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Improved local-constant-field approximation for strong-field QED codes
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The local-constant-field approximation (LCFA) is an essential theoretical tool for investigating strong-field
QED phenomena in background electromagnetic fields with complex spacetime structure. In our previous work
[Phys. Rev. A 98, 012134 (2018)] we have analyzed the shortcomings of the LCFA in nonlinear Compton
scattering at low emitted photon energies for the case of a background plane-wave field. Here, we generalize
that analysis to background fields, which can feature a virtually arbitrary spacetime structure. In addition, we
provide an explicit and simple implementation of an improved expression of the nonlinear Compton scattering
differential probability that solves the main shortcomings of the standard LCFA in the infrared region and is
suitable for background electromagnetic fields with arbitrary spacetime structure such as those occurring in
particle-in-cell simulations. Finally, we carry out a systematic procedure to calculate the probability of nonlinear
Compton scattering per unit of emitted photon light-cone energy and of nonlinear Breit-Wheeler pair production
per unit of produced positron light-cone energy beyond the LCFA in a plane-wave background field, which
allows us to identify the limits of validity of this approximation quantitatively.
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I. INTRODUCTION

High-energy processes in conventional accelerators typi-
cally involve only a few particles. However, when elementary
particles interact in the presence of an intense background
electromagnetic field, the relatively high density of photons
in the field and their coherent behavior make elementary pro-
cesses occur with the participation of a large number of such
photons. Multiphoton effects in strong-field QED (SFQED)
are controlled by Lorentz- and gauge-invariant parameters,
which depend on the structure of the external electromagnetic
field [1]. As a prominent example, intense laser radiation
can be employed to investigate QED processes in the non-
linear regime. By considering processes involving the light-
est charged particles, electrons and positrons, the parameter
controlling nonlinear effects in the laser field amplitude is the
so-called classical intensity parameter ξ0 = |e|E0/mω0. Here,
e < 0 and m are the electron charge and mass, respectively,
and E0 and ω0 are the laser field amplitude and central angu-
lar frequency, respectively (units with h̄ = c = 4πε0 = 1 are
employed throughout the paper) [2–7]. Present infrared and
optical lasers with ω0 ∼ 1 eV routinely exceed the threshold
ξ0 = 1, which corresponds to an intensity of the order of
1018 W/cm2 [8] and future facilities aim at values of ξ0

beyond one hundred, where nonlinear effects start becoming
important also in the motion of protons [9–12]. In fact, the
physical origin of the nonlinear effects controlled by the
parameter ξ0 can ultimately be ascribed to the fact that in laser
beams characterized by ξ0 � 1 the magnetic force of the laser
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field on an electron, which depends on the electron’s velocity,
becomes comparable to the electric force.

There is another class of nonlinear effects that are intrin-
sically quantum mechanical and are controlled by another
parameter, the so-called quantum nonlinearity parameter χ0

[2–7]. The quantum nonlinearity parameter identifies the
effective field scale at which a quantum process occurs in
units of the QED field scale Fcr = m2/|e| = 1.3 × 1016 V/cm
(= 4.4 × 1013 G), also known as the “critical” field of QED.
If Fμν

0 is a measure of the amplitude of the background
electromagnetic field and if pμ is, for example, the initial
four-momentum of an electron entering the external field and
initiating the quantum process, the quantum nonlinearity pa-
rameter is defined as χ0 = √|(Fμν

0 pν )2|/mFcr . This definition
indicates that the effective field scale at which the process oc-
curs is the field that the electron experiences in its rest frame,
which is a Lorentz-invariant quantity. Available laser and
electron accelerator technology already allows for exploring
the so-called SFQED regime (χ0 � 1) by combining either
conventional [13,14] or laser-based [15] multi-GeV electron
accelerators with high-power optical lasers [8–11]. Classical
nonlinear effects have been already observed in recent exper-
iments in laser-electron collision [16,17] and indications of
nonlinear quantum effects were reported in Refs. [18,19] (see
Ref. [20] for a recent experiment within the quantum regime
involving ultrahigh-energy positrons and a crystal).

Early SFQED experiments [13,14] employed picosecond
optical laser pulses focused on an area of the order of ap-
proximately 60 μm2. This explains why the experimental
results could be reproduced by calculating the correspond-
ing QED processes in the presence of a monochromatic
plane wave. Nowadays, experiments such as those reported
in Refs. [17–19] are carried out with femtosecond laser
pulses focused down to a few square wavelengths, and future
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experiments aiming at even higher intensities will possibly
employ shorter and more tightly focused laser pulses. The
new features of ultraintense laser pulses used in experiments
call for more general theoretical tools, suitable for describing
qualitatively and quantitatively the experimental results in
electromagnetic fields of a more complex spacetime structure
than a plane wave. In SFQED the theoretical bottleneck is
represented by the possibility of solving analytically the Dirac
equation in the external field because the resulting electron
states are then employed in the framework of the Furry
picture [1,21,22]. This is indeed possible in the case of a
plane wave [1,23]. In Refs. [24–27] approximated expressions
of the electron states (and of the propagator) in a tightly
focused laser beam were found and applied to investigate the
two basic SFQED processes: nonlinear Compton scattering
and nonlinear Breit-Wheeler pair production. The findings in
Refs. [24–27] are based on the assumption that the initial
energy of the electron is so large that the electron itself is only
barely deflected by the focused laser field.

Another important theoretical tool to study SFQED pro-
cesses occurring in the presence of virtually arbitrary elec-
tromagnetic fields is the so-called local-constant-field ap-
proximation (LCFA) [3,28,29]. This approximation is based
on two physical observations. First, in SFQED experiments
ultrarelativistic charged particles are typically employed, and
in their rest frame they experience nearly equal transverse
(with respect to the particles’ velocity in the laboratory frame)
and mutually perpendicular electric and magnetic fields [30].
Second, in SFQED experiments laser beams are typically
employed, which are characterized by ξ0 � 1. Now, generally
speaking, at ξ0 � 1 the probabilities of the basic SFQED
processes, nonlinear Compton scattering and nonlinear Breit-
Wheeler pair production, are formed on a space region (for-
mation length) much shorter than the laser wavelength [3,29].
This implies that the probability of such processes in an
arbitrary plane wave can be expressed as the integral over
the laser phase of the corresponding probability in a constant
crossed field evaluated at the local value of the plane-wave
field. In this way, interference effects between contributions
to the same final state originating from different formation
lengths are ignored [31,32]. These can be included via a
saddle-point evaluation of the amplitudes, which has been
carried out both in nonlinear Compton scattering [33] and in
nonlinear Breit-Wheeler pair production [32]. A comprehen-
sive benchmarking of the LCFA against the exact quantum
emission probability can be found in Ref. [34], where partic-
ular emphasis is also put on the assumption that the photon is
emitted along the instantaneous electron’s velocity (collinear
emission).

Now, it turns out that the formation length of the basic
SFQED processes does not only depend on the parameter
ξ0 but it also depends on χ0 [29,35] and on the energies of
the particles involved in the process [36–40]. In particular,
in Ref. [40] we investigated the dependence of the formation
length of nonlinear Compton scattering on the energy of the
emitted photon. We have shown that the parameter controlling
the validity of the LCFA in a plane wave is given by

ηLCFA = p− − k−
k−

χ0

ξ 3
0

, (1)

where p− and k− are the light-cone energies of the incoming
electron and of the emitted photon, and where it is tacitly
assumed that (p− − k−)χ0 � k−. The LCFA turned out to
be applicable if ηLCFA � 1. As a consequence, it is clear
that, even when ξ0 � 1, the LCFA becomes inapplicable for
sufficiently small photon light-cone energies. Indeed, we have
found that the exact expression of the differential probability
dP/dk− of nonlinear Compton scattering tends to a constant
in the limit k− → 0 rather than diverging as k−2/3

− as predicted
by the LCFA. Finally, we have put forward a scheme to im-
plement an improved expression of the emission probability
for the collision of an electron beam with a laser pulse of a
given central frequency ω0 in numerical codes, which takes
into account the correct behavior in the infrared region.

In Ref. [37] the leading-order correction with respect to
the field derivatives of the differential probability of nonlinear
Compton scattering was first calculated within the quasiclassi-
cal approximation. However, the resulting expression is more
suitable for the central part of the emission spectrum and it
becomes inapplicable in the low-energy region. Indeed, as we
pointed out in Ref. [40], the energy integral of the differential
probability of nonlinear Compton scattering including this
leading-order correction diverges. Another attempt to improve
the LCFA starting from the above-mentioned leading-order
correction was recently proposed in Ref. [41] for the case
of a laser pulse, which includes a thorough analysis of the
features of the infrared part of the emission spectrum. The
method developed in Ref. [41] has the virtue of being based on
the systematic approach introduced in Ref. [37], although the
extension to the infrared region unavoidably requires by-hand
adjustments. This method is applicable to situations where
the electromagnetic fields feature a well-defined oscillation
frequency ω0, as in the method presented in Ref. [40]. In
Ref. [42] the LCFA is scrutinized in the context of pair
production in strong electromagnetic fields by studying the
momentum spectra of the produced particles.

All the analytical results in Ref. [40] were obtained in the
case of a background plane wave. Here, we generalize those
results to the case of background fields of virtually arbitrary
spacetime structure, in the sense that a new prescription is put
forward, which relies only on local quantities. In particular,
the present prescription does not involve the parameter ξ0,
which in turns contains the frequency of the field. Corre-
spondingly, we propose a more general implementation of
an improved expression of the nonlinear Compton scattering
emission probability into numerical codes, such as particle-
in-cell (PIC) codes, able to describe electromagnetic fields
with arbitrary spacetime structure. Note that the algorithms
employed in PIC codes are based on differential emission
probabilities expressed in terms of the local value of the back-
ground electromagnetic field. This is certainly not possible
for the infrared region of the emission spectrum, because
relatively low-energy photons correspondingly have long for-
mation lengths. Thus, the implementation of the lower-energy
part of the photon spectrum in terms of local quantities
is unavoidably partially phenomenological. In this respect,
we also report a mathematically and physically consistent
approach to include higher-order effects in the LCFA, equiv-
alent to that first proposed in Ref. [37] (see also Ref. [41]).
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Furthermore, we have explicitly calculated the leading-order
correction of the differential probability not only of nonlinear
Compton scattering but also of nonlinear Breit-Wheeler pair
production [5,28,32,43–53] in a plane wave. Finally, the an-
gularly resolved spectra of nonlinear Compton scattering and
of nonlinear Breit-Wheeler pair production within the LCFA
have been reported.

II. IMPROVED LCFA FOR SFQED CODES

First, we review some of the key concepts and results
obtained in Ref. [40], then we show how the above results
can be extended to more general field configurations. We start
our analysis by considering an electron with incoming four-
momentum pμ = (ε, p), with ε =

√
m2 + p2, which collides

with a plane wave propagating along the n direction (n2 = 1).

The plane wave is characterized by the four-vector potential
Aμ(φ) = (0, A⊥(φ)), where φ = (nx) = t − n · x [i.e., nμ =
(1, n)], and where n · A⊥(φ) = 0 and limφ→±∞ A⊥(φ) =
0 [i.e., the four-potential is chosen in the Lorentz gauge
∂μAμ(φ) = 0]. Since the plane wave depends only on the vari-
able φ, it is clearly convenient to introduce the light-cone co-
ordinates T = (t + n · x)/2, x⊥ = x − (n · x)n, and, indeed,
φ = t − n · x, as well as the light-cone components v+ =
(v0 + n · vvv)/2, vvv⊥ = vvv − (n · vvv)n, and v− = v0 − n · vvv of an
arbitrary four-vector vμ = (v0, vvv) (note that T = x+ and φ =
x−). Assuming that the emitted photon (outgoing electron)
is characterized by a four-momentum kμ = (ω, k), with ω =
|k| [p′μ = (ε′, p′), with ε′ =

√
m2 + p′ 2], the leading-order

differential emission probability dP/dk− averaged (summed)
over all initial (final) discrete quantum numbers can be written
in the form [40]

dP

dk−
= − i

α

2π

1

p−

1

η0

∫
dϕdϕ′

ϕ − ϕ′ + i0

{
1 + p2

− + p′ 2
−

4p− p′−
[ξ⊥(ϕ) − ξ⊥(ϕ′)]2

}

× exp

〈
i

1

2η0

k−
p′−

{
ϕ − ϕ′ +

∫ ϕ

ϕ′
dϕ̃ ξ2

⊥(ϕ̃) − 1

ϕ − ϕ′

[∫ ϕ

ϕ′
dϕ̃ ξ⊥(ϕ̃)

]2
}〉

, (2)

where η0 = (k0 p)/m2 = χ0/ξ0, with kμ
0 = ω0nμ, where ϕ = ω0φ (ϕ′ = ω0φ

′), where p′
− = p− − k−, and where ξ⊥(ϕ) =

eA⊥(ϕ)/m. Equation (2) has been derived in detail in Ref. [40]. Here, we would like to derive the asymptotic limit
limk−→0 dP/dk− in a different and simpler way than in Ref. [40]. In fact, we first notice that in the limit k− → 0 one can
neglect the field-dependent terms in the exponential function in Eq. (2) under the physically reasonable assumption that the
function ξ⊥(ϕ) is square integrable. Indeed, the field-dependent terms inside the braces of the exponential function in Eq. (2)
are bounded for a finite duration pulse, whereas the term ϕ − ϕ′ is unbounded and must be retained because it gives a finite
contribution even for k− → 0. Then, we exploit the identity∫ ∞

−∞
dx

eiax

x + i0
= 0, (3)

for any a > 0, which is easily proved by means of the residue theorem. In this way, we obtain that
dP0

dk−
= lim

k−→0

dP

dk−
= i

α

2π

1

p−

1

η0

∫
dϕdϕ′

ϕ − ϕ′ + i0
ξ⊥(ϕ) · ξ⊥(ϕ′)e

i 1
2η0

k−
p′−

(ϕ−ϕ′ )

= α

2π

1

p−

1

η0

∫ ∞

0
dρ

∫
dϕdϕ′ξ⊥(ϕ) · ξ⊥(ϕ′)eiρ(ϕ−ϕ′ )

= α

2π

1

p−

1

η0

∫ ∞

0
dρ|ξ̃⊥(ρ)|2 = α

2

1

p−

1

η0

∫
dϕ ξ2

⊥(ϕ), (4)

where we have introduced the Fourier transform ξ̃⊥(ρ) of
ξ⊥(ϕ) and we have used the Parseval identity. This asymptotic
behavior is qualitatively different from that predicted by the
LCFA, which features an integrable divergence as k−2/3

− (see,
e.g., Ref. [29]). Note that the constant in Eq. (4) represents a
nonperturbative result; i.e., it cannot be obtained by expanding
in terms of the field derivatives [see the discussion below
Eq. (36)].

Another result we found in Ref. [40] is a general expres-
sion of the local formation phase ϕ f of nonlinear Compton
scattering, which can be written as

ϕ f = 8

|ξ′
⊥(ϕ)| sinh

(
1

3
sinh−1

(
3π

4

p′
−

k−
χ (ϕ)

))
, (5)

where the prime in the symbol of a function indicates the
derivative of the function with respect to the argument and

where χ (ϕ) = η0|ξ′
⊥(ϕ)|. For the sake of definiteness, we

have chosen 2π as the typical phase where the plane wave
changes substantially, such that the LCFA cannot be applied
for ϕ f � 2π . In Ref. [40] we also introduced the emitted
photon light-cone energy k−,LCFA below which the LCFA is
inapplicable. In fact, by imposing that at k− = k−,LCFA the
formation phase equals 2π , we have obtained

k−,LCFA = k−,LCFA(ϕ)

= p−
1 + 4

3πχ (ϕ) sinh
(
3 sinh−1

(
π
4 |ξ′

⊥(ϕ)|)) , (6)

where we have pointed out that the quantity k−,LCFA(ϕ) de-
pends on the laser phase. As we have shown in Ref. [40],
it is possible to derive the constant in Eq. (4) by starting
from the cross section of linear Compton scattering. This led
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us to implement an improved expression of the probability
dP/dk− with respect to the LCFA, which coincides with the
latter for k− > k−,LCFA(ϕ) and coincides with the probability
obtained by starting from the cross section of linear Compton
scattering for k− < k−,LCFA(ϕ). Since for the light-cone ener-
gies of interest k−,LCFA(ϕ) � p−, we can further simplify the
implementation put forward in Ref. [40] and directly use the
constant in Eq. (4) for k− � k−,LCFA(ϕ). We have ensured that
the numerical results obtained in Ref. [40] are only slightly
affected by this modification, as it is also indicated by the
fact that the exact probability is indeed practically constant
for k− � k−,LCFA(ϕ) (see the numerical examples below and
in Ref. [40]).

The above-mentioned extension still uses the constant
in Eq. (4), which is intrinsically nonlocal as it contains
the parameter ξ0. In order to extend the method introduced
in Ref. [40] to arbitrary field configurations, we have to
rely only on local quantities. The starting point here is the
following observation. As we have seen in Ref. [40] and
as it can be seen from Eq. (6), we have that, in order of
magnitude, k−,LCFA(ϕ) ∼ p−χ0/ξ

3
0 for χ0 � 1 and ξ0 � 1.

This can also be equivalently obtained starting from Eq. (5)
for k− � min{p−, χ0 p−}. Now, the expression of the constant
dP0/dk− suggests to introduce a corresponding “probability
per unit phase”:

dP0

dk−dϕ
= α

2

1

p−

1

η0
ξ2
⊥(ϕ). (7)

Since for k− < k−,LCFA(ϕ) the emission probability is
practically constant, as a check of consistency, if we equate
the differential probability dP0/dk−dϕ with the LCFA
differential probability, we should find that the value of k−
at which the two differential probabilities coincide is of the
order of k−,LCFA(ϕ). This can indeed be easily proved by
comparing the estimate

dP0

dk−dϕ
∼ α

2

1

p−

1

η0
ξ 2

0 (8)

with the differential emission probability within the LCFA in
the region k− � min{p−, χ0 p−}, which can be estimated as
[see, e.g., Ref. [29] or Eqs. (29) and (33) below]

dPLCFA

dk−dϕ
∼ α√

3π

�(2/3)32/3

p−η0

(
p−χ0

k−

)2/3

, (9)

where � indicates the gamma function [54]. Now, by
equating the right-hand sides of Eqs. (8) and (9), one can
easily see that indeed the resulting value of k− is given by
k∗
− = 3[2�(2/3)/

√
3π ]3/2 p−χ0/ξ

3
0 ≈ 1.05 p−χ0/ξ

3
0 . Since

k∗
− features the same parametric scaling of k−,LCFA(ϕ) at

k− � min{p−, χ0 p−}, this analysis suggests to implement
the improved version of the LCFA in the following
straightforward way: use the differential probability within
the LCFA for k− > k−,LCFA(ϕ) and use the constant value of
this probability at k− = k−,LCFA(ϕ) also for k− < k−,LCFA(ϕ).
Moreover, if k−,LCFA(ϕ) coincided with k∗

−, one would
reasonably expect that the resulting spectrum would feature
the correct constant at low light-cone energies. In this
respect, we notice that in the corresponding limiting region
k− � min{p−, χ0 p−}, one obtains starting from Eq. (5)
that k−,LCFA(ϕ) ∼ (12/π2)p−χ0/ξ

3
0 ≈ 1.2 p−χ0/ξ

3
0 , which

suggests to preferably employ a matching point k∗
−,LCFA(ϕ) =

ρftk−,LCFA(ϕ), with ρft being a fine-tuning constant slightly
smaller than unity (see below for additional details).

The straightforward procedure described above for im-
proving the LCFA can be generalized to a virtually arbitrary
field if one provides a reliable definition of k−,LCFA(ϕ) for this
more general case, which is also the case usually considered
in numerical codes. Now, numerical codes do not work with
light-cone energies but rather with the local values of the
electron energy ε(t ) and with the emitted photon energy ω.
We discussed in detail in Ref. [40] the relation among these
quantities and we have concluded that we can approximately
replace k− with 2ω and p− with the local value 2ε(t ) in
the physical regimes of interest. Indeed, discrepancies are
expected to appear at such large emitted photon wavelengths
that are resolved, e.g., by PIC codes, such that the effects of
these photons are already taken into account via the numerical
integration of the Maxwell-Lorentz system of equations. Cor-
respondingly, in the case of a general background field, it is
convenient to introduce a formation time t f , which has to be
compared with the time scale τ (t ) where the background field
changes locally. At first sight, one would expect to obtain τ (t )
from the first time derivative of the Lorentz force. However,
as discussed below [see Eqs. (32) and (34)], the leading-order
correction to the LCFA in a plane wave depends not only on
the first but also on the second time derivative of the fields; i.e.,
the contribution of the second derivative is of the same order
of the contribution of the first derivative. Moreover, since the
leading-order correction to the LCFA depends more precisely
on the derivatives of the transverse Lorentz force FL,⊥(t )
with respect to the instantaneous electron velocity through
the quantity χ (ϕ) [see Eqs. (32) and (34) and Eq. (18)], it
is natural to define τ (t ) as

τ (t ) = 2π

√√√√ F2
L,⊥(t )

Ḟ
2
L,⊥(t ) + |FL,⊥(t ) · F̈L,⊥(t )|

, (10)

where the dots indicate the time derivative along the electron
trajectory x(t ). Three observations are in order: (1) another
reason to employ the transverse Lorentz force FL,⊥(t ) is that
in the ultrarelativistic limit the photon emission probability
due to the longitudinal component of the Lorentz force is
suppressed by a factor of the order of the square of the electron
Lorentz factor γ (t ) = ε(t )/m [29]; (2) the constant 2π has
been introduced in the definition of τ (t ) such that, in the
collision with a monochromatic plane wave with amplitude E0

and angular frequency ω0, one obtains τ (t ) = π/ω0 around
the peaks of the field amplitude, where the improved scheme
should basically coincide with the LCFA prediction for ξ0 �
1; and (3) the expression of τ (t ) can be in principle employed
as a starting point for the definition of a local field frequency
and then of a local parameter ξ0. As we have already noticed
above, however, the present method does not require to intro-
duce a local parameter ξ0.

Having in mind the expression in Eq. (5), we define the
local formation time t f as

t f (t ) = 8γ (t )

χ (t )
τC sinh

(
1

3
sinh−1

(
3π

4

ε′(t )

ω
χ (t )

))
, (11)
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where τC = 1/m ≈ 1.3 × 10−21 s is the Compton wavelength
divided by the speed of light, ε′(t ) = ε(t ) − ω [it is clear
that in this case the prime in ε′(t ) does not indicate a time
derivative], and where χ (t ) is the value of the quantum
nonlinearity parameter along the electron trajectory.

At this point, the time-dependent threshold energy
ωLCFA(t ) is defined as the value at which t f (t ) = τ (t ):

ωLCFA(t ) = ε(t )

1 + 4
3πχ (t ) sinh

(
3 sinh−1

(
χ (t )
8γ (t )

τ (t )
τC

)) . (12)

Having defined τ (t ) as in Eq. (10), the definition of ωLCFA(t )
is in agreement with the definition of k−,LCFA(ϕ) in Eq. (6).

In conclusion, the above improved expression of the dif-
ferential emission probability at a time t is constructed in the
following way:

(1) Use the expression dPLCFA(ω, t )/dωdt of the emis-
sion probability within the LCFA for ω > ω∗

LCFA(t ), with
ω∗

LCFA(t ) = ρftωLCFA(t ) [see the discussion below Eq. (9)].
(2) Use the local constant value dPLCFA(ω∗

LCFA(t ), t )/
dωdt for ω � ω∗

LCFA(t ).
In the next section, by comparing numerically the results
obtained with this method to the full QED calculations, we
fix the value of ρft to ρft = 0.7 in all simulations, which is
indeed smaller than unity as expected from the discussion
below Eq. (9). We stress that the improved expression of the
emission probability is applicable also for background fields
of complex spacetime structure because it relies only on local
quantities.

III. NUMERICAL IMPLEMENTATION

The implementation of the improved LCFA in SFQED
codes based on a Monte Carlo approach is straightforward.
The main difference with respect to the standard LCFA is
that, at each time step �t , the code must calculate the local
value of τ (t ) as defined in Eq. (10). Thus, in order to calculate
ḞL,⊥(t ) and F̈L,⊥(t ) numerically, for each particle the value of
FL,⊥(t ) obtained at the previous two time steps must be stored
in addition to the local particle position x(t ) and momentum
p(t ). In addition, a Boolean variable that takes into account
whether the particle is new, i.e., it has just been created, is
also stored for each particle. This is needed because electrons
and positrons can be created during the simulation due to,
e.g., nonlinear Breit-Wheeler pair production, and for new
particles the value of FL,⊥(t ) is not available at previous time
steps, such that the standard LCFA should be employed for
these particles, initially.

In the following, we report an explicit recipe for the im-
plementation of the improved LCFA with leapfrog integration
[55], which is widely employed in PIC codes. In order to take
into account the effect of the recoil on the particle motion
and to minimize the changes in the existing codes, we employ
the result obtained in Ref. [56]. Following Ref. [56], starting
from p(n−1/2), the total momentum after one step p(n+1/2)

of a particle under the influence both of the Lorentz FL(t )
and of an “effective” recoil force FR(t ) can be obtained as

p(n+1/2) = p(n+1/2)
L + ∫ t (n)+�t/2

t (n)−�t/2 dt F (n)
R , where p(n+1/2)

L is the

momentum obtained by advancing p(n−1/2) of one step by
using the already existing leapfrog integrator for the Lorentz

force, and

F (n)
R =

{
0, no emission
−δ(t − t (n) )ωp(n)/|p(n)|, emission

(13)

is the “effective” recoil force. Thus, the algorithm is as fol-
lows: (1) Starting from x(n), p(n−1/2) calculate p(n+1/2)

L with
the leapfrog integrator existing in the code. (2) Calculate

F (n)
L = p(n+1/2)

L − p(n−1/2)

�t
, (14)

p(n)
L = p(n+1/2)

L + p(n−1/2)

2
, (15)

γ (n) =
√

1 + (p(n)
L /m)2, (16)

F (n)
L,⊥ = F (n)

L − (F (n)
L · p(n)

L )

(mγ (n) )2
p(n)

L , (17)

χ (n) = τCγ (n)

√√√√(
F (n)

L,⊥
m

)2

. (18)

Concerning Eq. (14), we remind that the leapfrog integrator
does not evaluate F (n)

L explicitly for computing p(n+1/2)
L from

p(n−1/2) [55]. Note that, to avoid possible numerical issues for
|p(n)

L | ≈ 0, in Eqs. (17) and (18) we have used the approxima-
tion p(n)

L /|p(n)
L | ≈ p(n)

L /mγ (n), which is an excellent approxi-
mation already for γ (n) � 10. We stress that the approxima-
tion of collinear emission and the equations for the standard
LCFA are anyway applicable only for γ (t ) � 1. Now, if the
particle is new, set F (n−2)

L,⊥ = F (n−1)
L,⊥ = F (n)

L,⊥ and change its
Boolean variable to false. As it will be clear in the following,
this implies that the particle will emit photons according to
the standard LCFA, initially (note that, since the emission
probability in each time step �t needs to be much smaller than
unity, this assumption has no sizable effects). (3) Calculate

Ḟ
(n)
L,⊥ = F (n)

L,⊥ − F (n−1)
L,⊥

�t
, (19)

F̈
(n)
L,⊥ = F (n)

L,⊥ − 2F (n−1)
L,⊥ + F (n−2)

L,⊥
(�t )2

, (20)

δ(n) =τ 2
C

[
(Ḟ

(n)
L,⊥)2 + |F (n)

L,⊥ · F̈
(n)
L,⊥|]. (21)

(4) If (γ (n) )2δ(n)/ζ 2 > (χ (n) )2(F (n)
L,⊥)2, where ζ is a nearly

negligible number relative to unity (with, e.g., double
precision ζ ≈ 2.22 × 10−16), from Eq. (10) calculate

τ (n)

τC
= 2π

√(
F (n)

L,⊥
)2

δ(n)
; (22)

otherwise the background fields are basically constant, and the
LCFA applies throughout the photon spectrum. This condition
is introduced to avoid numerical issues for constant back-
ground fields, where the LCFA holds and τ (n)/τC diverges. (5)
From Eq. (12), if χ (n) > ζ calculate ω

∗(n)
LCFA = ρftω

(n)
LCFA, with

ω
(n)
LCFA = ε(n)

1 + 4
3πχ (n) sinh

(
3 sinh−1

(
χ (n)

8γ (n)
τ (n)

τC

)) . (23)

Note that the condition χ (n) > ζ is introduced to avoid
possible numerical issues, but has no practical effect as the
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k−/p−

2m
d
P

/d
k
−

(a)

k−/p−

(b)

FIG. 1. Exact (solid red curve) vs local-constant-field-approximated (dotted black curve) differential photon emission probability for an
electron with initial energy of 10 GeV colliding head-on with a plane-wave pulse of 5 fs duration (full width at half maximum (FWHM) of
the intensity), and (a) 2.7 × 1020 W/cm2 peak intensity (ξ0 ≈ 8) and (b) 4.4 × 1020 W/cm2 peak intensity (ξ0 ≈ 10). The dashed blue curve
(dash-dotted orange curve) shows the same differential probability obtained via the numerical code presented in Ref. [57], with the improved
emission model as described in the text (with the model presented in Ref. [40]).

probability of emission per unit time is proportional to χ

and the emitted power scales as χ2, such that emissions
for χ (n) � ζ are completely negligible [3]. In addition, if
(ε(n) − ω

∗(n)
LCFA) < 10−3ε(n) no emission is deemed at this time

step. This second condition is of physical origin, as it implies
that ω

∗(n)
LCFA ≈ ε(n), such that the LCFA basically cannot be

applied throughout the entire photon spectrum. Note that these
are very rare processes almost exclusively occurring at very
low field amplitudes, and can be neglected. (6) Following the
physical argument below Eq. (7), evaluate dPLCFA(ω, t )/dωdt
at ω

∗(n)
LCFA. The improved emission spectrum is equal to a

constant with value dPLCFA(ω∗(n)
LCFA, t )/dωdt for ω � ω

∗(n)
LCFA,

while it is equal to the standard LCFA spectrum for
ω > ω

∗(n)
LCFA. Now, the rate of photon emission per unit

time is simply the sum of ω
∗(n)
LCFAdPLCFA(ω∗(n)

LCFA, t )/dωdt

and
∫ ε(n)

ω
∗(n)
LCFA

dω [dPLCFA(ω, t )/dωdt], and the algorithm of

the Monte Carlo method for determining whether a photon
emission occurs and, if deemed, the energy of the emitted
photon follows the same steps as for the standard LCFA
(see, e.g., the supplementary information of Ref. [57]). (7)
Following the argument above Eq. (14), if a photon emission
occurs the electron momentum becomes p(n+1/2) = p(n+1/2)

L −
ωp(n)

L /|p(n)
L | ≈ p(n+1/2)

L − ωp(n)
L /mγ (n). (8) Advance the

particle position x(n+1) = x(n) + p(n+1/2)�t/γ (n+1/2)m, where
γ (n+1/2) =

√
1 + (p(n+1/2)/m)2, and store the value of

F (n−1)
L,⊥ , F (n)

L,⊥, and of the Boolean variable together with
x(n+1), p(n+1/2).

Numerical examples

In this section we report the results of numerical simula-
tions carried out with the prescription described above. As
we have already mentioned, in all numerical simulations we

k−/p−

2m
d
P

/d
k
−

(a)

k−/p−

(b)

k−/p−

(c)

FIG. 2. Exact (solid red curve) vs local-constant-field-approximated (dotted black curve) differential photon emission probability for the
following numerical parameters: (a) electron initial energy of 10 GeV, plane-wave pulse duration of 5 fs (FWHM of the intensity) and of peak
intensity 4 × 1019 W/cm2 (ξ0 ≈ 3); (b) electron initial energy of 10 GeV, plane-wave pulse duration of 10 fs (FWHM of the intensity) and of
peak intensity 4 × 1019 W/cm2 (ξ0 ≈ 3); (c) electron initial energy of 5 GeV, plane-wave pulse duration of 5 fs (FWHM of the intensity) and
of peak intensity 2.7 × 1020 W/cm2 (ξ0 ≈ 8). The dashed blue curve shows the same probability obtained via the numerical code presented in
Ref. [57], with the improved emission model as described in the text.
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ω(MeV)

m
d
P

/d
ω

FIG. 3. Local-constant-field-approximated differential photon
emission probability (dotted black curve) compared to the improved
probability presented in Ref. [40] (dash-dotted orange curve) and
the one developed here (dashed blue curve) for a beam of 108

electrons with Gaussian distribution in space and in momentum,
3 μm diameter (FWHM), 13 μm length FWHM, 1 GeV mean en-
ergy, 100 MeV energy width (FWHM), and 1 mrad angular aperture
colliding head-on with a laser pulse with 45 fs duration (FWHM
of the intensity), 4 μm waist radius, and 4.4 × 1020 W/cm2 peak
intensity (ξ0 ≈ 10).

employed the same value of the fine-tuning constant, which
was set to ρft = 0.7. This value of the constant has provided
the best agreement between the simulation results and the full
QED calculations in all examples reported below (see Figs. 1
and 2).

In the first two examples, shown in Figs. 1(a) and 1(b), we
report the simulation results with the same parameters as those
in Ref. [40] in order to compare the two methods (compare
in particular the dash-dotted orange curve, corresponding to
the method presented in Ref. [40], with the dashed blue curve,
corresponding to the present method). The agreement between

the two methods is very good, with the present approach being
even superior at intermediate energies and having the crucial
advantages that it is applicable to arbitrary and complex
background fields and that it can be easily implemented in
PIC codes, as we discussed in detail in the previous sec-
tion. In Fig. 2 the results of other simulations are presented
with different numerical parameters. In particular, we have
chosen a peak laser intensity of 4 × 1019 W/cm2 (ξ0 ≈ 3)
in Fig. 2(a), a laser pulse duration of 10 fs in Fig. 2(b), and
an initial electron energy of 5 GeV in Fig. 2(c). The very
good agreement between our improved method and the exact
quantum calculations shows the broad applicability and the
robustness of the employed numerical value of ρft.

Finally, Fig. 3 displays the results obtained from the more
realistic simulation of a beam of 108 electrons with Gaus-
sian distribution in space and in momentum, 3 μm diam-
eter FWHM, 13 μm length FWHM, 1 GeV mean energy,
100 MeV energy width (FWHM), and 1 mrad angular aperture
colliding head-on with a laser pulse with 45 fs duration
(FWHM of the intensity), 4 μm waist radius, and 4.4 ×
1020 W/cm2 peak intensity (ξ0 ≈ 10). Figure 3 reports the
results obtained with the standard LCFA model (dotted black
curve), the model introduced in Ref. [40] (dash-dotted orange
curve), and the model presented here (dashed blue curve).
Note that since the average electron’s beam energy is much
larger than mξ0, the electrons are barely deviated from their
initial propagation direction such that they only weakly ex-
perience the transverse structure of the laser pulse, and the
method proposed in Ref. [40] is applicable (also because
the background field has a well-defined central frequency
ω0). The important message of Fig. 3, given the realistic
parameters employed, is that the failure of the LCFA at
low frequencies is potentially observable experimentally with
currently existing lasers in a compact, all-optical setup. For
example, the LCFA predicts that a total number of about
8.6 × 108 photons are emitted, whereas the two improved
models predict 6.6 × 108 (the one presented in Ref. [40]) and
6.2 × 108 (the one presented here).

IV. SYSTEMATIC APPROACH TO HIGH-ORDER CORRECTIONS TO THE LCFA

In this section we provide a systematic approach to evaluate the differential probability of nonlinear Compton scattering and
of nonlinear Breit-Wheeler pair production in a plane wave. For this reason, it is convenient to add the index C to the probabilities
investigated in the previous sections and to indicate as dPBW /d p−, the corresponding differential probability of nonlinear Breit-
Wheeler pair production per unit of produced positron light-cone energy (the reason to use again the symbol p− will be clear
below). Our starting point is to write the differential probability dPC/dk− in the form dPC/dk− = ∫

dϕ+ dPC/dk−dϕ+, where
[see Eqs. (11) and (12) in Ref. [40])

dPC

dk−dϕ+
= α

2π

1

p−

1

η0
Im

∫
dϕ−

ϕ− + i0

[
1 + p2

− + p′ 2
−

4p− p′−
�2

⊥(ϕ−, ϕ+)

]
ei�C (k−,ϕ−,ϕ+ ), (24)

�C (k−, ϕ−, ϕ+) = 1

2η0

k−
p′−

{
ϕ− +

∫ ϕ−/2

−ϕ−/2
dϕ̃ ξ2

⊥(ϕ+ + ϕ̃) − 1

ϕ−

[ ∫ ϕ−/2

−ϕ−/2
dϕ̃ ξ⊥(ϕ+ + ϕ̃)

]2}
. (25)

Here, we have introduced the variables ϕ+ = (ϕ + ϕ′)/2 and ϕ− = ϕ − ϕ′ and the convenient quantity

�⊥(ϕ−, ϕ+) = ξ⊥
(
ϕ+ + ϕ−

2

)
− ξ⊥

(
ϕ+ − ϕ−

2

)
, (26)

and we will closely follow the approach first outlined in Ref. [37]. This will also give us the possibility of establishing
quantitatively the limits of validity of the LCFA and the size of the expected corrections. In fact, we recall that the LCFA is
applicable when the laser formation phase ϕ f is much smaller than 2π , such that one can expand the field-dependent terms in
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Eqs. (24) and (25) around ϕ+ [more precisely the function �⊥(ϕ−, ϕ+) is expanded around the point (0, ϕ+)]. In particular, the
(leading-order) LCFA corresponds to expand the function �⊥(ϕ−, ϕ+) up to first order in ϕ− and the phase �(k−, ϕ−, ϕ+) up to
the third order in ϕ−:

�⊥(ϕ−, ϕ+) ≈ ξ′
⊥(ϕ+)ϕ− ≡ �⊥,LCFA(ϕ−, ϕ+), (27)

�C (k−, ϕ−, ϕ+) ≈ 1

2η0

k−
p′−

[
ϕ− + ξ′ 2

⊥ (ϕ+)

12
ϕ3

−

]
≡ �C,LCFA(k−, ϕ−, ϕ+). (28)

By employing these approximated quantities, one can carry out the integral over ϕ− (see the Appendix and Ref. [29]) and obtain
the differential probability within the LCFA, which is given by

dPC,LCFA

dk−dϕ+
= α√

3π

1

p−

1

η0

[
p2

− + p′ 2
−

p− p′−
K2/3

(
2

3

k−
p′−

1

χ (ϕ+)

)
−

∫ ∞

2k−/3p′−χ (ϕ+ )
dz K1/3(z)

]
, (29)

where Kν indicates the modified Bessel function of order ν [54]. Note that, although we have employed the approximated
expression of the integrand valid for small ϕ−, the integration in ϕ− can be safely extended up to ϕ− → ±∞ because the
contribution to the integral at large values of |ϕ−| is anyway negligible due to the fast oscillations of the integrand itself. In
Ref. [40] we have already calculated the leading-order correction δ�C (k−, ϕ−, ϕ+) to the phase �C,LCFA(k−, ϕ−, ϕ+), which is
obtained by expanding �C (k−, ϕ−, ϕ+) up to terms of the order of ϕ5

− (see also Refs. [37,38,41]):

δ�C (k−, ϕ−, ϕ+) = 1

2η3
0

k−
p′−

χ′ 2(ϕ+) + 3χ(ϕ+) · χ′′(ϕ+)

720
ϕ5

−, (30)

where we have set χ(ϕ) = η0ξ
′
⊥(ϕ) (note that χ (ϕ) = |χ(ϕ)|). Analogously, we obtain the leading-order correction δ�⊥(ϕ−, ϕ+)

to �⊥,LCFA(ϕ−, ϕ+), which is given by

δ�⊥(ϕ−, ϕ+) = 1

η0

χ′′(ϕ+)

24
ϕ3

−. (31)

After plugging the expressions of δ�C (k−, ϕ−, ϕ+) and of δ�⊥(ϕ−, ϕ+) in Eqs. (24) and (25) and by employing the formulas in
the Appendix, one easily obtains the photon emission differential probability up to next-to-leading order in the LCFA:

dPNLO
C

dk−dϕ+
= dPC,LCFA

dk−dϕ+

+ α√
3π

η0

p−

〈
1

45

χ′ 2(ϕ+) + 3χ(ϕ+) · χ′′(ϕ+)

χ4(ϕ+)

[
k−
p′−

1

χ (ϕ+)
K1/3

(
2

3

k−
p′−

1

χ (ϕ+)

)
− 2K2/3

(
2

3

k−
p′−

1

χ (ϕ+)

)]

+ 1

45

χ′ 2(ϕ+) + 3χ(ϕ+) · χ′′(ϕ+)

χ4(ϕ+)

p2
− + p′ 2

−
p− p′−

×
{

6K2/3

(
2

3

k−
p′−

1

χ (ϕ+)

)
−

[
k−
p′−

1

χ (ϕ+)
+ 4

p′
−

k−
χ (ϕ+)

]
K1/3

(
2

3

k−
p′−

1

χ (ϕ+)

)}

− 1

3

p2
− + p′ 2

−
p− p′−

χ(ϕ+) · χ′′(ϕ+)

χ4(ϕ+)

[
K2/3

(
2

3

k−
p′−

1

χ (ϕ+)

)
− p′

−
k−

χ (ϕ+)K1/3

(
2

3

k−
p′−

1

χ (ϕ+)

)]〉
. (32)

The expression of the differential emission probability in Eq. (32) is in agreement with the results in Ref. [37], which can
be obtained with the substitution rules η0ξ

′
⊥(ϕ) → εb/m2 and η0d/dϕ → εm−2V · ∇, and suggests that the corrections to the

LCFA scale as 1/ξ 2
0 if χ0 � 1 and k− ∼ p−. This explains previous findings showing that the LCFA in nonlinear Breit-Wheeler

pair production [32] and nonlinear Compton scattering [34] turned out to be a satisfactory approximation at the percentage level
already for ξ0 � 5. However, if k− � p−, we have already seen in Ref. [40] that the LCFA may fail; i.e., the corrections can be
large even if ξ0 � 1. In order to ascertain this explicitly, we can expand the expression in Eq. (32) for k−/p− � min(1, χ0).

We recall that (see, e.g., Ref. [54])

Kν (x) ≈ �(ν)

2

(
2

x

)ν

, 0 < x � 1. (33)

By employing this approximated expression it is easy to show that for k−/p− � min(1, χ0), it is

dPNLO
C

dk−dϕ+
≈ α√

3π

1

p−

1

η0
�

(
2

3

)[
3

p−
k−

χ (ϕ+)

]2/3
{

1 − η2
0

135

�(1/3)

�(2/3)

4χ′ 2(ϕ+) − 3χ(ϕ+) · χ′′(ϕ+)

χ4(ϕ+)

[
3

p−
k−

χ (ϕ+)

]2/3
}

. (34)
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On the one hand, this result indicates that the corrections are small if ηLCFA � 1 [see Eq. (1) recalling that here it is k−/p− �
min(1, χ0)]. Indeed, the corrections scale as η

2/3
LCFA in order of magnitude, in agreement with the results in Ref. [40]. More

accurately there are two conditions of validity, which depend on the structure of the plane wave and which read

η2
0
χ′ 2(ϕ+)

χ4(ϕ+)

[ p−
k−

χ (ϕ+)
]2/3

� 1, (35)

η2
0
|χ(ϕ+) · χ′′(ϕ+)|

χ4(ϕ+)

[ p−
k−

χ (ϕ+)
]2/3

� 1. (36)

On the other hand, as it has been observed in Refs. [40,41], the leading-order correction induces a nonintegrable divergence
for k− → 0, which is in agreement with the fact that the approximation breaks down for too-low light-cone energies. This also
implies that, from the point of view of the expansion with respect to the field derivatives, the constant in Eq. (4) represents a
nonperturbative result, which cannot be obtained at any finite order of perturbation with respect to the field derivatives. The
conditions in Eqs. (35) and (36) define the domain of validity of the LCFA. It is interesting to notice that there exists a bound
also on the second derivative of the field, which justifies our definition of τ (t ) in Eq. (10). In addition, the conditions in Eqs. (35)
and (36) explicitly indicate that the LCFA becomes invalid for sufficiently small values of the ratio k−/p−, i.e., in the infrared
region.

The corresponding results for nonlinear Breit-Wheeler pair production are easily obtained by recalling the crossing symmetry
between this process and nonlinear Compton scattering [1,29] (see also Ref. [27]). In fact, the differential probability dPBW /d p−
of nonlinear Breit-Wheeler pair production per unit of produced positron light-cone energy p− is simply obtained from
the corresponding probability dPC/dk− of nonlinear Compton scattering by replacing p− → −p− (η0 → −(k0 p)/m2) and
k− → −k−, and then by multiplying the result by −p2

−/k2
− [1,29]. It is clear that in the case of nonlinear Breit-Wheeler pair

production k− indicates the light-cone energy of the incoming photon. Thus, by writing dPBW /d p− in the form dPBW /d p− =∫
dϕ+ dPBW /d p−dϕ+, we obtain

dPBW

d p−dϕ+
= α

2π

1

k−

1

θ0
Im

∫
dϕ−

ϕ− + i0

[
−1 + p2

− + p′ 2
−

4p− p′−
�2

⊥(ϕ−, ϕ+)

]
ei�BW (p−,ϕ−,ϕ+ ), (37)

�BW (p−, ϕ−, ϕ+) = 1

2θ0

k2
−

p− p′−

{
ϕ− +

∫ ϕ−/2

−ϕ−/2
dϕ̃ ξ2

⊥(ϕ+ + ϕ̃) − 1

ϕ−

[ ∫ ϕ−/2

−ϕ−/2
dϕ̃ ξ⊥(ϕ+ + ϕ̃)

]2}
, (38)

where θ0 = (k0k)/m2 and where here and below the quantity p′
− = k− − p− indicates the light-cone energy of the produced

electron (as in the case of nonlinear Compton scattering the quantity dPBW /d p−dϕ+ can be rigorously interpreted as a differential
probability only within the LCFA).

The corresponding differential probability dPNLO
BW /d p−dϕ+ up to the next-to-leading order in the LCFA is given by

dPNLO
BW

d p−dϕ+
= dPBW,LCFA

d p−dϕ+

− α√
3π

θ0

k−

〈
1

45

κ′ 2(ϕ+) + 3κ(ϕ+) · κ′′(ϕ+)

κ4(ϕ+)

[
k2
−

p− p′−

1

κ (ϕ+)
K1/3

(
2

3

k2
−

p− p′−

1

κ (ϕ+)

)
− 2K2/3

(
2

3

k2
−

p− p′−

1

κ (ϕ+)

)]

− 1

45

κ′ 2(ϕ+) + 3κ(ϕ+) · κ′′(ϕ+)

κ4(ϕ+)

p2
− + p′ 2

−
p− p′−

×
{

6K2/3

(
2

3

k2
−

p− p′−

1

κ (ϕ+)

)
−

[
k2
−

p− p′−

1

κ (ϕ+)
+ 4

p− p′
−

k2−
κ (ϕ+)

]
K1/3

(
2

3

k2
−

p− p′−

1

κ (ϕ+)

)}

+ 1

3

p2
− + p′ 2

−
p− p′−

κ(ϕ+) · κ′′(ϕ+)

κ4(ϕ+)

[
K2/3

(
2

3

k2
−

p− p′−

1

κ (ϕ+)

)
− p− p′

−
k2−

κ (ϕ+)K1/3

(
2

3

k2
−

p− p′−

1

κ (ϕ+)

)]〉
, (39)

where κ(ϕ+) = θ0ξ
′
⊥(ϕ) (κ (ϕ) = |κ(ϕ)|), and where

dPBW,LCFA

d p−dϕ+
= α√

3π

1

k−

1

θ0

[
p2

− + p′ 2
−

p− p′−
K2/3

(
2

3

k2
−

p− p′−

1

κ (ϕ+)

)
+

∫ ∞

2k2−/3p− p′−κ (ϕ+ )
dz K1/3(z)

]
. (40)

It is important to notice that, since k− here is the fixed light-cone energy of the incoming photon, no “infrared” problems arise in
the case of nonlinear Breit-Wheeler pair production. In fact, the quantity k2

−/p− p′
− is always larger than or equal to 4 and cannot

compensate large values of the parameter ξ 2
0 in the phase �BW (p−, ϕ−, ϕ+). Consequently, it does not make physical sense to

compute the asymptotic expression as done for nonlinear Compton scattering in Eq. (34). In addition, we would conclude that
the systematic approach presented in this section is particularly useful in the case of nonlinear Breit-Wheeler pair production
because the size of the correction does not depend significantly on the final energies of the particles and, provided that it is
much smaller than the LCFA result, can be implemented without additional restrictions. By contrast, in the case of nonlinear
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Compton scattering the requirement that the correction has to be much smaller than the LCFA result restricts its applicability to
the intermediate- and high-energy parts of the emission spectrum.

V. THE LCFA FOR ANGULAR-RESOLVED EMISSION AND PAIR-PRODUCTION PROBABILITIES

As we mentioned in the Introduction, the collinear approximation in nonlinear Compton scattering, i.e., the fact that the
electron is assumed to emit along its instantaneous velocity, was recently investigated in Ref. [34]. In order to provide some
analytical insight into this aspect of the LCFA, we start from Eq. (8) in Ref. [40], which we can rewrite as

dPC

dk
= − α

4π2

1

η0

1

ω0ωp′−

∫
dϕ+dϕ− e

i 1
2η0

k−
p′−

∫ ϕ−/2
−ϕ−/2 dϕ̃

{
1+

[
p⊥
m − p−

k−
k⊥
m −ξ⊥(ϕ++ϕ̃)

]2
}[

1 + 1

4

p2
− + p′ 2

−
p− p′−

�2
⊥(ϕ−, ϕ+)

]
. (41)

In the case of Eq. (41), the LCFA amounts to expanding the function ξ⊥(ϕ) for ϕ around ϕ+ up to linear terms in ϕ− in the
preexponential function and up to quadratic terms in the phase, where finally only terms scaling as ϕ3

− are retained. By writing
in general dP/dk as dP/dk = ∫

dϕ+ dP/dkdϕ+, we obtain that within the LCFA

dPC,LCFA

dkdϕ+
= − α

4π2

1

η0

1

ω0ωp′−

∫
dϕ− e

i 1
2η0

k−
p′−

{[
1+π2

⊥,−(ϕ+ )
]
ϕ−+ ξ′ 2⊥ (ϕ+ )

12 ϕ3
−

}[
1 + p2

− + p′ 2
−

p− p′−

ξ′ 2
⊥ (ϕ+)

4
ϕ2

−

]
, (42)

where in general

π⊥,±(ϕ+) = p⊥
m

− p−
k−

k⊥
m

± ξ⊥(ϕ+). (43)

The remaining integral is easily carried out with the help of the formulas in the Appendix and the final result is

dPC,LCFA

dkdϕ+
= α√

3π2

1

ω0ωp′−

√
1 + π2

⊥,−(ϕ+)

χ (ϕ+)

{
p2

− + p′ 2
−

p− p′−
[1 + π2

⊥,−(ϕ+)] − 1

}
K1/3

(
2

3

k−
p′−

[1 + π2
⊥,−(ϕ+)]3/2

χ (ϕ+)

)
. (44)

Note that this result is in agreement with Eq. (4.13) in Ref. [29]. The formation phase ϕ f of the emission of a photon with
momentum between k and k + dk can be defined from Eq. (42) in an analogous way as we have done in Ref. [40] and the

result is obtained from Eq. (5) with the substitutions |ξ′
⊥(ϕ+)| → |ξ′

⊥(ϕ+)|/
√

1 + π2
⊥,−(ϕ+) and η0 → η0/[1 + π2

⊥,−(ϕ+)] [note

that χ (ϕ+) → χ (ϕ+)/[1 + π2
⊥,−(ϕ+)]3/2]. This implies that all considerations on the formation phase presented in the previous

section and in Ref. [40] can be repeated for the differential probability dP/dkdϕ+. Moreover, Eq. (44) indicates that the main
contribution to the integral in d2k⊥ comes from the region [1 + π2

⊥,−(ϕ+)]3/2 � χ (ϕ+)p′
−/k−, such that at χ0 ∼ 1 and at a given

phase ϕ+ the instantaneous emission cone of low-energy photons with p−/ξ 3
0 � k− � p− can be a factor (p−/k−)1/3 broader

than that of hard photons with k− ∼ p−, which is of the order of m/p−.
Finally, for the sake of completeness, we report the corresponding differential probabilities dPBW /d3 p and dPBW,LCFA/d3 pdϕ+

of nonlinear Breit-Wheeler pair production, which can be obtained from Eqs. (41) and (44), respectively, by means of the
substitutions p− → −p− (η0 → −(k0 p)/m2), p⊥ → −p⊥, k− → −k−, ω → −ω, and k⊥ → −k⊥ and by then multiplying by
−ωp−/εk−:

dPBW

d p
= α

4π2

1

θ0

1

ω0εp′−

∫
dϕ+dϕ− e

i 1
2θ0

k2−
p− p′−

∫ ϕ−/2
−ϕ−/2 dϕ̃

{
1+

[
p⊥
m − p−

k−
k⊥
m +ξ⊥(ϕ++ϕ̃)

]2
}[

1 + 1

4

p2
− + p′ 2

−
p− p′−

�2
⊥(ϕ−, ϕ+)

]
, (45)

dPBW,LCFA

d pdϕ+
= α√

3π2

1

ω0εp′−

√
1 + π2

⊥,+(ϕ+)

κ (ϕ+)

{
1 + p2

− + p′ 2
−

p− p′−
[1 + π2

⊥,+(ϕ+)]

}
K1/3

(
2

3

k2
−

p− p′−

[1 + π2
⊥,+(ϕ+)]3/2

κ (ϕ+)

)
, (46)

where the momenta have to be interpreted according to discussion in the previous section (for example, p′
− = k− − p− is the

light-cone energy of the produced electron).

VI. CONCLUSIONS

In this paper we have developed a scheme to implement
numerically nonlinear Compton scattering beyond the LCFA
by generalizing and simplifying the findings in Ref. [40]. We
have provided a model which guarantees that the emission
probability has the correct constant behavior in the infrared
region of the spectrum, where the LCFA features an integrable
divergence. These findings have been generalized from the
special case of a plane wave to that of a general background

electromagnetic field and can be implemented also in PIC
codes in the sense that only local values of the physical
quantities are employed.

In addition, we have determined the leading-order correc-
tion to the LCFA differential photon emission probability in
the case of a plane wave by using a systematic approach,
where the relative variation of the plane wave within the
formation length is much smaller than unity. The expression
of the correction indicates that the applicability of the LCFA
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also constrains the second derivative of the plane-wave field.
Moreover, we have obtained the corresponding corrections to
the LCFA differential positron spectrum in nonlinear Breit-
Wheeler pair production. We have observed that in this case
no infrared issues arise such that the correction obtained via
the systematic approach is applicable for all positron light-
cone energies.

Finally, for the sake of completeness, we have reported
the fully differential photon emission spectrum and positron
production spectrum in a plane wave within the LCFA.
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APPENDIX: USEFUL INTEGRALS

In order to obtain the final expressions within the LCFA
and beyond, the following integrals are useful (see, e.g.,
Ref. [29]):∫ ∞

−∞

dx

x + i0
eib(x+x3/3) = − 2i√

3

∫ ∞

2b/3
dz K1/3(z), (A1)∫ ∞

−∞
dx eib(x+x3/3) = 2√

3
K1/3

(
2

3
b

)
, (A2)

∫ ∞

−∞
dx xeib(x+x3/3) = 2i√

3
K2/3

(
2

3
b

)
, (A3)∫ ∞

−∞
dx x2eib(x+x3/3) = − 2√

3
K1/3

(
2

3
b

)
, (A4)∫ ∞

−∞
dx x3eib(x+x3/3)

= − 2i√
3

[
K2/3

(
2

3
b

)
− 1

b
K1/3

(
2

3
b

)]
, (A5)∫ ∞
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dx x4eib(x+x3/3)

= 2√
3
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K1/3

(
2

3
b
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− 2

b
K2/3

(
2

3
b

)]
, (A6)∫ ∞

−∞
dx x5eib(x+x3/3)

= 2i√
3

[
K2/3

(
2

3
b

)
− 6

b
K1/3

(
2

3
b

)]
, (A7)∫ ∞

−∞
dx x6eib(x+x3/3)

= 2√
3

[
6

b
K2/3

(
2

3
b

)
− K1/3

(
2

3
b

)(
1 + 4

b2

)]
, (A8)

where b is a positive real number and Kν indicates the modi-
fied Bessel function of order ν [54].
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