In the same way as in continuous quantum mechanics,
we define a quasiprobability distribution of a qudit using
the minimum-uncertainty states (Sec. IV). This is a finite-
dimensional version of the Husimi function, and non-negative
at the cost of the smeared-out marginal distributions. We show
that the obtained quasiprobability distribution is optimal in the
sense that there exists no non-negative quasiprobability dis-
tribution with sharper marginal properties if the translational
covariance is assumed.

In continuous quantum mechanics the Husimi function is
complete, i.e., it contains full information of the state. This
is one of the desirable properties of quasiprobabilities of
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quantum systems. For finite-dimensional quantum systems,
however, we find that the obtained quasiprobability is indeed
complete if the dimension of the state space is odd, whereas it
is not if the dimension is even (Sec. V).

II. MINIMUM-UNCERTAINTY STATES OF A
FINITE-DIMENSIONAL QUANTUM SYSTEM

A. Position and momentum uncertainty of a qudit

We consider a qudit, a quantum system described by a d-
dimensional complex linear space Cd . An orthonormal basis
{|a〉}d−1

a=0 is fixed to define the “position” coordinate a. We
introduce another orthonormal basis, which is the discrete
Fourier transform defined by

|b̃〉 = 1√
d

d−1∑
a=0

ωba |a〉 , b = 0, 1, . . . , . . . , d − 1, (1)

where ω = e2π i/d is a primitive dth root of unity. The index b
is interpreted as the “momentum” coordinate. These two bases
are unbiased in the sense that | 〈a|b̃〉 | = 1/

√
d for all a and

b, and they are expected to approach the continuous position
and momentum bases as the dimension d goes to infinity. As
a feature of the discrete Fourier transform, the position and
momentum coordinates, a and b, cannot simultaneously have
sharp values.

To quantify the uncertainty with respect to these two bases,
we employ two unitary operators Q and P. The operator Q is
given by

Q =
d−1∑
a=0

ωa |a〉 〈a| , (2)

which is diagonal in the position basis {|a〉}. In the momentum
basis {|b̃〉}, the operator Q translationally shifts the momen-
tum coordinate as Q |b̃〉 = |˜b + 1〉. Here, it is assumed that
if b + 1 = d , then |˜b + 1〉 is equal to |0̃〉. Throughout this
paper, we employ this periodic convention for the position and
momentum coordinates; namely, we assume that

|a + d〉 = |a〉 , | ˜b + d〉 = |b̃〉 (3)

for any integers a and b. Another operator P is defined by

P =
d−1∑
b=0

ω−b |b̃〉 〈b̃| , (4)

which is diagonal in the momentum basis, and in the position
basis it acts as the translational operator; P |a〉 = |a + 1〉. It is
readily shown that P and Q satisfy the following relations:

Qd = Pd = 1, QP = ωPQ. (5)

The relation QP = ωPQ can be regarded as the counterpart of
the canonical commutation relation of the continuous position
and momentum operators.

For a general state |φ〉, we write

|φ〉 =
d−1∑
a=0

ca |a〉 =
d−1∑
b=0

c̃b |b̃〉 , (6)

FIG. 1. The dth roots of unity in the complex plane and the
expectation value 〈φ|Q|φ〉 represented by a point in the regular
d-sided polygon formed by these roots. This figure displays the case
of d = 6.

where ca and c̃b are expansion coefficients in the position and
momentum basis, respectively. Then the expectation values of
Q and P for the state |φ〉 take the following form:

〈φ|Q|φ〉 =
d−1∑
a=0

|ca|2ωa =
d−1∑
b=0

c̃∗
b+1c̃b, (7)

〈φ|P|φ〉 =
d−1∑
a=0

c∗
a+1ca =

d−1∑
b=0

|c̃b|2ω−b. (8)

Now let us examine the expectation value 〈φ|Q|φ〉 ex-
pressed in terms of ca. This is an average of roots of unity
ωa with weights given by |ca|2. In the complex plane, the
points {ωa}d−1

a=0 are at the vertices of a regular d-sided poly-
gon inscribed in the unit circle, and the expectation value
〈φ|Q|φ〉 is somewhere in this polygon (see Fig. 1). If the
position coordinate has a sharp value, say a0, 〈φ|Q|φ〉 is at
the vertex ωa0 . In this case, and only in this case, | 〈φ|Q|φ〉 |
is equal to 1, otherwise we generally have | 〈φ|Q|φ〉 | < 1. In
contrast, if the weight is equally distributed as |ca|2 = 1/d ,
〈φ|Q|φ〉 is at the origin; that is, | 〈φ|Q|φ〉 | = 0. Thus the
quantity | 〈φ|Q|φ〉 | is a measure of quantifying how sharply
the position coordinate is distributed. In the same way, the
quantity | 〈φ|P|φ〉 | measures the sharpness of the distribution
of momentum coordinate. However, the quantities | 〈φ|Q|φ〉 |
and | 〈φ|P|φ〉 | cannot simultaneously have their maximum
value 1. For example, take the case of | 〈φ|Q|φ〉 | = 1, which
occurs only when |ca| is nonzero for a certain single value of
a. In this case, however, | 〈φ|P|φ〉 | must be 0, as its expression
in terms of ca clearly shows.
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Motivated by these considerations, we define the certainty
C of a state |φ〉 to be

C(|φ〉) = | 〈φ|Q|φ〉 〈φ|P|φ〉 | (9)

to quantify the mutual uncertainty with respect to the position
and momentum coordinates. Note that a larger C means less
uncertainty as the name “certainty” indicates.

B. Minimum-uncertainty states

In the preceding section, we have seen that the certainty
C(|φ〉) in Eq. (9) serves as a measure of certainty of position
and momentum for a qudit state |φ〉. In this section, we study
the maximum value of the certainty and the states attaining the
maximum certainty: the states with the minimum uncertainty.

Let us first examine the case of a qubit, d = 2. In the two-
dimensional case, the operators Q and P are given by the Pauli
matrices,

Q = |0〉 〈0| − |1〉 〈1| = σz,

P = |0〉 〈1| + |1〉 〈0| = σx.

The states are conveniently expressed by the Bloch vector
representation,

|n〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 , (10)

where n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is the Bloch vector.
For the certainty C of the state |n〉, we obtain

C(n) = | 〈n|σz|n〉 〈n|σx|n〉 | = |nznx|. (11)

The upper bound of C(n) is readily determined by using the
following inequalities:

|nznx| �
n2

x + n2
z

2
� 1

2
. (12)

Thus the maximum value of the certainty C is 1/2, and the
maximum is attained by the following four Bloch vectors:

n(α,β ) = 1√
2

((−1)α, 0, (−1)β ) (α, β = 0, 1). (13)

The state with n(0,0) is denoted by |�〉, and it takes the
following explicit form:

|�〉 ≡ cos
π

8
|0〉 + sin

π

8
|1〉

=
√

2 + √
2

2
|0〉 +

√
2 − √

2

2
|1〉 . (14)

It should be noticed that the four states attaining the maximum
C can be expressed as

|α, β〉 ≡ σα
x σβ

z |�〉 (α, β = 0, 1). (15)

Now we generalize these results to arbitrary-dimensional
cases, and we establish the following theorem:

Theorem: For any normalized state |φ〉:
(i) The certainty C is bounded by the inequality,

C(|φ〉) ≡ | 〈φ|Q|φ〉 〈φ|P|φ〉 | � h2, (16)

where h is the greatest eigenvalue of Harper operator H
given by

H ≡ (P + P† + Q + Q†)/4. (17)

(ii) Equality in (16) holds if and only if

|φ〉 = PαQβ |�〉 (up to a global phase), (18)

where |�〉 is the nondegenerate eigenstate of H with the
greatest eigenvalue h, and α and β are integers (α, β =
0, 1, . . . , d − 1). The states |α, β〉 ≡ PαQβ |�〉 are called the
minimum-uncertainty states.

Statement (i) is essentially a special case (θ = π/4) of
Theorem 2 shown by Massar and Spindel in [12]. For later
convenience, we give its proof below. Statement (ii) corre-
sponds to theorem 3 in [12], which was proved by assuming
that the greatest eigenvalue h of H is nondegenerate and
the associated eigenstate satisfies 〈a|�〉 �= 0. We will show
that these two assumptions can be justified using the Perron-
Frobenius theorem, which will also be powerful when we
later discuss the completeness of the quasiprobability. For an
analysis of the eigenstructure of the Harper operator in terms
of the crossing number, see [17].

1. Proof of statement (i) in the theorem

To prove statement (i) in the theorem, we start with an
inequality,√| 〈φ|Q|φ〉 〈φ|P|φ〉 | � 1

2 (| 〈φ|Q|φ〉 | + | 〈φ|P|φ〉 |), (19)

where the equality holds if and only if | 〈φ|Q|φ〉 | =
| 〈φ|P|φ〉 |.

We write a given state |φ〉 in the basis {|a〉} as

|φ〉 =
d−1∑
a=0

ca |a〉 . (20)

Replacing expansion coefficients ca by their moduli |ca|, we
introduce a new state |φ′〉 as

|φ′〉 =
d−1∑
a=0

|ca| |a〉 =
d−1∑
b=0

c̃′
b |b̃〉 , (21)

where expansion coefficients of |φ′〉 in the basis {|b̃〉} are de-
noted by c̃′

b. We further define another state |φ′′〉 by replacing
c̃′

b by |c̃′
b|, that is,

|φ′′〉 =
d−1∑
b=0

|c̃′
b| |b̃〉 . (22)

Using Eqs. (7) and (8), we can readily show that the following
relations hold:

〈φ′|P|φ′〉 � | 〈φ|P|φ〉 |, (23a)

〈φ′|Q|φ′〉 = 〈φ|Q|φ〉 (23b)

and

〈φ′′|P|φ′′〉 = 〈φ′|P|φ′〉 , (24a)

〈φ′′|Q|φ′′〉 � | 〈φ′|Q|φ′〉 |. (24b)
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Note that 〈φ′′|P|φ′′〉 and 〈φ′′|Q|φ′′〉 are real, and therefore
〈φ′′|P|φ′′〉 = 〈φ′′|P†|φ′′〉 and 〈φ′′|Q|φ′′〉 = 〈φ′′|Q†|φ′′〉. Thus
we have

| 〈φ|Q|φ〉 | + | 〈φ|P|φ〉 |
2

� 〈φ′′| P + P† + Q + Q†

4
|φ′′〉 .

(25)

The right-hand side is clearly less than or equal to h, the
greatest eigenvalue of H ,

〈φ′′| P + P† + Q + Q†

4
|φ′′〉 � h. (26)

Combining this result and inequality (19), we obtain
inequality (16).

2. Eigenstate of H with the greatest eigenvalue

Before proving statement (ii) of the theorem, we study the
properties of the eigenstate of H with the greatest eigenvalue
h. Some of them will be needed in the proof of statement (ii).
We will show the following:

(a) The greatest eigenvalue h is positive and not degenerate.
The phase of corresponding eigenstate |�〉 can be chosen such
that 〈a|�〉 is real and strictly positive for all a.

(b) The eigenstate |�〉 is invariant under the Fourier trans-
formation; F |�〉 = |�〉, where F is the Fourier transform
operator defined by

F =
d−1∑
a=0

|ã〉 〈a| , (27)

and hence 〈a|�〉 = 〈ã|�〉 = 〈−a|�〉.
(c) The following relations hold:

h = 〈�|Q|�〉 = 〈�|Q†|�〉
= 〈�|P|�〉 = 〈�|P†|�〉 . (28)

To show that the above statement (a) holds, some known
properties of elementwise positive matrices will be employed.
Here, we treat operators in the matrix representation based
on the basis {|a〉}d−1

a=0 . We introduce a real symmetric matrix
Hκ ≡ H + κ1 with κ a real number. The off-diagonal part
of Hκ is given by (P + P†)/4, all of whose elements are
non-negative. The diagonal part, (Q + Q†)/4 + κ1, is denoted
D, and all of its diagonal elements are strictly positive for a
sufficiently large κ . Now consider Hd−1

κ and expand it in terms
of P, P†, and D. For any i � j, there is a term of the form
(P†/4) j−iDd−1− j+i that has a strictly positive (i, j) entry while
other terms are elementwise non-negative. For the ( j, i) entry,
a similar argument can be applied. Thus the matrix Hd−1

κ is
elementwise strictly positive.

Now recall that, according to the Perron-Frobenius theo-
rem, the eigenvalue of the largest modulus of an elementwise
strictly positive matrix is real and nondegenerate, and the as-
sociated eigenvector can be chosen to have strictly positive
components (see, e.g., [16]). The eigenvalues of Hd−1

κ are
clearly given by (κ + λi )d−1, with λi being real eigenvalues
of H . Thus we conclude that the greatest eigenvalue of H is
not degenerate and the associated eigenstate |�〉 can be chosen
so that 〈a|�〉 > 0 for all a.

To show that h > 0, note that the trace of H is 0. In the
case of d > 1, this is possible only when h > 0 since h is
the unique greatest eigenvalue. When d = 1, it is evident that
h = 1.

Now we show that F |�〉 = |�〉. It is easy to show that
FQF † = P† and FPF † = Q, and hence H commutes with F .
This implies that |�〉 is an eigenstate of F since the greatest
eigenvalue h is not degenerate. The possible eigenvalues of F
are 1, −1, i, and −i. This is because F 2 = T , where T is the
reflection operator given by

T =
d−1∑
a=0

|−a〉 〈a| , (29)

and T satisfies T 2 = 1. Assume that F |�〉 = f |�〉 with f
being 1, −1, i, or −i. This is explicitly written as

d−1∑
a′=0

〈a|F |a′〉 〈a′|�〉 = f 〈a|�〉 , (30)

where 〈a|F |a′〉 = ωaa′
/
√

d . Setting a = 0, we observe

1√
d

d−1∑
a′=0

〈a′|�〉 = f 〈0|�〉 . (31)

This requires that f = 1 since 〈a|�〉 > 0 for all a. From
F |�〉 = |�〉, it immediately follows that 〈a|�〉 = 〈ã|�〉 =
〈−a|�〉.

Further, the invariance F |�〉 = |�〉 implies
〈�|Q|�〉 = 〈�|F †QF |�〉 = 〈�|P|�〉 . (32)

Since 〈a|�〉 and 〈b̃|�〉 are real, 〈�|P|�〉 and 〈�|Q|�〉 are
also real. We therefore find

〈�|Q|�〉 = 〈�|Q†|�〉 = 〈�|P|�〉 = 〈�|P†|�〉 , (33)

which shows that each one is equal to h. Thus we obtain
Eq. (28).

Explicit analytical solutions of h and |�〉 in general dimen-
sions have not been obtained, but some of the results in the
low-dimensional cases are collected in [18].

3. Proof of statement (ii) in the theorem

“If part” is evident. When |φ〉 = PαQβ |�〉, we find that

| 〈φ|P|φ〉 | = | 〈�|P|�〉 | = h, (34)

| 〈φ|Q|φ〉 | = | 〈�|Q|�〉 | = h, (35)

which shows that |φ〉 satisfies the equality in (16).
Proving “only if part” is rather involved. Suppose that |φ〉

satisfies the equality in (16). In the same way as in the proof
of statement (i), we define |φ′〉 and |φ′′〉 as follows:

|φ〉 =
d−1∑
a=0

ca |a〉 , (36)

|φ′〉 =
d−1∑
a=0

|ca| |a〉 =
d−1∑
b=0

c̃′
b |b̃〉 , (37)

|φ′′〉 =
d−1∑
b=0

|c̃′
b| |b̃〉 . (38)
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This time the equality should hold in all inequalities in the
proof of statement (i).

First we note that the equality in (26) is satisfied only if
|φ′′〉 = |�〉 up to a global phase since the greatest eigenvalue
h is not degenerate.

Second we examine the equality in (24b), 〈φ′′|Q|φ′′〉 =
| 〈φ′|Q|φ′〉 |. This is explicitly written as

d−1∑
b=0

|c̃′
b+1||c̃′

b| =
∣∣∣∣∣

d−1∑
b=0

c̃
′∗
b+1c̃′

b

∣∣∣∣∣, (39)

which implies that all terms on the right-hand side must have
the same phase factor, that is, c̃

′∗
b+1c̃′

b = |c̃′
b+1c̃′

b|u, with u being
a complex number of unit modulus. This relation can be
rewritten as

c̃′
b

|c̃′
b|

= u
c̃′

b+1

|c̃′
b+1|

(b = 0, 1, . . . , d − 1). (40)

Note that |c̃′
b| > 0 for all b since |φ′′〉 = |�〉, and the above

relation is well-defined. Using this relation successively, we
obtain

c̃′
b

|c̃′
b|

= u−b c̃′
0

|c̃′
0|

. (41)

Setting b = d and remembering c̃′
d = c̃′

0 by our convention,
we find that the phase factor u must be a dth root of unity,
ωα with some integer α. Thus the b dependence of the phase
of c̃′

b is given by ω−αb, from which we conclude that |φ′〉 =
Pα |φ′′〉 = Pα |�〉 up to a global phase.

Let us now turn to the equality in (23a), 〈φ′|P|φ′〉 =
| 〈φ|P|φ〉 |, which is explicitly written as

d−1∑
a=0

|ca+1||ca| =
∣∣∣∣∣

d−1∑
a=0

c∗
a+1ca

∣∣∣∣∣. (42)

Since |φ′〉 = Pα |�〉, we have |ca| > 0 for all a. We can repeat
a similar argument to the preceding one, and we find that |φ〉 is
given by Qβ |φ′〉 with some integer β. Combining this and the
previous result, |φ′〉 = Pα |�〉, we finally conclude that |φ〉 =
PαQβ |�〉 up to a global phase.

It should be noted that we used the fact that 〈a|�〉 �= 0 and
〈b̃|�〉 �= 0 for all a and b in the above argumentation.

4. Parameter θ in the theorem of Massar and Spindel

Theorems 2 and 3 in [12] involve a parameter θ ∈ [0, π/2].
They state that for any |φ〉 the following inequality holds:

cos θ | 〈φ|Q|φ〉 | + sin θ | 〈φ|P|φ〉 | � hθ , (43)

where hθ is the greatest eigenvalue of the Hermitian operator

Hθ = cos θ
P + P†

2
+ sin θ

Q + Q†

2
, (44)

and the equality in Eq. (43) holds if and only if

|φ〉 = PαQβ |�θ 〉 (up to a global phase), (45)

where |�θ 〉 is the nondegenerate eigenstate of Hθ with the
eigenvalue hθ . In this paper, we have concentrated on the
case θ = π/4. It is, however, clear that the two assumptions
in the proof of “only if part” can be justified as in the case
θ = π/4. This is because, except for the trivial cases θ = 0 or

θ = π/2, the matrix (Hθ + κ1)d−1 can be shown elementwise
to be strictly positive, and therefore hθ is nondegenerate,
〈a|�θ 〉 �= 0, and 〈b̃|�θ 〉 �= 0.

III. CONTINUUM LIMIT

In the continuous quantum mechanics, the minimum-
uncertainty states are given by coherent states, which are
eigenstates of the annihilation operator, and by translationally
shifting the ground state of a harmonic oscillator in the phase
space. The minimum-uncertainty state |�〉 is expected to
approach a coherent state as the dimension d goes to infinity
(see, e.g., [12,17]). The coherent states, however, may have
any width, and they are all minimum-uncertainty states in
continuous quantum mechanics. In this section, introducing
a scale factor in the limiting scheme, we show how the single
state |�〉 approaches coherent states with different widths.

We start by writing the eigenequation H |φ〉 = λ |φ〉 in the
position basis {|a〉},

1

4

[
ca+1 + ca−1 + 2 cos

(
2π

d
a

)
ca

]
= λca, (46)

where ca = 〈a|φ〉. Dickinson and Steiglitz [19] realized that
Eq. (46) is a discrete version of the Mathieu equation by
identifying ca+1 − 2ca + ca−1 with the central second differ-
ence. To extend this idea further, we consider the following
limit: By introducing the lattice constant ε, we define the
system size L = εd . The system size L and the dimension d
go to infinity, and the lattice constant ε goes to zero, while
σ ≡ √

εL/(2π ) is fixed. It is this σ that determines the scale
of length. The factor 2π in the definition of σ is just for later
convenience. The position variable x is defined by x = aε.
Here the range of the discrete position index a is taken to
be 
−(d − 1)/2� � a � 
(d − 1)/2�, where the symbol 
·�
means the floor function. This ensures that, in the large-d
limit, x becomes a continuous variable ranging from −∞ to
+∞. Note that in this scheme we have

O(ε2) = O(1/L2) = O(1/d ). (47)

Now we rewrite Eq. (46) as

−1

2

δ2ca

ε2
+ 2

ε2
sin2

(
π

d
a

)
ca = 2

ε2
(1 − λ)ca, (48)

where δ2 is the central second difference given by

δ2ca = ca+1 − 2ca + ca−1. (49)

By introducing the wave function φ(x) = ca
√

ε, we observe

δ2ca

ε2

√
ε = φ′′(x) + O

(
1

d

)
(50)

and

2

ε2
sin2

(
π

d
a

)
= x2

2σ 4
+ O

(
1

d

)
. (51)

Thus, in the leading order, Eq. (48) takes the form

−1

2
φ′′(x) + x2

2σ 4
φ(x) = 2

ε2
(1 − λ)φ(x), (52)
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FIG. 2. The greatest eigenvalue h of the operator H vs dimen-
sion d . The circles represent the exact values calculated by diago-
nalizing H analytically or numerically. The values of the asymptotic
formula Eq. (54) are plotted by triangles.

which is the Schrödinger equation of the harmonic oscillator
with the angular frequency given by 1/σ 2. The eigenenergy
of this harmonic oscillator is given by (n + 1/2)/σ 2, where
n = 0, 1, . . . . We thus find

λ = 1 −
(

n + 1

2

)
π

d
, (53)

from which we obtain the asymptotic expression of the great-
est eigenvalue h to be

h = 1 − π

2d
(as d → ∞). (54)

The corresponding ground-state wave function is given by a
Gaussian function

φ(x) ∝ exp

(
− x2

2σ 2

)
= exp

(
− π

d
a2

)
. (55)

Thus the asymptotic form of the minimum-uncertainty state
|�〉 is given by

〈a|�〉 = N exp

(
− π

d
a2

)
(as d → ∞), (56)

where [−(d − 1)/2] � a � [(d − 1)/2], and N is a normal-
ization constant.

In Fig. 2, we compare the exact values of h with those ob-
tained by the asymptotic formula Eq. (54). This shows that the
asymptotic form is already a rather good approximation for
relatively low dimensions. The components of the minimum-
uncertainty state 〈a|�〉, the values by numerical calculation
and by the asymptotic form Eq. (56), are plotted in Fig. 3. We
see that the asymptotic form provides an unexpectedly good
approximation even for the d = 5 case.

We briefly sketch how the inequality (16) of the certainty
C(φ) is reduced to the usual uncertainty relation of the po-
sition and momentum variables in the continuum limit. First
we analyze the expectation value 〈φ|Q|φ〉. In the continuum
limit, the summation over a becomes an integral over x,
and the exponential function exp(i 2π

d a) = exp(i 2π
L x) can be

0−4 −2 2 4−3 −1 1 3
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FIG. 3. The components of the minimum-uncertainty state |�〉.
The components in the position basis {|a〉 , −(d − 1)/2 � a � (d −
1)/2} are plotted vs a for the d = 5 and 9 cases. The circles are the
values obtained by numerical calculations. The triangles represent
the values by the asymptotic form of Eq. (56). The normalization
constants N are determined numerically.

expanded. Thus we have

〈φ|Q|φ〉 =
∑

a

ei 2π
d a|ca|2

= 1 + i
2π

L
〈x̂〉 − 1

2

(
2π

L

)2

〈x̂2〉 + O

(
1

d3/2

)
,

(57)

where

〈x̂〉 =
∫

dx φ∗(x)xφ(x),

〈x̂2〉 =
∫

dx φ∗(x)x2φ(x).

The modulus of 〈φ|Q|φ〉 then takes the form

| 〈φ|Q|φ〉 | = 1 − π

σ 2d
(�x)2 + O

(
1

d3/2

)
, (58)

in terms of the standard deviation of position coordinate
defined by �x =

√
〈x̂2〉 − 〈x̂〉2. Similarly, | 〈φ|P|φ〉 | is ex-

pressed as

| 〈φ|P|φ〉 | = 1 − πσ 2

d
(�p)2 + O

(
1

d3/2

)
, (59)

where �p is the usual standard deviation of momentum
coordinate. Meanwhile, the asymptotic form of h has already
been obtained in Eq. (54). Combining all these results, we find
that the inequality (16) of the certainty C(φ) is reduced to

1

σ 2
(�x)2 + σ 2(�p)2 � 1 (60)

in the leading order of 1/d .
It is evident that, for a given wave function φ(x), the

scale factor σ is arbitrary, since σ is a sort of artifact in the
procedure of the continuum-limit scheme. The left-hand side
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of the above inequality (60) takes the minimum value 2�x�p
when σ = √

�x/�p. Thus we arrive at the usual uncertainty
relation of the position and momentum variables,

�x�p � 1
2 . (61)

IV. NON-NEGATIVE QUASIPROBABILITY AND ITS
OPTIMALITY

The minimum-uncertainty states are defined as

|α, β〉 = PαQβ |�〉 (α, β = 0, 1, . . . , d − 1). (62)

The position and momentum distributions of |α, β〉 are
given by

| 〈a|α, β〉 |2 = �2
a−α, (63)

| 〈b̃|α, β〉 |2 = �2
b−β. (64)

Note that �a ≡ 〈a|�〉 has a peak at a = 0, which can be seen
from the analytical results in the low-dimensional cases and
the numerical results for higher dimensions. Therefore, the
position and momentum distribution of |α, β〉 have a peak at
a = α and b = β, respectively.

The d2 minimum-uncertainty states |α, β〉 are not mutually
orthogonal, but they comprise an overcomplete set in the state
vector space Cd . The completeness relation of |α, β〉 takes
the form

1

d

d−1∑
α,β=0

|α, β〉 〈α, β| = 1. (65)

To derive this completeness relation, we employ the following
useful identity, which holds for any operator �:

d−1∑
α,β=0

ωαb−βaPαQβ�Q−βP−α = dtr[Q−bP−a�]PaQb, (66)

or equivalently,

PαQβ�Q−βP−α = 1

d

d−1∑
a,b=0

ω−αb+βatr[Q−bP−a�]PaQb.

(67)

This identity can be obtained by using the commutation
relation QP = ωPQ together with the mutual orthogonality
and completeness of the set of operators {PαQβ}d−1

α,β=0 in
the operator space. Setting a = b = 0 and � = |�〉 〈�| in
the above identity (66), we obtain the completeness of the
minimum-uncertainty states (65).

Based on these observations, it is reasonable to define the
quasiprobability distribution D(α, β ) for a given state ρ with
respect to the position and momentum coordinates α and β as
follows:

D(α, β ) ≡ 1

d
〈α, β|ρ|α, β〉 = tr[ρ�(α, β )], (68)

where we introduced the phase point operator �(α, β )
given by

�(α, β ) = 1

d
|α, β〉 〈α, β| . (69)

Note that D(α, β ) is non-negative and normalized to unity
when summed over all phase-space points (α, β ). However,
the states |α, β〉 are not mutually orthogonal, and therefore
distinct phase-space points (α, β ) are not regarded as ex-
clusive events. This is the reason why we call D(α, β ) a
quasiprobability distribution.

The phase point operator �(α, β ) satisfies the following
relations if summed over α or β:

d−1∑
β=0

�(α, β ) =
d−1∑
a=0

�2
a−α |a〉 〈a| , (70)

d−1∑
α=0

�(α, β ) =
d−1∑
b=0

�2
b−β |b̃〉 〈b̃| . (71)

The first equation (70) can be obtained by summing over β

in Eq. (67) with � = |�〉 〈�|. Similarly, the second equation
(71) also follows from Eq. (67). These relations (70) and (71)
imply that the quasiprobability distribution D(α, β ) has the
following marginal distributions:

d−1∑
β=0

D(α, β ) =
d−1∑
a=0

�2
a−α 〈a|ρ|a〉 , (72)

d−1∑
α=0

D(α, β ) =
d−1∑
b=0

�2
b−β 〈b̃|ρ|b̃〉 . (73)

We find that the marginal distributions are smeared out in
the sense that D(α, β ) summed over β, for example, gives
the weighted average of 〈a|ρ|a〉 with the weight centered at
a = α.

It is evident that the phase point operator �(α, β ) respects
the translational covariance,

PaQb�(α, β )Q−bP−a = �(α + a, β + b), (74)

which implies that if D(α, β ) are the quasiprobabilities of a
state ρ, then the quasiprobabilities of ρ ′ = PaQbρQ−bP−a are
given by D(α − a, β − b). The phase point operator is also co-
variant under the Fourier transformation, i.e., F�(α, β )F † =
�(−β, α), but not covariant under the more general symplec-
tic transformation considered in [20–22].

For the odd-dimensional system, the Wigner function
of Wootters [23] and Cohendet et al. [24] is defined as
DW (α, β ) = tr[ρ�W (α, β )] with the phase point operator
given by

�W(α, β ) = 1

d
PαQβT Q−βP−α. (75)

This Wigner function has sharp marginal distributions since

d−1∑
β=0

�W (α, β ) = |α〉 〈α| , (76)

d−1∑
α=0

�W (α, β ) = |β̃〉 〈β̃| . (77)

However, the Wigner functions DW (α, β ) may take neg-
ative values, and they are non-negative only for special
states called stabilizer states [21], since �W (α, β ) is not
positive-semidefinite. Using the mutual orthogonality and
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completeness of �W (α, β ) in the operator space, we can
easily express �(α, β ) in terms of �W (α, β ). The result is
given by

�(α, β ) =
d−1∑

α′,β ′=0

w(α − α′, β − β ′)�W(α′, β ′), (78)

where

w(α, β ) = 〈�|�W(α, β )|�〉 . (79)

We see that the phase point operator �(α, β ) built with the
minimum-uncertainty states can be written in the form of
convolution of the weight w(α, β ) and �W (α, β ), and thus it
acquires non-negativity at the cost of losing the sharp marginal
property.

The quasiprobability distribution based on the minimum-
uncertainty states is non-negative, but its marginal distri-
butions are smeared out, as shown in Eqs. (72) and (73).
A natural question is whether there exists a non-negative
quasiprobability distribution that satisfies sharper marginal
conditions. In what follows, we show that the answer is “no”
as long as the translational covariance in the phase space is
assumed.

Let �(α, β ) be phase point operators of a non-negative
quasiprobability distribution with the translational covariance.
To quantify the sharpness of the marginal distributions, we
define

σ ≡
∣∣∣∣∣∣tr

⎡
⎣d−1∑

β=0

�(α, β )Q

⎤
⎦

∣∣∣∣∣∣, (80)

τ ≡
∣∣∣∣∣tr

[
d−1∑
α=0

�(α, β )P

]∣∣∣∣∣. (81)

Because of the translational covariance, σ and τ are inde-
pendent of α and β, respectively. In the case of �W (α, β )
by Wootters and Cohendet et al., we find that σ = τ = 1
since the marginal conditions are perfectly sharp, as shown
in Eqs. (76) and (77). However, for �(α, β ) based on the
minimum-uncertainty states, we have σ = τ = h, which is
less than 1 if d � 2.

The translational covariance implies that �(α, β ) can be
written as

�(α, β ) = 1

d
PαQβKQ−βP−α, (82)

where K = d�(0, 0) is a Hermitian operator with tr K =
1 since �(α, β ) should be Hermitian and normalized as∑d−1

α,β=0 �(α, β ) = 1. In addition, K should be positive-
semidefinite to ensure that the quasiprobabilities are non-
negative. Thus K can be regarded as a state on Cd . In terms
of K , the measures of sharpness, σ and τ , take the following
simple form:

σ = |tr[KQ]|, τ = |tr[KP]|. (83)

Here it should be noticed that the theorem in Sec. II B holds
also for mixed states; that is, for any state ρ, we have

|tr[ρQ]tr[ρP]| � h2, (84)

where the equality holds if and only if ρ = |α, β〉 〈α, β|. This
can be shown by the following inequalities:

|tr[ρQ]tr[ρP]|1/2 � 1

2
(|tr[ρQ]| + |tr[ρP]|)

�
∑

i

ri
1

2
(| 〈φi|Q|φi〉 | + | 〈φi|P|φi〉 |) � h,

(85)

where we used the spectral decomposition ρ = ∑
i ri |φi〉 〈φi|.

Using this extended theorem, we obtain

στ � h2, (86)

where the equality holds if and only if K = |α0, β0〉 〈α0, β0|
with α0, β0 = 0, 1, . . . , d − 1. This implies that the upper
bound of the sharpness στ is attained by �(α, β ) = �(α +
α0, β + β0). Thus we conclude that the quasiprobability dis-
tribution based on �(α, β ) is optimal and unique up to a
cyclic relabeling of the position and momentum coordinates;
α → α + α0 and β → β + β0.

V. COMPLETENESS

It is desirable that the quasiprobability distribution com-
pletely determines the state of the system. This requires that
the set of phase point operators {�(α, β )}d−1

α,β=0 should be
complete in the operator space. To see this, we calculate the
Fourier transform of �(α, β ),

�̃(m, n) ≡ 1

d

d−1∑
α,β=0

ωαn−βm�(α, β )

= 1

d
〈�|Q−nP−m|�〉 PmQn

= 1

d
〈�|QnPm|�〉 PmQn. (87)

We employed Eq. (66) with � = |�〉 〈�| to obtain the sec-
ond line of the above equation, and the reflection symmetry
T |�〉 = |�〉 was also used in the last line. Since the set of
operators {PmQn}d−1

m,n=0 is complete, the completeness of the
phase point operators is equivalent to the conditions given by

fm,n ≡ 〈�|PmQn|�〉 �= 0 (m, n = 0, 1, . . . , d − 1). (88)

fmn has the following symmetries:

fmn = f−m,−n,

fmn = fnm,

fmn = ω−mn fm,−n,

fmn = ω−mn f ∗
mn.

We used the fact that the state |�〉 is invariant under the
Fourier transformation, and components 〈a|�〉 can be taken
to be real values.

Here we have different results depending on whether the
dimension d is even or odd. When d is even, some of the
conditions (88) are clearly violated. For example, we find that

〈�|Pd/2Qd/2|�〉 = 1

2h
〈�|{Pd/2Qd/2, H}|�〉 = 0, (89)
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since the operator Pd/2Qd/2 anticommutes with H . Using the
symmetries of fmn, we also observe that

〈�|PmQd/2|�〉 = 0 (m = odd), (90a)

〈�|Pd/2Qn|�〉 = 0 (n = odd). (90b)

We remark that it is only in those cases that 〈�|PmQn|�〉
vanishes, which can be shown by an analysis similar to the
one in the odd-dimensional case given later in this section.
Thus, the phase point operators �(α, β ) are not complete if d
is even. Let us examine the qubit (d = 2) case more closely.
In this case, we can write the phase point operator as

�(α, β ) = 1
4 (1 + n(α,β ) · σ) (α, β = 0, 1), (91)

where the Bloch vectors n(α,β ) are given in Eq. (13). Since
the y-components of n(α,β ) are 0, the set of �(α, β )′s is not
complete in the whole qubit space. However, it is interesting
that it is still complete in the qubit space of real amplitudes.

When d is odd, on the other hand, the conditions (88) are
satisfied: the set of phase point operators �(α, β ) is complete,
which will be shown in the rest of this section.

A. Equations for 〈�|PmQn|�〉
In this subsection, we will derive some equations fulfilled

by fmn ≡ 〈�|PmQn|�〉. Here, the dimension d is arbitrary (odd
or even).

We begin with the following two evident equations:

〈�|HPmQn|�〉 = h 〈�|PmQn|�〉 , (92a)

〈�|PmQnH |�〉 = h 〈�|PmQn|�〉 , (92b)

and we write them in terms of fmn as

1
4 ( fm+1,n + fm−1,n + ωm fm,n+1 + ω−m fm,n−1) = h fm,n, (93a)

1
4 (ωn fm+1,n + ω−n fm−1,n + fm,n+1 + fm,n−1) = h fm,n. (93b)

Regarding fm,n as the (m, n) entry of the vector | f 〉 in Cd ⊗
Cd , we write Eqs. (93) in the form

HL | f 〉 = h | f 〉 , (94a)

HR | f 〉 = h | f 〉 , (94b)

where

HL = 1
4 (P−1 ⊗ 1 + P ⊗ 1 + Q ⊗ P−1 + Q−1 ⊗ P), (95a)

HR = 1
4 (P−1 ⊗ Q + P ⊗ Q−1 + 1 ⊗ P−1 + 1 ⊗ P). (95b)

Thus, | f 〉 is a simultaneous eigenstate of HL and HR with
eigenvalue h.

Let us see HL more closely. Express the space Cd ⊗ Cd as⊕d−1
b=0 V (b), where

V (b) ≡ Span{∣∣� (b)
a

〉
, a = 0, . . . , d − 1}, (96)∣∣� (b)

a

〉 ≡ |a − b〉 ⊗ |b̃〉 . (97)

We then observe that each term in HL transforms the states
|� (b)

a 〉 in the following way:

P−1 ⊗ 1
∣∣� (b)

a

〉 = ∣∣� (b)
a−1

〉
,

P ⊗ 1
∣∣� (b)

a

〉 = ∣∣� (b)
a+1

〉
,

Q ⊗ P−1
∣∣� (b)

a

〉 = ωa
∣∣� (b)

a

〉
,

Q−1 ⊗ P
∣∣� (b)

a

〉 = ω−a
∣∣� (b)

a

〉
.

This implies that HL = ⊕d−1
b=0 H , and h is the maximum

eigenvalue of HL, which is d-fold degenerate. The same
thing is true for HR. Therefore, the maximum eigenvalue of
HL + HR is 2h, and | f 〉 is one of the associated eigenstates.
Thus we obtain

(HL + HR) | f 〉 = 2h | f 〉 . (98)

It is useful to define real quantities gmn as

gmn ≡ e
2π i
d

mn
2 fmn. (99)

gmn is real and has the following symmetries:

g∗
mn = gmn, gmn = gnm,

gm,n = g−m,n = gn,−m.

Note that gmn is not periodic with period d for m and n, rather
it satisfies the following relations:

gm±d,n = (−)ngm,n, gm,n±d = (−)mgm,n.

B. 〈�|PmQn|�〉 �= 0 when d is odd

In this subsection, we assume that d is odd, and we fix the
range of the indices m, n, m′, n′ as

−(d − 1)/2 � m, n, m′, n′ � (d − 1)/2. (100)

We will show that gmn are strictly positive. Rewriting
Eq. (98), we obtain the eigenequation for |g〉 ∈ Cd ⊗ Cd with
〈mn|g〉 = gmn,

K |g〉 = 2h |g〉 , (101)

where

Kmn,m′n′ = e
2π i
d

mn
2 (HL + HR)mn,m′n′e− 2π i

d
m′n′

2 .

We find that Kmn,m′n′ is given by

Kmn,m′n′ = 1

2
Dmm′ [(−1)n] cos

(
πn

d

)
δnn′

+ 1

2
cos

(
πm

d

)
δmm′Dnn′ [(−1)m],

where the d × d matrix D(σ ) is defined as

Dmm′ (σ ) = δ|m−m′ |,1 + σ (δm,(d−1)/2δm′,−(d−1)/2

+ δm,−(d−1)/2δm′,(d−1)/2)
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or

D(σ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 σ

1 0 1
. . . 0 0

0 1
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1 0

0 0
. . . 1 0 1

σ 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that cos ( πn
d ) and cos ( πm

d ) are positive since the ranges
of m, n are given by Eq. (100). However, the Perron-Frobenius
theorem is not yet applicable to K, since the nondiagonal
elements may be negative depending on the even-oddness of
m, n.

Here, we notice that K has the following reflection
symmetries:

Km,n,m′,n′ = K−m,n,−m′,n′ = Km,−n,m′,−n′ , (102)

and gmn is also symmetric under these reflections. To exploit
this fact, we rewrite the eigenequation K |g〉 = 2h |g〉 in the
base {|ea,b〉 , a, b = 0, 1, . . . , (d − 1)/2}, which respects the
reflection symmetries,

|eab〉 ≡ |ea〉 ⊗ |eb〉 , (103)

|ea〉 ≡ 1√
2(1 + δa0)

(|a〉 + |−a〉). (104)

In this base, the eigenequation reads

K(S)g(S) = 2hg(S), (105)

where

g(S)
ab = 〈eab|g〉 (106)

and

K(S)
ab,a′b′ = 〈eab|K|ea′b′ 〉 = 1

2
D(S)

aa′ [(−1)b] cos

(
πb

d

)
δbb′

+ 1

2
cos

(
πa

d

)
δaa′D(S)

bb′ [(−1)a]. (107)

Here, the (d + 1)/2 × (d + 1)/2 matrix D(S)(σ ) is given by

D(S)
aa′ (σ ) = 〈ea|D(σ )|ea′ 〉 = √

1 + δa,0δa,a′−1

+√
1 + δa′,0δa′,a−1 + σδa,(d−1)/2δa′,(d−1)/2

or

D(S)(σ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
√

2 0 · · · 0
√

2 0 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 . . . 0 1 σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we examine the real symmetric matrix K(S) + 1. All
elements are non-negative, and the diagonal elements are
strictly positive. Further, the matrix elements (K(S) + 1)ab,a′b′

are strictly positive if the points (a, b) and (a′, b′) are the near-
est neighbors on the two-dimensional integer lattice. There-
fore, all elements of A ≡ (K(S) + 1)d−1 are strictly positive.
Evidently, g(S) is the eigenvector of A with the maximum
eigenvalue (2h + 1)d−1. According to the theorem of Perron-
Frobenius, all components of g(S) can be taken to be strictly
positive. This further implies that all gmn are strictly positive
because of the reflection invariance of gmn. Thus we have
shown that 〈�|PmQn|�〉 �= 0 when d is odd.

VI. SUMMARY AND CONCLUDING REMARKS

The aim of this paper is to construct the minimum-
uncertainty states and the non-negative quasiprobability dis-
tribution for a qudit. They are the finite-dimensional counter-
parts of the coherent states and the Husimi function of the
continuous quantum mechanics.

We reexamined the theorem of Massar and Spindel for
the uncertainty relation of the two unitary operators related
by the discrete Fourier transformation, and we showed that
some assumptions in their proof can be justified if we use the
Perron-Frobenius theorem. The minimum-uncertainty states
are the ones that saturate this uncertainty inequality. By intro-
ducing a scale factor in the continuum limit, we showed that
they approach the coherent states with different widths.

We constructed the non-negative quasiprobability distribu-
tion, of which marginal distributions are smeared out as in the
Husimi function. However, this quasiprobability distribution
is shown to be optimal in the sense that there does not exist
a non-negative and translationally covariant quasiprobability
distribution with sharper marginal properties. Generally, the
completeness is one of the desirable properties of a quasiprob-
ability distribution; that is, it contains full information of the
state. We showed that the obtained quasiprobability is indeed
complete if the dimension of the state space is odd, whereas
it is unfortunately not if the dimension is even. It is well
known that the Wigner function in the even-dimensional case
is much more involved than in the odd-dimensional case (see,
e.g., [25,26]). Further investigation for this even-odd issue of
quasiprobabilities is certainly needed.

The Wigner function may take negative values. In
Refs. [24,27], however, it is shown that one can define non-
negative quasiprobabilities by introducing an auxiliary vari-
able into the Wigner function, and solve the dynamics of a
quantum system stochastically. It will be of interest in future
studies to apply our quasiprobability distribution to this line
of research.
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