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We propose a resource theory of the quantum invasiveness of general quantum operations, i.e., those defined
by quantum channels in Leggett-Garg scenarios. We are able to compare the resource-theoretic framework of
quantum invasiveness to the resource theory of coherence. We also show that the Fisher information is a quantifier
of quantum invasiveness. This result allows us to establish a direct connection between the concept of quantum
invasiveness and quantum metrology, by exploring the utility of the definition of quantum invasiveness in the
context of metrological protocols.
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I. INTRODUCTION

Recently, substantial effort has been put forth to elucidate
and quantify nonclassical features of quantum theory by using
the mathematical framework of resource theories [1]. Perhaps
the most studied and developed example of a nonclassical
property in the context of resource theories is the quantifi-
cation of entanglement [2]. Similarly, the resource theory of
quantum coherence [3] has been proposed and widely ex-
plored in the past few years [4], providing insights and leading
to applications in a variety of topics on quantum information
and technologies such as quantum metrology [5], quantum
thermodynamics [6], and quantum biology [7]. In this spirit,
the proposition of resource theories of nonclassical aspects
would potentially permit us to improve our understanding of
these aspects, helping to establish equivalences and connec-
tions with other nonclassical features of quantum theory. Nat-
urally, new applications and potentialities of nonclassicality in
resource-theoretic frameworks could be explored as well.

Some nonclassical aspects of quantum theory are usually
defined as those not satisfying a worldview referred to as
macrorealism. This notion was introduced by Leggett and
Garg and was associated with the intuitive fact that macro-
scopic objects, in this context understood as those governed
by classical laws, are consistent with definite values for
their properties at all instants of time and that measurements
performed on these objects cannot have an effect on these
values [8]. Aiming to propose a test capable of ruling out
macrorealism in physical systems, the authors proposed the
so-called Leggett-Garg inequality (LGI), the derivation of
which was based on the two aforementioned assumptions. The
violation of the inequality would then permit us to rule out
macrorealism. However, the precise meaning of the violation
of the LGI with regard to these assumptions has been the
subject of debate since the inequality had been proposed,
regaining relevance in the past few years [9–14].

Amidst this debate, there have been propositions of alter-
native conditions for macrorealism, such as the no-signaling-
in-time (NSIT) condition [15]. This condition puts forward
the macrorealist assumption related to the null effect that

the measurement process is expected to have on a physical
system, as it compares the statistics of the measurement of a
chosen observable in two experiments: one in which a nonse-
lective previous measurement is performed at time t1 before
a later one at t2 > t1 and another where the measurement
at t1 is absent (nonselective here means that irrespectively
of the result of the measurement, the physical system will
continue its history). In a macrorealistic world, one expects
the statistics of the measurement at t2 to be the same in
both experiments, since measurements can be carried out
with arbitrarily small disturbance to the system’s state. Later,
by considering a scheme where three measurements can be
performed, it was shown in Ref. [11] that the fulfillment
of sets of specific NSIT conditions may be necessary and
sufficient for macrorealism. This was shown by considering an
underlying probability associated with a scenario where three
measurements are performed from which all the probabilities
(associated, for instance, with experiments where only one
or two of the three predefined measurements are carried out)
can be obtained by marginalizing the underlying probability
[16–18]. Similar conditions were used in the context of the
LGI by Maroney and Timpson [9] to show that LGI violation
can always be related to a notion of the measurement disturb-
ing the system’s evolution in a nonclassical fashion. We will
refer to this nonclassical concept, from now on, as quantum
invasiveness, or simply invasiveness.

Recent works have explored connections of the violation of
NSIT conditions [19] and LGIs [20] with quantum metrology
[21–24] and suggested a unified approach to contextuality
and violations of macrorealism [18]. In this paper we seek to
propose a resource theory of operations, the resource theory
of quantum invasiveness. Also, within the resource-theoretic
framework, we are able to explore the connections as well as
the contrasts between the nonclassical concepts of invasive-
ness and coherence. This paper is organized as follows. We
discuss briefly the resource-theoretic framework in Sec. II and
the resource theory of coherence in Sec. III. In Sec. IV we
present the scenario as well as the definition of invasiveness.
The resource theory of quantum invasiveness is introduced
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Sec. V. In Sec. VI we outline the definition of the Fisher
information and quantum Fisher information [25–27] in the
context of protocols for parameter estimation and show that
the Fisher information is an invasiveness quantifier. This result
is discussed in Sec. VII, as well as the relationship between
invasiveness and coherence with the aid of the resource-
theoretic framework. A brief summary is given in Sec. VIII.

II. RESOURCE-THEORETIC FRAMEWORK

As mentioned above, one of the most remarkable uses of
resource theories is related to the quantification of a given
resource, which can be useful in performing certain tasks. As
pointed out in Ref. [1], a way to define resource theories is
by sorting a given set of experimental interventions (prepara-
tions, transformations, and measurements, for instance) into
the free and the costly interventions. Presumably, one should
be able to use the elements of the free set unlimitedly and
in any combination. The costly elements, on the other hand,
are the resources. In this way, it is expected that a resource
theory describes the structure induced on the resources, given
access to the free set. Resource theories can be formalized by
defining them as symmetric monoidal categories [28]. Hence,
the objects of the category can be composed both in parallel
and in sequence [1].

Here we provide only a basic description of the require-
ments to define a resource theory. As mentioned above, the
elements of the free set must be specified in order to define it.
The objects of a resource theory possessing no value are called
free resources. In turn, free transformations are the trans-
formations between two objects which can be implemented
without any cost. Thus, it is expected that free transformations
map free objects into free objects. Logically, free resources are
therefore expected to remain costless after being subjected to
a free transformation.

Example: Resource theory of entanglement

In a standard approach to the resource theory of entan-
glement, free transformations are defined as local operations
and classical communication (LOCC), while free states are
considered to be separable states [2]. Consistently, entangled
states cannot be generated by LOCC. Resource theories of this
sort, where states can be identified as the relevant resource,
are commonly referred to as resource theories of states. An
example of a quantifier of the resource entanglement of a state
ρ is the relative entropy of entanglement, defined as [2,29–31]

ER = inf
σ∈�

Trρ(log2 ρ − log2 σ ), (1)

where � denotes the set of separable states.

III. COHERENCE

Before moving on, it will be useful to briefly review the
resource theory of coherence as proposed in Ref. [3], since
it can be connected to the resource theory of invasiveness, as
we will discuss later. Given a basis {|i〉}, the incoherent states
(free objects) I are defined as the diagonal states in this basis.
Free operations, in turn, are those leading the set of diagonal
states into itself. Therefore, they cannot generate coherence.

ρ Φ(ρ) Q

ρ Q

Q 1

Q 2

(a)

(b)

t = 0 t

Φ

FIG. 1. Schematic representation of the scenario. (a) Experiment
1. The state ρ is subjected to the operation � at t = 0 and the
observable Q is measured at t . By repeating this experiment many
times, the expected value 〈Q〉1 is obtained. (b) Experiment 2. The
empty square at t = 0 represents the fact that the operation � is not
applied. At t , Q is measured. As before, many realizations of the
experiment allow the obtention of 〈Q〉2.

An example of a coherence quantifier satisfying the conditions
above is the l1-norm of coherence [3]

Dl1 =
∑

i j, j �=i

|ρi j |, (2)

where ρi j are the off-diagonal elements of a given state ρ.
In the following we will present the definition of the

nonclassical concept of quantum invasiveness of a quantum
channel � in Leggett-Garg scenarios. Based on this, we will
propose a resource theory of quantum invasiveness and iden-
tify how it can be related to the resource theory of coherence.

IV. QUANTUM INVASIVENESS

A generalization of the concept of invasiveness was re-
cently proposed in Ref. [32]. The nonclassical notion of
measurement invasiveness was extended to invasiveness of
a quantum operation, represented by a quantum channel. In
order to introduce this concept, we first describe the associ-
ated scenario, schematically shown in Fig. 1. We consider a
state ρ, a completely positive and trace-preserving quantum
channel � associated with the Kraus operators {Kl} satisfying∑

l K†
l Kl = 1, and an observable Q. The trace-preserving

condition is consistent with the nonselectiveness imposed on
measurements. Such a condition can be dropped, but we prefer
to impose it and keep things simpler.

In an experiment labeled as experiment 1, � is applied to
the state ρ at t = 0: ρ �→ ∑

l KlρK†
l . Then the observable

Q is measured at t . This experiment is repeated many times
in such way that the expected value of the observable Q,
〈Q〉1, is obtained. In a second experiment, experiment 2, ρ

is not subjected to � and the observable Q is measured at t .
The experiment is repeated several times as well so that the
expected value of Q, 〈Q〉2, can be evaluated.

Considering the scenario described above, ρ and Q gener-
ate a witness to the invasiveness of the quantum operation �,
W , defined as [32–34]

W ≡ 〈Q〉1 − 〈Q〉2 = Tr[Q�(ρ) − Qρ]. (3)
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FIG. 2. Representation of the actuation of a quantum channel �

on a given set of classical states (CS), defined as the eigenstates of
a given observable Q, as well as their convex combinations. The set
of quantum states (QS) is represented by the circle, which contains
the classical set with respect to Q. As a result of the invasiveness
of �, the set of classical states may be taken into a set containing
nonclassical states, in the area delimited by the shape with a dashed
border on the right-hand side.

One may question the fact that W may not be zero as a result of
classical disturbances or errors present in the experiments. To
rule out this possibility, a strategy consisting of a protocol with
control experiments was proposed in Refs. [32,33]. These
control experiments allow determining W by performing the
experiments described above for the eigenstates of the ob-
servable Q as inputs. Eigenstates are associated with definite
values of the quantity represented by the observable Q and
therefore, by performing the control experiments, one can
determine the classical disturbance.

In other words, the problem posed by the presence of
classical errors can be experimentally tackled via control
experiments [32,33]. Specifically, a control experiment has to
be performed for each classical state, defined as the eigen-
states |q〉 of the observable Q. Thus, a control experiment
corresponds to the scheme shown in Fig. 1 with the input
state ρ corresponding to a particular eigenstate |q〉 such that
the corresponding value of the witness defined in Eq. (2) can
be determined. By calling the values of the witness for each
eigenstate |q〉 as input Wq, one gets the condition min{Wq} �
W � max{Wq}, instead of W = 0, as the nondisturbance con-
dition [33]. Hence, W �= 0 is a witness of invasiveness only
if all Wq = 0. As an example, consider Q = σz and � = ηz,
with ηzρ = σzρσz. Before the measurement of Q in Fig. 1, we
will consider a transformation ηH . Therefore, in experiment
1 sketched in Fig. 1, its combination with � will read ηH ◦
ηzρ = H[σzρσz]H , with [32]

H = 1√
2

(
1 1
1 −1

)
. (4)

Note that the transformation ηH is always present, both in
experiment 1 of Fig. 1, where � is also present, and in
experiment 2, where � is absent. The eigenstates of Q, defined
as classical states, are {|0〉, |1〉}. In this particular example,
where [Q, σz] = 0, we have that W0 = W1 = 0. In turn, by
taking ρ = |ϑ〉〈ϑ | with |ϑ〉 = 1√

2
(|0〉 − |1〉), we obtain W =

2. We have therefore a simple example where all Wi = 0 and
invasiveness can be directly witnessed.

From Eq. (3) we are able to gain some intuition related to
the fact that quantities depending on some notion of distance
between ρ and �(ρ) may be good candidates as quantifiers
of invasiveness (see also [35]). Based on the concepts and
witnesses of nonclassicality discussed above, we present the
definition of quantum invasiveness that we will consider from
now on.

Definition. A general quantum operation (represented by
a quantum channel) is considered to be invasive whenever it
disturbs the physical system in a nonclassical way.

In order for the definition above to be precise, it is nec-
essary to specify the classical states and classical operations.
Indeed, since our main concern is the nonclassical effect of
the invasiveness of operations, one may question whether a
generalization of the scheme presented above, which would
allow a classical operation instead of the absence of the
operation [represented by the dashed square in Fig. 1(b)],
would be possible. As we will see, the resource theory of
quantum invasiveness introduced in the next section naturally
allows us to include the possibility of the presence of classical
operations in the dashed square, in contrast with the scheme
above, which ultimately relies on control experiments to get
rid of the classical disturbance.

V. QUANTIFYING INVASIVENESS

We now formulate a resource theory of operations for
the invasiveness of transformations �, given a measurement
observable Q.

(i) Free states. The eigenstates |q〉 of the measurement
observable Q, as well as their convex combinations ρC =∑

k pk|q〉〈q|, ∑k pk = 1. The set of free states will be denoted
by �, i.e., ρC ∈ �.

(ii) Free operations. Completely positive and trace-
preserving quantum channels �free can be expressed in the
Kraus representation using Kraus operators of the form Kl =∑

i cl (i)|q j(i)〉〈qi|, where j(i) is a function from the index set
of the basis of Q, and cl (i) are coefficients [36].

The free-state set is the convex set generated by the eigen-
states of Q since, with respect to Q measurements, they can be
given a classical ontological interpretation, while their convex
combinations receive a probabilistic interpretation based on
ignorance. For this reason, we also refer to any such ρC as a
classical state. This definition of free states is in line with the
notion of eigenstate mixture macrorealism in Ref. [9].

In turn, free operations for a resource theory of quantum
invasiveness must necessarily map a classical state into an-
other classical state. The free operation defined above, which
is an incoherent completely positive trace-preserving map [3],
satisfies this requirement. Specifically, in a Kraus represen-
tation, these operations are such that ρ f = ∑

l Klρ
CK†

l ∈ �

and all ρC ∈ � [36]. This restriction is such that even in
the generalized version when one has access to individual
measurement outcomes {Kl} and non-trace-preserving maps
have to be used, ρC �→ 1

Tr(Kl ρC K†
l )

Klρ
CK†

l , it is impossible to

generate invasiveness from the free states.
This is a minimal set of elements allowing us to define

a resource theory of invasiveness. Naturally, alternative re-
source theories of invasiveness can be defined by considering
different free operation sets, in the same way that a resource
theory for entanglement can also consider positive partial
transpose transformations instead of LOCC maps.

In Fig. 2 we represent the set of classical states, given by
the eigenstates of Q and their convex combinations, as a subset
of the set of quantum states. An illustrative example of an
invasive operation is given, and we see that some classical
state are mapped into some nonclassical ones.
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In resource theory, any monotone can be used as a quanti-
fier for the specific resource under consideration. In our case,
we want to develop a resource theory for transformations. In
order for a function I to be a quantifier of the invasiveness of �

with respect to an observable Q, it is natural to demand posi-
tivity I (�) � 0, while I (�free) = 0 for all �free; monotonicity
under free operations

I (�free ◦ � ◦ �̃free) � I (�) (5)

for all �̃free and �free; and convexity I (
∑

i pk�k ) �∑
pkI (�k ).
For a fixed observable Q, one can define different classes

of quantifiers, using different choices of classical states. One
possibility is to fix some classical state γ and to have (for
each choice of γ ∈ �) a quantifier of the invasiveness of � as
detected by Q and γ . Another possibility is to optimize over
all γ ∈ �.

Next we present an example of a quantifier of invasiveness.
We will seek to make it meaningful in the context of quan-
tum metrology by introducing a parameter θ in the scenario
described above. By doing so, the resource theory of invasive-
ness of operations can be connected to an application in the
context of a quantum information protocol. More generally,
by focusing on finding meaningful quantifiers in the context
of a given task, alternative routes to exploit and understand
nonclassicality can be explored. We believe that this could be
an interesting approach to be taken into consideration in future
investigations.

VI. INVASIVENESS AS A RESOURCE TO PARAMETER
ESTIMATION

The quality of the estimation of a given parameter θ of
a physical system can be assessed through the evaluation of
the Fisher information of the process. Specifically, the Fisher
information F determines the sensitivity of the estimation of
a given parameter θ , as it bounds the standard deviation �θ

as �θ � 1/
√

νF (θ ), where ν is the number of realizations of
the experiment, assuming unbiased measurements. The Fisher
information can be expressed as

F (θ ) =
∑

l

Pl (θ )

[
∂ ln Pl (θ )

∂θ

]2

, (6)

where Pl (θ ) are the probabilities associated with each possible
result l of the measurement, satisfying

∑
l Pl (θ ) = 1.

The generalization of the Fisher information to quantum
mechanics can be done by writing Pl (θ ) = Tr[ρ(θ )El ], where
ρ(θ ) depending on θ and {El} is a positive-operator-valued
measure. The maximum value FQ that F (θ ) can assume,
the quantum Fisher information [37–40], can be obtained
through the maximization over all quantum measurements,
FQ = max{El } F (ρ, {El}). As a result, the quantum Fisher
information corresponds to the Fisher information associated
with the optimal measurement, i.e., the one which gives the
most precise estimation for θ .

In relation to the resource theory of invasiveness defined
above, we will show that the Fisher information is a suitable
quantifier of the invasiveness of a class of θ -dependent op-
eration. To do so, we consider the scenario described above,
now with a unitary imprinting of a parameter θ . Consider

ρ Φ(ρ) Q

U(θ(t))Φ(ρ)U†(θ(t))
Φ[U(θ)ρU†(θ)]

Φθ

FIG. 3. The state ρ is subjected to �′
θ = � ◦ ηθ . The unitary

transformation ηθ and subsequently � are applied to the state ρ and
the observable Q is finally measured.

a unitary transformation U (θ ) = e−iAθ , A being a Hermitian
operator, the role of which is to imprint the parameter θ on the
system’s state (see Fig. 3). Let us denote by ηθ the actuation
of U (θ ) on density operators: ηθρ = U (θ )ρU †(θ ). Therefore,
the transformation undergone by an arbitrary state ρ, which
can or cannot be invasive, is now defined by �′

θ = � ◦ ηθ .
In the classical scenario, we expect that [A, Q] = 0 is

satisfied. As a result, an example of transformation �′
θ which

cannot generate invasiveness is �free ◦ [ηθ ]free, where [ηθ ]free

corresponds to a unitary such that [A, Q] = 0. In particular,
note that the power of the invasiveness of � becomes clear
when we impose [A, Q] = 0. In this case, without � or with
some noninvasive �free, the state ρ f (θ ) = �free ◦ [ηθ ]freeρ is
also classical and the probabilities are independent of θ ,
giving null Fisher information for this process.

On the other hand, if � can transform a classical state ρC

into some nonclassical one, i.e., into some state which cannot
be written as a mixture of states with a well-defined value q,
then interference fringes can show up in the probabilities as
functions of θ , giving rise to positive Fisher information. By
considering such a scenario and the definition of the quantifier
of invasiveness I above, we arrive at a result expressing
the nonclassicality from the point of view of the Fisher
information.

Theorem 1. A suitable quantifier of the invasiveness of a
quantum channel �′

θ = � ◦ ηθ , where ηθ is a unitary transfor-
mation U (θ ) = e−iθA, given an arbitrary state ρ, ρ f = �′

θ (ρ),
and the positive-operator-valued measure {|q〉〈q|}, is

I (�′
θ ) = Fρ f (θ ), (7)

where Fρ f (θ ) is the Fisher information of the state ρ f .
Proof. In order to prove condition 1, note that a free opera-

tion can only permute or coarse grain the diagonal elements
of ρ. Moreover, by assumption, the only dependence that
�′

θ = � ◦ ηθ can have on the parameter θ comes from ηθ .
Consistently, any free operation with a θ dependence can be
factored as �free ◦ [ηθ ]free, with a [ηθ ]free generated by some A
such that [A, Q] = 0. As a result, the diagonal elements of ρ f

will not depend on θ . Therefore, I (�′
free) ≡ Fρ f (θ ) = 0.

Condition 2 is also satisfied: The relevant terms are on
the diagonal of ρ f since we are interested in the probabilities
P|q〉(θ ) = Tr[|q〉〈q|�′

θ (ρ f )] associated with the eigenstates |q〉
of Q. Since free operations �free are generated by permuta-
tions of |q〉, the Birkhoff theorem implies that �free(ρ) is a
convex combination of permutations of ρ, and convexity (con-
dition 3) shows that it cannot increase I (�′). Analogously,
when calculating I (�free ◦ �′), one can consider the adjoint
channel �

†
free acting on |q〉〈q| to conclude that the new P|q〉(θ )
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will be convex combinations of the old ones, with convexity
closing the argument again.

Finally, condition 3 is fulfilled since Fρ f (θ ) is convex (see
the Appendix). �

As a simple example, consider a qubit system, in which
the eigenstates of σz are denoted by {|0〉, |1〉} and considered
classical, i.e., Q = σz. If A = σx, � = 1, and ρ = |ψ〉〈ψ | with
|ψ〉 = |0〉 in Fig. 3, we obtain

|ψ f 〉 = �′
θ (|ψ〉) = e−iθσx |0〉 = cos θ |0〉 − i sin θ |1〉. (8)

The probabilities of obtaining each of the outcomes associated
with the eigenstates of Q are P0(θ ) = |〈0|ψ f 〉|2 = cos2 θ and
P1(θ ) = |〈1|ψ f 〉|2 = sin2 θ . As a result,

I (�′
θ ) = F|ψ f 〉(θ ) = 1

P0(θ )

[
∂P0(θ )

∂θ

]2

+ 1

P1(θ )

[
∂P1(θ )

∂θ

]2

=
[−2 cos θ sin θ

cos θ

]2

+
[

2 sin θ cos θ

sin θ

]2

= 4. (9)

This is actually a particular example of the more general case
where A = cos ασx + sin ασz. In this case, the calculation of
I (�′

θ ) gives

I (�′
θ ) = 4 sin2 θ cos2 α

1 − cos2 θ cos2 α
. (10)

As a result, the particular case above with A = σx (for α =
0, for example) is the most invasive of this family. It is
interesting to note that invasiveness decreases monotonically
in the interval 0 � α � π/2, and only in the extremal cases
α = 0, π/2, it is independent of θ .

It is important to stress that, in Theorem 1, while � is an
arbitrary quantum channel which does not depend on θ , �′

θ

is a specific class of quantum channels, which considers the
unitary imprinting of the parameter θ . Other dependences on
θ could be considered, including the extreme case where all
the dependences come from θ -dependent free transformations
which are not related to invasiveness; pretty much on the
contrary, they are in the scope of classical metrology. An
important question yet to be tackled is to determine the
most general class of θ -dependent channels where the Fisher
information is related to invasiveness.

VII. DISCUSSION

As mentioned above, the connection between the notion of
measurement invasiveness and the violation of NSIT condi-
tions and LGIs has been studied in Refs. [19,20]. Specifically,
in Ref. [19], states with large quantum Fisher information
are associated with the violation of NSIT conditions for large
measurement uncertainties. In turn, the connection between
LGI violation and optimal scenarios in quantum metrology
has been investigated in Ref. [10]. Here, by utilizing a gener-
alized definition of quantum invasiveness, we showed that the
Fisher information is a quantifier of quantum invasiveness for
a certain class of quantum channels. This result allowed us to
establish a direct association between quantum invasiveness
and sensitivity, as the former can be seen as a resource for the
latter.

This paper also clarified the relationship between invasive-
ness and coherence. As pointed out in Refs. [3,41], classes of

coherence quantifiers of a state ρ can be found from distance
quantifiers D fulfilling the following two properties, with τ ∈
I being incoherent states: D(ρ, τ ) = 0, if and only if ρ = τ

and D is contractive under trace-preserving quantum opera-
tions �, i.e., D(�(ρ),�(τ )) � D(ρ, τ ). Thus, the quantifier
of coherence associated with D is CD = minτ∈I D(ρC, τ ). As
remarked above, a distance between ρ and ρ f different from
zero is necessary for invasiveness. In this way, in the scenario
of Fig. 1, whenever the input state is an incoherent state
τ ∈ I, invasiveness means that coherence, as defined within
the framework of resource theories, is generated with respect
to the basis of Q. Moreover, Eq. (7) provides us with an
insightful fashion of quantifying nonclassicality in Leggett-
Garg scenarios, as a nonzero value for the invasiveness quan-
tifier I (�) will be necessarily due to the distinction between
quantum and classical scenarios from the point of view of the
Fisher information.

VIII. CONCLUSION

Based on a generalized definition of invasiveness of quan-
tum operations, we have proposed a resource theory of quan-
tum invasiveness. Within the resource theoretic framework,
free states are considered to be classical states and therefore
associated with the eigenstates and their convex combinations
of the measurement observable. In turn, free operations are
those mapping classical states into classical states. In this
context, we showed that the Fisher information is a quantifier
of quantum invasiveness of a class of quantum channels.
This result sheds light on the utility of quantum invasiveness
within the context of protocols in quantum metrology as
quantum invasiveness can be considered a resource for sen-
sitivity. We have also seen that the proposition of a resource
theory of invasiveness allows us to establish a connection
to the framework of the resource theory of coherence [3].
From this perspective, we expect that the proposed resource
theory of quantum invasiveness may lead to insights and
improvements concerning the implementation of metrological
protocols. Among the questions elicited by this work, which
are certainly worth further investigation, are the determination
of the tasks for which invasiveness can be useful and the
question of the interconvertibility between invasiveness and
other nonclassical resources such as coherence and purity
[42], given that resources do not necessarily compete.
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APPENDIX

Here, by following the steps of Ref. [43], we pro-
vide a demonstration that the Fisher information satisfies
condition 3. Therefore, we must be able to prove that

F ((1 − γ )ρ1(θ ) + γ ρ2(θ )) � (1 − γ )F (ρ1(θ )) + γ F (ρ2(θ )),

(A1)
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where ρ1(θ ) and ρ2(θ ) are two arbitrary quantum states de-
pending on the parameter θ and 0 � γ � 1. Before proceed-
ing, it will be useful to rewrite (6) as

F (θ ) =
∑

l

1

Pl (θ )

[
∂Pl (θ )

∂θ

]2

. (A2)

Let Pl (θ ) and Gl (θ ) be the probabilities associated with a
given outcome l when measuring Q(θ ) for states ρ1(θ ) and
ρ2(θ ), respectively. Assume that for a given l , one can write
the inequality

[(1 − γ )P′
l (θ ) + γ G′

l (θ )]

(1 − γ )Pl (θ ) + γ Gl (θ )

2

> (1 − γ )
P′

l (θ )2

Pl (θ )
+ γ

G′
l (θ )

Gl (θ )

2

,

(A3)

where P′
l (θ ) and G′

l (θ ) are the derivatives of Pl (θ ) and Gl (θ ),
respectively. By simplifying (A3), we obtain

2γ (1 − γ )P′
l (θ )G′

l (θ )Pl (θ )Gl (θ )

> γ (1 − γ )[P′
l (θ )2G2

l (θ ) + G′
l (θ )2P2

l (θ )], (A4)

which finally gives

0 > [Pl (θ )G′
l (θ ) − Gl (θ )P′

l (θ )]2, (A5)

which cannot be satisfied for any l . Thus, we can conclude
that for all l , the following inequality is true:

[(1 − γ )P′
l (θ ) + γ G′

l (θ )]

(1 − γ )Pl (θ ) + γ Gl (θ )

2

� (1 − γ )
P′

l (θ )2

Pl (θ )
+ γ

G′
l (θ )

Gl (θ )

2

.(A6)

By summing up both sides of (A6) over l and by referring to
(A2), we finally obtain (A1).
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