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Quantum mechanical virial-like theorem for confined quantum systems
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Confinement of atoms inside impenetrable (hard) and penetrable (soft) cavities has been studied for nearly
eight decades. However, a unified virial theorem for such systems has not yet been found. Here we provide
a general virial-like equation in terms of mean square and expectation values of potential and kinetic energy
operators. It appears to be applicable in both free and confined situations. Apart from that, we have derived
an equation using the time-independent Schrödinger equation, which can be treated as a sufficient condition
for a given stationary quantum state. A change of boundary condition does not affect these virial equations.
In the hard confining condition, the perturbing (confining potential) does not affect the expression; it merely
shifts the boundary from infinity to a finite region. In the soft case, on the contrary, the final expression includes
contributions from the perturbing term. These are demonstrated numerically for several representative enclosed
systems like harmonic oscillators (one-dimensional and three-dimensional) and hydrogen atoms. Its applicability
in various other confinements (including angular) has been discussed. In essence, a virial equation has been
proposed for free and confined quantum systems, from simple arguments.
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I. INTRODUCTION

Over the past 20 years confined quantum systems have
emerged as a topic of considerable significance for physi-
cists, chemists, and biologists [1]. Invention and advance-
ment of contemporary experimental techniques have given
the required insight about responses of matter under such
constrained conditions. Furthermore, recent progress in
nanoscience and nanotechnology has inspired extensive re-
search activity to explore and acquire more thorough, in-
depth understanding. Nowadays, various physical, chemical
processes are carried out in spatially confined environments.
They have profound applications in diverse areas of research,
like condensed matter, semiconductor physics, astrophysics
[2], nanotechnology, and quantum dots, wires, and wells [3].
In recent years, these models have also been employed to
interpret trapping of atoms, molecules inside fullerene cages,
zeolite cavities [1,3,4], etc.

A quantum particle under the influence of confinement
displays many fascinating, distinctive changes in observable
physical, chemical properties [5,6] from its corresponding
unconfined or free counterpart. Many elegant reviews and
monographs have been written on the subject. Usually, the
Schrödinger equation (SE) cannot be solved exactly; there-
fore, one has to take recourse to approximate methods. The
perturbative approach leads to an asymptotic series [7], and
the standard linear variation method is fraught with the prob-
lem of proper boundary behavior, as familiar orthonormal
basis sets do not vanish at finite boundaries. Thus linear com-
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binations of such bases are explicitly inappropriate in repre-
senting their eigenstates. Recently for some central potentials
(harmonic oscillator, H atom, pseudoharmonic oscillator, etc.)
under hard confinement conditions, such an equation has been
solved exactly. These eigenfunctions can then readily be used
as an appropriate orthonormal basis set in other confined
systems [8].

In 1937, the first model for a confined quantum system,
a H atom trapped inside a hard, impenetrable barrier, was
proposed to understand its behavior under extreme pressure
[9]. With time this was found to be somehow restrictive for
practical purposes, leading to the development of so-called
penetrable barriers. For the sake of convenience, it may
be appropriate to categorize different confining potentials,
following Ref. [10], in two broad classes, namely, (i) a
penetrable potential which is finitely bounded from above,
whereas in an impenetrable case, it rises to infinity at large
r, and (ii) a continuous potential will be termed as smooth
while a sharp one possesses discontinuity. In the case of
the impenetrable, sharp condition, the potential is modified
by the addition of a term that disappears up to a certain
distance from origin, rising to infinity thereafter. It is defined
as V = V (r) at 0 � r � rc, whereas V = ∞ at r > rc (rc

implies confinement radius). In this scenario, the Dirichlet
boundary condition Rn,�(0) = Rn,�(rc) = 0 is satisfied [1]. On
the other hand, an impenetrable, smooth potential is defined as
V = V (r) + Vc(r), where Vc(r) is the confining potential that
becomes infinity at r → ∞ and remains continuous otherwise
[11,12]. Similarly, for the penetrable, sharp case the potential
has the form V = V (r) at 0 � r � rc and V = Vc(r) at r > rc,
where Vc(r) is the confining potential [13]. Finally, in the
penetrable, smooth case it becomes V = V (r) + Vc(r) [14]. In
recent years, various models have been proposed and investi-
gated by many authors [3,15–18], particularly in the context
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of the H atom, maintaining these confinement conditions and
revealing numerous striking features [1,3,19–21].

Extensive theoretical calculations have been made in the
case of a confined harmonic oscillator (CHO) [one dimen-
sion (1D), 2D, 3D, and d dimensions] [8,22–26] and a
confined hydrogen atom (CHA) inside an impenetrable cav-
ity [3,23,27–36]. They offer many extraordinary features,
especially relating to simultaneous, incidental, interdimen-
sional degeneracy [25] in their energy spectra. The effects
of contraction on ground and excited energy states, as well
as other properties like hyperfine splitting constant, dipole
shielding factor, nuclear magnetic screening constant, static
and dynamic polarizability, etc., were explored [1,3,4]. A
wide range of attractive analytical and numerical approaches
including perturbation theory, the Padé approximation, the
WKB method, the hypervirial theorem, the power-series
solution, supersymmetric quantum mechanics, Lie algebra,
Lagrange mesh, asymptotic iteration, the generalized pseu-
dospectral method, etc., were invoked to solve the relevant
eigenvalue problem [27–35]. Exact solutions [32] of CHAs
are expressible in terms of Kummer’s M function (confluent
hypergeometric).

In quantum mechanics, stationary states of a bound system
satisfy the virial theorem (VT). In fact, it is a necessary condi-
tion for a quantum stationary state to follow [37]. Historically
the quantum mechanical VT was derived from analogy with
a classical counterpart; for a nonrelativistic Hamiltonian, it
offers a relation between expectation values of kinetic energy
and directional derivatives of potential energy. In this regard,
it is important to point out that a variationally optimized wave
function also follows the VT. Hence, it becomes a neces-
sary condition for an exact wave function. On the contrary,
merely fulfilling this relation will not ensure a bound state.
After some controversy, it is now generally accepted that
the standard form of the VT does not ordinarily hold good
in enclosed conditions; rather a modified form is invoked.
Several attempts have been made to find an appropriate
form of the VT in such systems [7,38,39]. Previously, some
semiclassical strategies based on the Wilson-Sommerfeld rule
and uncertainty principle were adopted to construct this in
such systems [40]. In recent years, the standard form of the
VT and the Hellmann-Feynman theorem were combined to
design a virial-like expression for penetrable and impene-
trable CHAs [10]; however, the mathematical form of the
expression changes from system to system. Importantly, all
these relations can only serve as necessary conditions for an
exact state to follow. In this endeavor our primary objective
is to propose a general virial-like expression for both free
and confined conditions using the time-independent SE, the
hyper-virial theorem (HVT) [41], along with mean square and
expectation values of potential and kinetic energy operators.
Apart from that, a relation involving the SE and the HVT has
been derived, which can serve as a sufficient condition (only
true for exact states) for a bound stationary state. A detailed
derivation of these relations is given in Sec. II. Next in Sec. III,
we proceed to verify the utility and applicability of these rela-
tions in the context of several representative confined systems.
We begin with the oldest, most frequently used model of hard
confinement, where the potential is trapped inside an infi-
nite wall satisfying the Dirichlet boundary condition. In this

category, at first, we discuss the typical and most prolific
cases of CHO (1D and 3D) as well as a CHA. Later, this is
extended to the so-called shell-confined H atom (SCHA), in
order to understand the role of nodal structure in the confined
condition. This can be potentially treated as a confined off-
center model, needed to probe quantum wells and quantum
dots. With time, a model for off-center quantum dot structures
was also adopted, but within the framework of the Newmann
boundary condition, a prominent example being the trapping
of a H atom inside a homogeneous, impenetrable cavity
(HICHA), which is analyzed next. It my be noted that, at rc →
0 this behaves similar to a CHA, while at rc → ∞ it resembles
a free H-atom (FHA). In order to make these artificial atomic
models more realistic, subsequently a finite wall was placed at
a certain rc; this has been widely used to study the properties
of encapsulated atoms within a fullerene cage and a zeolite
cavity. As an approximation to this, we explore the case of a
H atom inside an inhomogeneous, penetrable spherical cavity
(SPCHA). Apart from that, to incorporate the interaction of
a particle with the environment, a homogeneous, penetrable
confinement model was proposed—for this we considered a
H atom under similar conditions (HPCHA). This will help us
to determine the advantages of the presently derived relations
in the pursuit of confined quantum systems. Section IV makes
a few concluding remarks.

II. THEORETICAL FORMALISM

The time-independent nonrelativistic SE for a system may
simply be written as

(T̂ + V̂ )ψn(τ ) = Enψn(τ ), (1)

where T̂ and V̂ are the usual kinetic and potential energy
operators of a given Hamiltonian and both are Hermitian,
while τ is a generalized variable of coordinates. After some
straightforward algebra (multiplying both sides by T̂ , integrat-
ing over the whole space, and rearranging), one gets

〈T̂ 2〉n + 〈T̂ V̂ 〉n = En〈T̂ 〉n. (2)

Now, substitution of En by 〈T̂ 〉n + 〈V̂ 〉n in Eq. (2) produces

〈T̂ 2〉n − 〈T̂ 〉2
n = 〈V̂ 〉n〈T̂ 〉n − 〈T̂ V̂ 〉n. (3)

A similar consideration using V̂ leads to the following equa-
tion:

〈V̂ 2〉n − 〈V̂ 〉2
n = 〈T̂ 〉n〈V̂ 〉n − 〈V̂ T̂ 〉n. (4)

Here, for a given Hamiltonian Ĥ the domains of T̂ |ψn〉
and V̂ |ψn〉 are the same as that of Ĥ [42]. Thus, from the
Hypervirial theorem, it can be proved that 〈T̂ V̂ 〉n = 〈V̂ T̂ 〉n

[43]. Hence, from Eqs. (3) and (4), one obtains

〈T̂ 2〉n − 〈T̂ 〉2
n = 〈V̂ 2〉n − 〈V̂ 〉2

n, (5a)

(�T̂n)2 = 〈V̂ 〉n〈T̂ 〉n − 〈T̂ V̂ 〉n = (�V̂n)2

= 〈T̂ 〉n〈V̂ 〉n − 〈V̂ T̂ 〉n. (5b)

This relation suggests that the magnitudes of error incurred
in 〈T̂ 〉n and 〈V̂ 〉n are equal. Now, one can easily interpret
the fact that En is a sum of two average quantities but still
provides an exact result. This is due to the cancellation of
errors between 〈T̂ 〉n and 〈V̂ 〉n.
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Interestingly, using the condition 〈T̂ V̂ 〉n = 〈V̂ T̂ 〉n and ex-
ploiting Eqs. (3) and (4), one can obtain the following expres-
sion:

〈T̂ 2〉n = En(En − 2〈V̂ 〉n) + 〈V̂ 2〉n. (6)

Thus, instead of performing the fourth-order derivative of
ψn(τ ), one can alternatively evaluate 〈T̂ 2〉n from a knowledge
of En, 〈V̂ 〉n, and 〈V̂ 2〉n.

Now we wish to verify whether Eq. (5) is true for eigen-
states only. Let us consider two functions having forms φ1 =
(T̂ − 〈T̂ 〉n)|ψn〉 and φ2 = (V̂ − 〈V̂ 〉n)|ψn〉. Making use of the
Schwartz inequality, it is possible to write

〈φ1|φ1〉〈φ2|φ2〉 � |〈φ2|φ1〉|2,
(�T̂n)2(�V̂n)2 � |〈T̂ V̂ 〉n − 〈T̂ 〉n〈V̂ 〉n|2. (7)

This inequality becomes equality when φ1 and φ2 are linearly
dependent. That implies

(T̂ − 〈T̂ 〉n)|ψn〉 = α(V̂ − 〈V̂ 〉n)|ψn〉, (8)

where α is a number. Putting this back in the inequality and
doing some algebraic rearrangement, we get

α2(�T̂n)2(�V̂n)2 = |〈T̂ V̂ 〉n − 〈T̂ 〉n〈V̂ 〉n|2,

α2 = |〈T̂ V̂ 〉n − 〈T̂ 〉n〈V̂ 〉n|2
(�T̂n)2(�V̂n)2

.
(9)

The choice of α2 = 1 yields the following expression:(
�T̂ 2

n

)
(�V̂n)2 = |〈T̂ V̂ 〉n − 〈T̂ 〉n〈V̂ 〉n|2. (10)

Here α2 = 1. Now, by left multiplying Eq. (8) by 〈ψn|(T −
〈T 〉n)|, followed by integration over the whole space and
rearrangement, we get

(�T̂n)2 = (�V̂n)2 = |〈T̂ V̂ 〉n − 〈T̂ 〉n〈V̂ 〉n|. (11)

Equation (11) is valid for two values of α, namely, 1 or −1.
When α = −1,

(T̂ − 〈T̂ 〉n)|ψn〉 = − (V̂ − 〈V̂ 〉n)|ψn〉,
(T̂ + V̂ )|ψn〉 = (〈T̂ 〉n + 〈V̂ 〉n)|ψn〉, (12)

which is nothing but the SE, Ĥ |ψn〉 = En|ψn〉. Whereas α = 1
leads to

(T̂ − V̂ )|ψn〉 = (〈T̂ 〉n − 〈T̂ 〉n
)|ψn〉, (13)

which does not concern us here.
This above discussion suggests that Eqs. (5a) and (11) pro-

vide a necessary condition for a stationary state and Eq. (5b)
is a special case of it. Now, to verify the suitability of Eq. (5b),
it is useful to study 〈Ĥ2〉n − 〈Ĥ〉2

n = (�Ĥn)
2
, because only for

eigenstates is it zero. Thus,

(�Ĥn)2 = (�T̂n)2 + (�V̂n)2 + [〈T̂ V̂ 〉n − 〈T̂ 〉n〈V̂ 〉n]

+ [〈V̂ T̂ 〉n − 〈T̂ 〉n〈V̂ 〉n]. (14)

Now, putting the condition of Eq. (5b) in Eq. (14) one can
obtain

(�Ĥn)2 = 0. (15)

This clearly states that, Eq. (5b) is a sufficient condition for an
eigenfunction. Hence, once this relation is obeyed by ψn, it is

an eigenfunction of that particular Ĥ , but (�T̂n)2 = (�V̂n)2.
Equation (5a) is a necessary condition for a quantum system,
which is actually a virial-like expression. Now, it will be
interesting to examine the applicability of Eq. (5) in the
context of confined quantum systems, which we do next.

For our current purpose, without loss of generality, our
relevant radial SE under the influence of confinement may be
rewritten (atomic units are employed unless otherwise stated)
as[
−1

2

d2

dr2
+ �(� + 1)

2r2
+ v(r) + vc(r)

]
ψn,�(r) = En,� ψn,�(r),

(16)

where v(r) signifies the unperturbed effective potential (for
example, in a many-electron system that may include effec-
tive electron-nuclear attraction and electron-electron repul-
sion), and our desired confinement inside a spherical cage
is accomplished by invoking the potential vc(r), with V̂ =
v(r) + vc(r). Thus in a confinement scenario, the validity
of Eq. (5) can be checked by deriving the expressions of
〈T̂ V̂ 〉n,�, 〈V̂ T̂ 〉n,�, 〈V̂ 2〉n,�, and 〈V̂ 〉n,� (other integrals remain
unchanged). Towards this end, Eq. (5) may be modified as
follows:

(�T̂n,�)2 = 〈T̂ 2〉n,� − 〈T̂ 〉2
n,�, (17)

(�V̂n,�)2 = 〈v(r)2〉n,� + 〈v(r)vc(r)〉n,� + 〈vc(r)v(r)〉n,�

+〈vc(r)2〉n,� − 〈v(r)〉2
n,� − 〈vc(r)〉2

n,�

− 2〈v(r)〉n,�〈vc(r)〉n,�, (18)

〈T̂ 〉n,�〈V̂ 〉n,� − 〈V̂ T̂ 〉n,� = 〈T̂ 〉n,�

[〈v(r)〉n,� + 〈vc(r)〉n,�

]
− 〈T̂ v(r)〉n,� − 〈T̂ vc(r)〉n,�

〈T̂ 〉n,�〈V̂ 〉n,� − 〈T̂ V̂ 〉n,� = 〈T̂ 〉n,�

[〈v(r)〉n,� + 〈vc(r)〉n,�

]
− 〈v(r)T̂ 〉n,� − 〈vc(r)T̂ 〉n,�. (19)

In what follows, we examine the abovementioned criteria for a
number of important confining potentials, as mentioned in the
Introduction, viz., (i) CHO in 1D and 3D, and (ii) a H atom
encapsulated in five different confining environments, namely,
CHA, SCHA, HICHA, SPCHA, and HPCHA. This offers
us the opportunity to understand the effect of the boundary
condition on derived relations. It may be recalled that, out of
these seven different potentials, 1DCHO, 3DCHO, and CHA
are exactly solvable. However, it is instructive to note that,
in order to construct the exact wave function for a specific
state, one needs to supply the energy eigenvalue, which is
calculated using imaginary-time propagation [44–47] and a
generalized pseudo-spectral [26,48–50] method, respectively,
for 1D and 3D problems. Except for in a CHA, in all the
remaining confining H atom cases, we have employed numer-
ically calculated wave functions and energies through the GPS
scheme. Now, we can use the relations in Eq. (5) to inspect the
goodness of the numerical wave function.

III. RESULTS AND DISCUSSION

We now discuss the results under four broad categories,
viz., (i) impenetrable, sharp; (ii) impenetrable, smooth; (iii)
penetrable, sharp; and (iv) penetrable, smooth.
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A. Impenetrable, sharp confinement

Under this condition, the desired confinement effect on
v(r) is imposed by invoking the following form of potential:
vc(r) = +∞ for r > rc, and 0 for r � rc, where rc signifies
the radius of the box. Thus Eq. (16) needs to be solved under
the Dirichlet boundary condition, ψnr ,l (0) = ψnr ,l (rc) = 0.
Four systems are included under this heading, namely,
1DCHO, 3DCHO, CHA, and SCHA, which are taken up one
by one.

1. 1DCHO

The single-particle time-independent nonrelativistic SE in
1D is (α is force constant)

−1

2

d2ψn

dx2
+ 4α2x2ψn + vcψn = Enψn, (20)

where the confining potential is defined as vc = 0 for x < |xc|
and vc = ∞ for x � |xc|. Here xc signifies the confinement
length. Note that we consider only the symmetric case, while
asymmetric confinement can also be worked out without any
further complication and hence is omitted here. Equation
(20) can be solved exactly using the boundary condition
ψn(−xc) = ψn(xc) = 0 to produce the following analytical
closed forms for even and odd states (α = √

1/8, for sake of
convenience):

ψe(x) = Ne 1F1

[(
1

4
− En

4
√

2α

)
,

1

2
, 2

√
2αx2

]
e−√

2αx2
,

ψo(x) = Nox 1F1

[(
3

4
− En

4
√

2α

)
,

3

2
, 2

√
2αx2

]
e−√

2αx2
. (21)

In this equation, Ne and No represent normalization constants
for even and odd states, respectively, while En, the energy
of respective eigenstates, has been calculated accurately by
an imaginary-time evolution method [47] and 1F1[a, b, x]
denotes the confluent hypergeometric function. Now, the ex-
pectation values take the following forms:

〈T̂ V̂ 〉n = 〈T̂ v(x)〉n + 〈T̂ vc〉n = 〈T̂ v(x)〉n. (22)

One can make use of the property of the Reimann integral to
simplify:

〈T̂ vc〉n =
∫ −xc

−∞
ψ∗

n (x)T̂ vcψn(x)dx +
∫ xc

−xc

ψ∗
n (x)T̂ vcψn(x)dx

+
∫ ∞

xc

ψ∗
n (x)T̂ vcψn(x)dx = 0. (23)

The first and third integrals become zero because ψn(x) = 0
when x � |xc|, whereas the second integral becomes zero
because vc = 0 inside the box. Similarly,

〈V̂ T̂ 〉n = 〈v(x)T̂ 〉n + 〈vcT̂ 〉n = 〈v(x)T̂ 〉n, (24)

〈V̂ 2〉n = 〈(v(x)2〉n + 〈v(x)vc〉n + 〈vcv(x)〉n + 〈v2
c 〉n

= 〈(v(x))2〉n, (25)

〈V̂ 〉n = 〈v(x)〉n + 〈vc〉n = 〈v(x)〉n. (26)

Thus, for a 1DCHO, with the help of the above equations,
Eq. (5) may be recast as

(�T̂n)2 = (
�V̂n

)2 = 〈T̂ 〉n〈v(x)〉n − 〈v(x)T̂ 〉n

= 〈T̂ 〉n〈v(x)〉n − 〈T̂ v(x)〉n. (27)

Thus it is evident from Eq. (27) that vc has no contribution
to the desired expectation values. Hence the only difference
between free and enclosed system is that, in the latter, the
boundary has been reduced to a finite region from infinity.
Numerical values of En, (�T̂n)2, (�V̂n)2, 〈T 〉n〈V 〉n − 〈TV 〉n,
and 〈T 〉n〈V 〉n − 〈V T 〉n are produced in Table I for n = 0
and 1 states of a 1DCHO at six selected xc values, namely,
0.1, 0.5, 1, 3, 5, and ∞, which cover a decent region of
confinement. In all these six xc, E0 and E1 remain in excellent
agreement with available literature results as compared in
Ref. [47] and hence are not repeated here. However, no direct
reference could be found for the expectation values to tally. It
is easily noticed that, in both confined and free (last column)
conditions, Eq. (5) is obeyed, as all the expectation values
offer identical results, which validates the applicability of our
designed theorem in the case of a 1DCHO. Additionally, with
an increase in xc, both (�T̂ )2 and (�V̂ )2 increase, which
presumably occurs as the wave function delocalizes with
xc. Consequently, the difference between mean square and
average values of T̂ and V̂ tends to grow.

2. 3DCHO

The isotropic harmonic oscillator is defined by v(r) =
1
2ωr2, where ω signifies the oscillation frequency. The exact
generalized radial wave function of a 3DCHO is mathemati-
cally expressed as [25]

ψnr ,�(r) = Nnr ,� r�
1F1

[
1

2

(
� + 3

2
− Enr ,�

ω

)
,

(
� + 3

2

)
, ωr2

]
e− ω

2 r2
. (28)

Here Nnr ,� signifies the normalization constant, and Enr ,�

corresponds to the energy of a given state characterized
by quantum numbers nr and �. Note that the levels are
designated by nr + 1 and � values, such that nr = � = 0
and nr = � = 2 correspond to 1s and 3d states, respec-
tively. The radial quantum number nr relates to n as n =
2nr + �.

The relevant expectation values now take the following
form:

〈T̂ V̂ 〉nr ,� = 〈T̂ v(r)〉nr ,� + 〈T̂ vc(r)〉nr ,� = 〈T̂ v(r)〉nr ,�. (29)

This occurs because 〈T̂ vc(r)〉nr ,� = 0, due to the wave
function vanishing when r � rc. A similar argument
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TABLE I. En, (�Vn)2, (�Tn)2, 〈T 〉n〈V 〉n − 〈TV 〉n, and 〈T 〉n〈V 〉n − 〈V T 〉n values for n = 0 and 1 states in a 1DCHO at six (0.1, 0.5, 1, 3,
5, and ∞) values of xc. See text for detail.

n Property xc = 0.1 xc = 0.5 xc = 1 xc = 3 xc = 5 xc = ∞
E0

a 123.3707084678 4.9511293232 1.2984598320 0.5003910829 0.50000007 0.4999999999
(�V0)2 0.000000600468 0.0003747558 0.0058688193 0.1215456043 0.124999 0.1299999999

0 (�T0)2 0.000000600466 0.0003747558 0.0058688193 0.1215456043 0.124999 0.1299999999
〈T 〉0〈V 〉0 − 〈TV 〉0 0.000000600466 0.0003747558 0.0058688193 0.1215456043 0.124999 0.1299999999
〈T 〉0〈V 〉0 − 〈V T 〉0 0.000000600466 0.0003747558 0.0058688193 0.1215456043 0.124999 0.1299999999

E1
b 493.481633417 19.7745341792 5.0755820152 1.5060815272 1.5000000036 1.499999999

(�V1)2 0.00000085445 0.00053374630 0.0084865378 0.3353761814 0.3749997486 0.374999999
1 (�T1)2 0.00000085434 0.00053374630 0.0084865378 0.3353761814 0.3749997486 0.374999999

〈T 〉1〈V 〉1 − 〈TV 〉1 0.00000085434 0.00053374630 0.0084865378 0.3353761814 0.3749997486 0.374999999
〈T 〉1〈V 〉1 − 〈V T 〉1 0.00000085434 0.00053374630 0.0084865378 0.3353761814 0.3749997486 0.374999999

aLiterature results [47] of E0 for xc = 0.1, 0.5, 1, 3, 5, and ∞ are 123.37070846785, 4.9511293232541, 1.2984598320321, 0.5003910829301,
0.5000000000768, and 0.5, respectively.
bLiterature results [47] of E1 for xc = 0.1, 0.5, 1, 3, 5, and ∞ are 493.48163341761, 19.774534179208, 5.0755820152268, 0.5060815272531,
1.5000000036719, and 1.5, respectively.

(〈vc(r)T̂ 〉nr ,� = 0) leads to the following relation:

〈V̂ T̂ 〉nr ,� = 〈v(r)T̂ 〉nr ,� + 〈vc(r)T̂ 〉nr ,� = 〈v(r)T̂ 〉nr ,�. (30)

Then since 〈v(r)vc(r)〉nr ,� = 〈vc(r)v(r)〉nr ,� = 〈vc(r)2〉nr ,� =
0, we can write

〈V̂ 2〉nr ,� = 〈v(r)2〉nr ,� + 〈v(r)vc(r)〉nr ,� + 〈vc(r)v(r)〉nr ,�

+〈vc(r)2〉nr ,� = 〈v(r)2〉nr ,�. (31)

And finally, one can derive (since 〈vc(r)〉nr ,� = 0)

〈V̂ 〉nr ,� = 〈v(r)〉nr ,� + 〈vc(r)〉nr ,� = 〈v(r)〉nr ,�. (32)

Thus, for a 3DCHO, Eq. (5) can be recast as

〈T̂ 2〉nr ,� − 〈T̂ 〉2
nr ,�

= 〈V̂ 2〉nr ,� − 〈V̂ 〉2
nr ,�

,

(�T̂nr ,�)2 = (�V̂nr ,�)2 = 〈T̂ 〉nr ,�〈v(r)〉nr ,� − 〈v(r)T̂ 〉nr ,�

= 〈T̂ 〉nr ,�〈v(r)〉nr ,� − 〈T̂ v(r)〉nr ,�. (33)

This implies that, similar to a 1DCHO, here also the per-
turbing (confining) potential makes no contribution to the

desired expectation values; only the boundary in the confined
system gets shifted to rc, from ∞ of the corresponding free
counterpart. This clearly indicates the validity of Eq. (5) in
a 3DCHO. As an illustration, Table II imprints numerically
calculated expectation values, for three low-lying (1s, 1p, and
2s) states at six chosen values of confinement radius, i.e., 0.1,
0.5, 1, 2, 5, and ∞. This again establishes the utility of Eq. (5)
for such potential in both confined and free systems, as evident
from identical values of these quantities at all rc values—
the last column signifying the corresponding unconstrained
system. Accurate energies are quoted from GPS results [26].
No literature is available for the average values considered
here. Like the 1D case, here also (�T̂nr ,�)2 and (�V̂nr ,�)2

increase with rc.

3. CHA

We begin with the exact wave function for a CHA, which
assumes the following form [32]:

ψn,�(r) = Nn,�

(
2r

√−2En,�

)�

1F1

[(
� + 1 − 1√−2En,�

)
, (2� + 2), 2r

√−2En,�

]
e−r

√
−2En,� , (34)

with Nn,� denoting the normalization constant and En,� cor-
responding to the energy of a state represented by quantum
numbers n and �. The pertinent expectation values can be
simplified as

〈T̂ V̂ 〉n,� = 〈T̂ v(r)〉n,� + 〈T̂ vc(r)〉n,� = 〈T̂ v(r)〉n,�. (35)

In this instance, 〈T̂ vc(r)〉n,� = 0, as the wave function van-
ishes for r � rc. Use of the same argument, along with the
fact that 〈vc(r)T̂ 〉n,� = 0, gives rise to

〈V̂ T̂ 〉n,� = 〈v(r)T̂ 〉n,� + 〈vc(r)T̂ 〉n,� = 〈v(r)T̂ 〉n,�. (36)

Now since 〈v(r)vc(r)〉n,� = 〈vc(r)v(r)〉n,� = 〈vc(r)2〉n,� = 0,

one may write

〈V̂ 2〉n,� = 〈v(r)2〉n,� + 〈v(r)vc(r)〉n,� + 〈vc(r)v(r)〉n,�

+〈vc(r)2〉n,� = 〈v(r)2〉n,�. (37)

Again because 〈vc(r)〉n,� = 0, it follows that

〈V̂ 〉n,� = 〈v(r)〉n,� + 〈vc(r)〉n,� = 〈v(r)〉n,�. (38)

Thus, like the previous two systems, for CHA also, Eq. (5)
remains unchanged, i.e.,

〈T̂ 2〉n,� − 〈T̂ 〉2
n,� = 〈V̂ 2〉n,� − 〈V̂ 〉2

n,�,

(�T̂n,�)2 = (�V̂n,�)2 = 〈T̂ 〉n,�〈v(r)〉n,� − 〈v(r)T̂ 〉n,�

= 〈T̂ 〉n,�〈v(r)〉n,� − 〈T̂ v(r)〉n,�. (39)
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TABLE II. Enr ,�, (�Vnr ,�)2, (�Tnr ,�)2, 〈T 〉nr ,�〈V 〉nr ,� − 〈TV 〉nr ,�, and 〈T 〉nr ,�〈V 〉nr ,� − 〈V T 〉nr ,l for 1s, 1p, and 2s states in a 3DCHO at six
specific rc values, namely, 0.1, 0.5, 1, 2, 5, and ∞. See text for detail.

State Property rc = 0.1 rc = 0.5 rc = 1 rc = 2 rc = 5 rc = ∞
E1,0

a 493.4816334599 19.774534179 5.0755820153 1.7648164388 1.5000000003 1.499999999
(�V1,0)2 0.00000085434 0.0005337463 0.0084865378 0.1211110138 0.3749999628 0.374999999

1s (�T1,0)2 0.00000085434 0.0005337463 0.0084865378 0.1211110138 0.3749999628 0.374999999
〈T 〉1,0〈V 〉1,0 − 〈TV 〉1,0 0.00000085434 0.0005337463 0.0084865378 0.1211110138 0.3749999628 0.374999999
〈T 〉1,0〈V 〉1,0 − 〈V T 〉1,0 0.00000085434 0.0005337463 0.0084865378 0.1211110138 0.3749999628 0.374999999

E1,1
b 1009.53830080 40.428276496 10.282256939 3.246947098 2.5000000584 2.499999999

(�V1,1)2 0.0000008424 0.00052642239 0.0084064867 0.129302864 0.6249963610 0.624999999
1p (�T1,1)2 0.00000084238 0.00052642239 0.0084064867 0.129302864 0.6249963610 0.624999999

〈T 〉1,1〈V 〉1,1 − 〈TV 〉1,1 0.00000084238 0.00052642239 0.0084064867 0.129302864 0.6249963610 0.624999999
〈T 〉1,1〈V 〉1,1 − 〈V T 〉1,1 0.00000084238 0.00052642239 0.0084064867 0.129302864 0.6249963610 0.624999999

E2,0
c 1973.922483399 78.9969211469 19.8996965019 5.5846390792 3.5000122149 3.499999999

(�V2,0)2 0.00000182 0.00113739969 0.01815844553 0.2779838025 1.6246856738 1.624999999
2s (�T2,0)2 0.00000182 0.00113739969 0.01815844553 0.2779838025 1.6246856738 1.624999999

〈T 〉2,0〈V 〉2,0 − 〈TV 〉2,0 0.00000182 0.00113739969 0.01815844553 0.2779838025 1.6246856738 1.624999999
〈T 〉2,0〈V 〉2,0 − 〈V T 〉2,0 0.00000182 0.00113739969 0.01815844553 0.2779838025 1.6246856738 1.624999999

aLiterature results [26] of E1,0 for rc = 0.1, 0.5, 1, 3, 5, and ∞ are 493.48163346, 19.774534180, 5.0755820154, 1.7648164388, 1.5000000037,
and 1.5, respectively.
bLiterature results [26] of E1,1 for rc = 0.1, 0.5, 1, 3, 5, and ∞ are 1009.5383008, 40.428276496, 10.282256939, 3.2469470987, 2.5000000584,
and 2.5, respectively.
cLiterature results [26] of E2,0 for rc = 0.1, 0.5, 1, 3, 5, and ∞ are 1973.922483399, 78.996921147, 19.899696502,
5.5846390792, 3.500012215, and 3.5, respectively.

This equation implies that, a CHA satisfies the results given
in Eq. (5); as before, vc has no impact on it. It has only intro-
duced the boundary in a finite range. Table III demonstrates
sample values of En,�, (�T̂n,�)2, (�V̂n,�)2, 〈T 〉n,�〈V 〉n,� −
〈TV 〉n,�, and 〈T 〉n,�〈V 〉n,� − 〈V T 〉n,� for the same low-lying
(1s, 2s, and 2p) states of the previous table, in a CHA at
the same six particular rc values, namely, 0.1, 0.2, 0.5, 1,
5, and ∞. For the sake of completeness, accurate values
of En,� are reproduced from Ref. [27]. Once again, no lit-
erature results could be found to compare the numerically
calculated expectation values. In both confining and free (last
column) conditions, these results complement the conclusion
of Eq. (5). In passing, it is interesting to note that both (�T̂n,�)2

and (�V̂n,�)2 decrease with the rise in rc.

4. SCHA

In this case, the desired confinement is accomplished by in-
troducing the potential as follows: vc = ∞, when 0 < r � ra,
r � rb and vc = 0 when ra < r < rb, where ra and rb signify
the inner and outer radii, respectively. Expectation values of
such a potential can then be simply worked out as follows:

〈T̂ V̂ 〉n,� = 〈T̂ v(r)〉n,� + 〈T̂ vc(r)〉n,� = 〈T̂ v(r)〉n,�, (40)

which upon application of the property of the Reimann
integral provides

〈T̂ vc〉n,� =
∫ ra

0
ψ∗

n,�(r)T̂ vcψn,�(r)r2dr

+
∫ rb

ra

ψ∗
n,�(r)T̂ vcψn,�(r)r2dr

+
∫ ∞

rb

ψ∗
n,�(r)T̂ vcψn,�(r)r2dr = 0. (41)

The first and third integrals contribute zero as the wave
function vanishes in these two regions. On the contrary,
in the ra < r < rb region vc = 0; thus the second integral
disappears. The same argument can be used to write

〈V̂ T̂ 〉n,� = 〈v(r)T̂ 〉n,� + 〈vc(r)T̂ 〉n,� = 〈v(r)T̂ 〉n,�. (42)

The second equality holds because 〈vc(r)T̂ 〉n,� = 0. Likewise,
〈V̂ 2〉n,� may be expressed as

〈V̂ 2〉n,� = 〈v(r)2〉n,� + 〈v(r)vc(r)〉n,� + 〈vc(r)v(r)〉n,�

+〈vc(r)2〉n,� = 〈v(r)2〉n,�, (43)

since 〈v(r)vc(r)〉n,� = 〈vc(r)v(r)〉n,� = 〈vc(r)2〉n,� = 0. Next,
utilizing 〈vc(r)〉n,� = 0, we get

〈V̂ 〉n,� = 〈v(r)〉n,� + 〈vc(r)〉n,� = 〈v(r)〉n,�. (44)

Collecting all these facts, we can write the final expressions
for a SCHA as

〈T̂ 2〉n,� − 〈T̂ 〉2
n,� = 〈V̂ 2〉n,� − 〈V̂ 〉2

n,�,

(�T̂n,�)2 = (�V̂n,�)2 = 〈T̂ 〉n,�〈v(r)〉n,� − 〈v(r)T̂ 〉n,�

= 〈T̂ 〉n,�〈v(r)〉n,� − 〈T̂ v(r)〉n,�. (45)

Equation (45) explains that, similar to the three previous
confined cases, a SCHA satisfies the results given in Eq. (5).
As before, the role of vc is to incorporate the effect of a
boundary on the wave function. As mentioned earlier, closed-
form analytical solutions are unavailable in this case as yet;
we have employed the GPS method to extract the eigenvalues
and eigenfunctions of a definite state. Table IV produces the
calculated values of various quantities for ground and two
excited (1s, 2s, and 2p) states of a SCHA at five chosen sets
of ra and rb values. The equality of four quantities at all shells
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TABLE III. En,�, (�Vn,�)2, (�Tn,�)2, 〈T 〉n,�〈V 〉n,� − 〈TV 〉n,�, and 〈T 〉n,�〈V 〉n,� − 〈V T 〉n,� of 1s, 2s, and 2p states in CHA at six (0.1, 0.2, 0.5,
1, 5, ∞) rc values. See text for detail.

State Property rc = 0.1 rc = 0.2 rc = 0.5 rc = 1 rc = 5 rc = ∞
E1,0

a 468.993038659 111.069858836 14.7479700303 2.3739908660 − 0.4964170065 − 0.499999999
(�V1,0)2 308.872889980 80.3808359891 14.5396201848 4.4909017616 1.0176222756 0.9999999999

1s (�T1,0)2 308.872889980 80.3808359891 14.5396201848 4.4909017616 1.0176222756 0.9999999999
〈T 〉1,0〈V 〉1,0 − 〈TV 〉1,0 308.872889980 80.3808359891 14.5396201848 4.4909017616 1.0176222756 0.9999999999
〈T 〉1,0〈V 〉1,0 − 〈V T 〉1,0 308.872889980 80.3808359891 14.5396201848 4.4909017616 1.0176222756 0.9999999999

En,l
b 1942.720354554 477.8516723922 72.6720391904 16.5702560934 0.1412542037 − 0.1249999999

(�V2,0)2 925.842896028 236.7351455444 40.5134596945 11.3096437104 0.8156705939 0.1874999999
2s (�T2,0 )2 925.842896028 236.7351455444 40.5134596945 11.3096437104 0.8156705939 0.1874999999

〈T 〉2,0〈V 〉2,0 − 〈TV 〉2,0 925.842896028 236.7351455444 40.5134596945 11.3096437104 0.8156705939 0.1874999999
〈T 〉2,0〈V 〉2,0 − 〈V T 〉2,0 925.842896028 236.7351455444 40.5134596945 11.3096437104 0.8156705939 0.1874999999

E2,1
c 991.0075894411 243.10933211 36.6588758801 8.2231383161 0.0075939204 − 0.124999999

(�V2,1)2 47.98046148 12.14249373 2.01620344857 0.5370036884 0.0381647208 0.02083333333
2p (�T2,1)2 47.98046148 12.14249373 2.01620344857 0.5370036884 0.0381647208 0.02083333333

〈T 〉2,1〈V 〉2,1 − 〈TV 〉2,1 47.98046148 12.14249373 2.01620344857 0.5370036884 0.0381647208 0.02083333333
〈T 〉2,1〈V 〉2,1 − 〈V T 〉2,1 47.98046148 12.14249373 2.01620344857 0.5370036884 0.0381647208 0.02083333333

aLiterature results [27] of E1,0 for rc = 0.1, 0.2, 0.5, 1, 5, and ∞ are 468.9930386595, 111.0698588367, 14.74797003035, 2.373990866100,
−0.496417006591, and −0.5, respectively.
bLiterature results [27] of E2,0 for rc = 0.1, 0.2, 0.5, 1, and ∞ are 1942.720354554, 477.8516723922, 72.67203919047, 16.57025609346, and
−0.125, respectively.
cLiterature results [27] of E2,1 for rc = 0.1, 0.2, 0.5, 1, and ∞ are 991.0075894412, 243.1093166600, 36.65887588018, 8.223138316165, and
−0.125, respectively.

once again justifies the validity of the relations derived in
Eq. (5). No literature is available to compare the computed
expectation values.

B. Impenetrable, smooth/homogeneous confinement

One such potential, v(r) = − 1
r + 1

2ωr2, was first proposed
in Ref. [51] to mimic the quantum-dot structure. Later, in
2012 [10], this was modified into a generalized form: v(r) =
− 1

r + ( r
rc

)k [(k > 1 and real; 1
2ω = ( 1

rc
)k]. At a fixed rc, the

perturbing potential takes following form:

lim
k→∞

( r

rc

)k
=

⎧⎨
⎩

0 for r < rc,

1 for r = rc,

∞ for r > rc.

The required expectation values for this potential are then
given by

〈T̂ V̂ 〉n,� = −
〈
T̂

(
1

r

)〉
n,�

+
〈

T̂

(
r

rc

)k
〉

n,�

,

〈V̂ T̂ 〉n,� = −
〈(

1

r

)
T̂

〉
n,�

+
〈(

r

rc

)k

T̂

〉
n,�

, (46)

and

〈V̂ 2〉n,� =
〈

1

r2

〉
n,�

− 2

〈
rk−1

rk
c

〉
n,�

+
〈(

r

rc

)2k
〉

n,�

,

〈V 〉n,� = −
〈

1

r

〉
n,�

+
〈(

r

rc

)k
〉

n,�

. (47)

Finally, we get the virial expression from Eq. (5) in following
form:

〈T̂ 2〉n,� − 〈T̂ 〉2
n,� = (�T̂n,�)2 = (�V̂n,�)2 = 〈V̂ 2〉n,� − 〈V̂ 〉2

n,�

=
〈

1

r2

〉
n,�

− 2

〈
rk−1

rk
c

〉
n,�

+
〈(

r

rc

)2k
〉

n,�

−
〈

1

r

〉2

n,�

+ 2

〈
1

r

〉
n,�

〈(
r

rc

)k
〉

n,�

−
〈(

r

rc

)k
〉2

n,�

= 〈T̂ 〉n,�

(〈
−1

r

〉
n,�

+
〈(

r

rc

)2
〉

n,�

)

+
〈(

1

r

)
T̂

〉
n,�

−
〈(

r

rc

)k

T̂

〉
n,�

= 〈T̂ 〉n,�

(〈
−1

r

〉
n,�

+
〈(

r

rc

)2
〉

n,�

)

+
〈
T̂

(
1

r

)〉
n,�

−
〈

T̂

(
r

rc

)k
〉

n,�

. (48)

One striking difference from the previous impenetrable,
sharp potentials is that here the perturbing potential con-
tributes to the final form of expression. Now for the illus-
tration, we choose k = 2. In this scenario (finite positive k),
at very small rc, the potential blows up sharply; at rc → ∞
it behaves as a free system; and at other definite rc, it rises
with r. Table V offers sample results for En,� and related
quantities of Eq. (5), for 1s, 2s, and 2p states of a HICHA at
six specific rc values, viz., 0.1, 0.2, 0.5, 1, 5, and ∞. Energies
for these states at rc = 1 could be compared with the known
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TABLE IV. En,�, (�Vn,�)2, (�Tn,�)2, 〈T 〉n,�〈V 〉n,� − 〈TV 〉n,�, and 〈T 〉n,�〈V 〉n,� − 〈V T 〉n,� for 1s, 2s, and 2p states in a SCHA at five sets of
(ra, rb) values. See text for detail.

State Property ra = 0.1, rb = 0.5 ra = 0.2, rb = 1 ra = 0.5, rb = 2 ra = 1, rb = 5 ra = 2, rb = 8

E1,0 27.27172629 5.92023765 1.34445210 − 0.05806114 − 0.07992493
(�V1,0)2 1.01266084 0.25766775 0.04408223 0.011743288 0.0030965826

1s (�T1,0)2 1.01266084 0.25766775 0.04408223 0.011743288 0.0030965826
〈T 〉1,0〈V 〉1,0 − 〈TV 〉1,0 1.01266084 0.25766777 0.04408222 0.011743282 0.0030965824
〈T 〉1,0〈V 〉1,0 − 〈V T 〉1,0 1.01266084 0.25766777 0.04408222 0.011743282 0.0030965824

E2,0 119.52182029 28.91900480 7.87809191 0.85031117 0.325553290
(�V2,0)2 2.31747169 0.58308875 0.097543493 0.02432941 0.00630949665

2s (�T2,0)2 2.31747169 0.58308875 0.097543493 0.02432941 0.00630949665
〈T 〉2,0〈V 〉2,0 − 〈TV 〉2,0 2.31747169 0.58308875 0.097543493 0.02432941 0.00630949665
〈T 〉2,0〈V 〉2,0 − 〈V T 〉2,0 2.31747169 0.58308875 0.097543493 0.02432941 0.00630949665

E2,1 40.49778250 9.26352721 2.09854297 0.088632364 − 0.028352228
(�V2,1)2 0.86315456 0.21982576 0.040223458 0.010141187 0.0028634216

2p (�T2,1)2 0.86315456 0.21982576 0.040223458 0.010141187 0.0028634216
〈T 〉2,1〈V 〉2,1 − 〈TV 〉2,1 0.86315456 0.21982576 0.040223458 0.010141187 0.0028634216
〈T 〉2,1〈V 〉2,1 − 〈V T 〉2,1 0.86315456 0.21982576 0.040223458 0.010141187 0.0028634216

literature values [51], which show reasonable agreement. The
other computed quantities could not be compared due to a
lack of reference values. Clearly, similar to the previous cases,
these results also establish the applicability of our proposed
virial-like expressions in a HICHA.

C. Penetrable, sharp confinement

In this context, we have chosen the following potential, first
introduced in 1979 [13],

v(r) =
{ − 1

r for r < rc,

V0 for r � rc,

where V0 is a positive constant. The expectation values in this
case, are given as follows:

〈T̂ V̂ 〉n,� = 〈
T̂ v(r)

〉
n,�

= −
∫ rc

0
ψ∗

n,�(r)T̂

(
1

r

)
ψn,�(r) r2dr

+V0

∫ ∞

rc

ψ∗
n,�(r)T̂ ψn,�(r) r2dr, 〈V̂ T̂ 〉n,�

= 〈
v(r)T̂

〉
n,�

= −
∫ rc

0
ψ∗

n,�(r)

(
1

r

)
T̂ ψn,�(r) r2dr

+V0

∫ ∞

rc

ψ∗
n,�(r)T̂ ψn,�(r) r2dr, (49)

where the property of the Reimann integral has been used.
One can further write

〈V̂ 2〉n,� =
∫ rc

0
ψ∗

n,�(r)

(
1

r2

)
ψn,�(r) r2dr

+V 2
0

∫ ∞

rc

ψ∗
n,�(r)ψn,�(r) r2dr

− 2
∫ rc

0
ψ∗

n,�(r)

(
1

r

)
ψn,�(r) r2dr

×V0

∫ ∞

rc

ψ∗
n,�(r)ψn,�(r) r2dr,

〈V 〉n,� = −
∫ rc

0
ψ∗

n,�(r)

(
1

r

)
ψn,�(r) r2dr

+V0

∫ ∞

rc

ψ∗
n,�(r)ψn,�(r) r2dr. (50)

After some algebra, we eventually obtain the following
expressions:

〈T̂ 2〉n,� − 〈T̂ 〉2
n,� = (�T̂n,�)2 = (�V̂n,�)2

= 〈V̂ 2〉n,� − 〈V̂ 〉2
n,�

=
∫ rc

0
ψ∗

n,�(r)

(
1

r2

)
ψn,�(r) r2dr

+V 2
0

∫ ∞

rc

ψ∗
n,�(r)ψn,�(r) r2dr

− 2
∫ rc

0
ψ∗

n,�(r)

(
1

r

)
ψn,�(r) r2dr

×V0

∫ ∞

rc

ψ∗
n,�(r)ψn,�(r) r2dr

−
[
−

∫ rc

0
ψ∗

n,�(r)

(
1

r

)
ψn,�(r) r2dr

+ V0

∫ ∞

rc

ψ∗
n,�(r)ψn,�(r) r2dr

]2

= 〈T̂ 〉n,�

[
−

∫ rc

0
ψ∗

n,�(r)

(
1

r

)
ψn,�(r) r2dr

+ V0

∫ ∞

rc

ψ∗
n,�(r)ψn,�(r) r2dr

]

+
∫ rc

0
ψ∗

n,�(r)

(
1

r

)
T̂ ψn,�(r) r2dr

−V0

∫ ∞

rc

ψ∗
n,�(r)T̂ ψn,�(r) r2dr

= 〈T̂ 〉n,�

[
−

∫ rc

0
ψ∗

n,�(r)

(
1

r

)
ψn,�(r) r2dr
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TABLE V. En,�, (�Vn,�)2, (�Tn,�)2, 〈T 〉n,�〈V 〉n,� − 〈TV 〉n,�, and 〈T 〉n,�〈V 〉n,� − 〈V T 〉n,� for 1s, 2s, and 2p states in a HICHA at six chosen
rc values, namely, 0.1, 0.2, 0.5, 1, 5, and ∞. See text for detail.

State Property rc = 0.1 rc = 0.2 rc = 0.5 rc = 1 rc = 5 rc = ∞
E1,0 16.80524705 7.43767694 2.16863754 0.593771218a − 0.404345971 − 0.499999999

(�V1,0)2 13.2294032 7.3539601 3.6335903 2.30437841 1.1794853 0.9999999999
1s (�T1,0)2 13.2294032 7.3539601 3.6335903 2.30437841 1.1794853 0.9999999999

〈T 〉1,0〈V 〉1,0 − 〈TV 〉1,0 13.2294032 7.3539601 3.6335903 2.30437841 1.1794853 0.9999999999
〈T 〉1,0〈V 〉1,0 − 〈V T 〉1,0 13.2294032 7.3539601 3.6335903 2.30437841 1.1794853 0.9999999999

E2,0 45.89969929 22.186822249 8.25704419 3.771224646a 0.434727738 − 0.1249999999
(�V2,0 )2 18.4752785 9.8452409 4.4513850 2.5360027 0.78733209 0.1874999999

2s (�T2,0 )2 18.4752785 9.8452409 4.4513850 2.5360027 0.78733209 0.1874999999
〈T 〉2,0〈V 〉2,0 − 〈TV 〉2,0 18.4752785 9.8452409 4.4513850 2.5360027 0.78733209 0.1874999999
〈T 〉2,0〈V 〉2,0 − 〈V T 〉2,0 18.4752785 9.8452409 4.4513850 2.5360027 0.78733209 0.1874999999

E2,1 32.48998926 15.64056055 5.76850468 2.60273839a 0.265263485 − 0.124999999
(�V2,1)2 1.5579056 0.8086356 0.3486783 0.1899865 0.05526280 0.02083333333

2p (�T2,1)2 1.5579056 0.8086356 0.3486783 0.1899865 0.05526280 0.02083333333
〈T 〉2,1〈V 〉2,1 − 〈TV 〉2,1 1.5579056 0.8086356 0.3486783 0.1899865 0.05526280 0.02083333333
〈T 〉2,1〈V 〉2,1 − 〈V T 〉2,1 1.5579056 0.8086356 0.3486783 0.1899865 0.05526280 0.02083333333

aLiterature results [51] of En,� for 1s, 2s, and 2p states at rc = 1 are 0.594, 3.771, 2.603, respectively.

+ V0

∫ ∞

rc

ψ∗
n,�(r)ψn,�(r) r2dr

]

+
∫ rc

0
ψ∗

n,�(r)T̂

(
1

r

)
ψn,�(r) r2dr

−V0

∫ ∞

rc

ψ∗
n,�(r)T̂ ψn,�(r) r2dr. (51)

Thus, analogous to a HICHA, here also the perturbing term
V0 contributes to the expectation values. Table VI presents
specimen energies (En,�), along with respective expectation
values for 1s, 2s, and 2p states of a SPCHA at six arbitrary sets
of {V0, rc}. We are aware of only one work for ground-state
energy, which is duly quoted; this produces reasonably good
agreement. These results further demonstrate the validity of
this virial-like expression for a SPCHA.

D. Penetrable, smooth/homogeneous confinement

One example of such a potential is v(r) = − 1
r + vp,h(r),

where vp,h(r) = U0/ew(1− r
rc

) + 1 (U0 and w both are positive
and real). Its importance and utility was first discussed in
Ref. [15] in the context of explaining the interactions present
in artificial atoms. The relevant expressions can be written as

〈T̂ V̂ 〉n,� = −
〈
T̂

(
1

r

)〉
n,�

+ 〈T̂ vp,h(r)〉n,�,

〈V̂ T̂ 〉n,� = −
〈(

1

r

)
T̂

〉
n,�

+ 〈vp,h(r)T̂ 〉n,�, (52)

and

〈V̂ 2〉n,� =
〈

1

r2

〉
n,�

− 2

〈(
1

r

)
vp,h(r)

〉
n,�

+ 〈
v2

p,h(r)
〉
n,�

,

〈V 〉n,� = −
〈

1

r

〉
n,�

+ 〈
vp,h(r)

〉
n,�

. (53)

Eventually we arrive at the following expression after some
algebra:

〈T̂ 2〉n,� − 〈T̂ 〉2
n,� = (�T̂n,�)2 = (�V̂n,�)2 = 〈V̂ 2〉n,� − 〈V̂ 〉2

n,�

=
〈

1

r2

〉
n,�

− 2

〈(
1

r

)
vp,h(r)

〉
n,�

+ 〈
v2

p,h(r)
〉
n,�

−
(

−
〈

1

r

〉
n,�

+ 〈vp,h(r)〉n,�

)2

= 〈T̂ 〉n,�

(
−

〈
1

r

〉
n,�

+ 〈vp,h(r)〉n,�

)

+
〈(

1

r

)
T̂

〉
n,�

− 〈vp,h(r)T̂ 〉n,�

= 〈T̂ 〉n,�

(
−

〈
1

r

〉
n,�

+ 〈vp,h(r)〉n,�

)

+
〈
T̂

(
1

r

)〉
n,�

− 〈T̂ vp,h(r)〉n,�. (54)

Thus we notice that, similar to a HICHA and a SPCHA,
here also the perturbing term vp,h(r) remains in the final
expression.

In order to explain the result for a HPCHA, we have
taken w = 1000 and U0 = 10 as potential parameters. Ta-
ble VII reports the calculation of En,�, (�T̂n,�)

2
, (�V̂n,�)

2
,

〈T 〉n,�〈V 〉n,� − 〈TV 〉n,�, and 〈T 〉n,�〈V 〉n,� − 〈V T 〉n,� for 1s, 2s,
and 2p states at six chosen rc values, namely, 0.1, 0.2, 0.5, 1,
5, and ∞. The last column clearly implies that at rc → ∞
and U → 0 this system merges to a FHA. These results, like
the previous cases, demonstrate that relation (5) is valid for a
HPCHA as well. Ground-state energies at all these rc values
are compared with the available literature results. No further
comparison could be made due to a lack of data.
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TABLE VI. En,�, (�Vn,�)2, (�Tn,�)2, 〈T 〉n,�〈V 〉n,� − 〈TV 〉n,�, and 〈T 〉n,�〈V 〉n,� − 〈V T 〉n,� for 1s, 2s, and 2p states in a SPCHA at six sets of
{V0, rc}. See text for detail.

V0 = 0 V0 = 0 V0 = 1 V0 = 4 V0 = 10 V0 = ∞
State Property rc = 5.77827 rc = 4.87924 rc = 5.72824 rc = 5.75669 rc = 5.49360 rc = 5.80119

E1,0
a − 0.9998090 − 0.9990142 − 0.999186 − 0.998703 − 0.997682 − 0.998302

(�V1,0)2 1.000433 1.003194 1.00266 1.00447 1.00848 1.0047
1s (�T1,0)2 1.000433 1.003194 1.00266 1.00447 1.00848 1.0047

〈T 〉1,0〈V 〉1,0 − 〈TV 〉1,0 1.000433 1.003194 1.00266 1.00447 1.00848 1.0047
〈T 〉1,0〈V 〉1,0 − 〈V T 〉1,0 1.000433 1.003194 1.00266 1.00447 1.00848 1.0047

E2,0 − 0.1578690 − 0.0909114 − 0.035144 0.0128918 0.0818295 0.0434530
(�V2,0 )2 0.355830 0.412397 0.56205 0.64650 0.774448 0.60752

2s (�T2,0 )2 0.355830 0.412397 0.56205 0.64650 0.774448 0.60752
〈T 〉2,0〈V 〉2,0 − 〈TV 〉2,0 0.355830 0.412397 0.56205 0.64650 0.774448 0.60752
〈T 〉2,0〈V 〉2,0 − 〈V T 〉2,0 0.355830 0.412397 0.56205 0.64650 0.774448 0.60752

E2,1 − 0.1996605 − 0.1587620 − 0.1406809 − 0.1172265 − 0.0832120 − 0.1022024
(�V2,1)2 0.032028 0.0413657 0.046701 0.0637238 0.094861 0.0316629

2p (�T2,1)2 0.032028 0.0413657 0.046701 0.0637238 0.094861 0.0316629
〈T 〉2,1〈V 〉2,1 − 〈TV 〉2,1 0.032028 0.0413657 0.046701 0.0637238 0.094861 0.0316629
〈T 〉2,1〈V 〉2,1 − 〈V T 〉2,1 0.032028 0.0413657 0.046701 0.0637238 0.094861 0.0316629

aLiterature results [13] of the 1s state at these six {V0, rc} pairs are −0.9998, −0.9990, −0.9994, −0.9990, −0.9980, and −0.9980, respectively.

IV. FUTURE AND OUTLOOK

A virial-like relation [(�T̂n)2 = (�V̂n)2] has been pro-
posed for free and confined quantum systems, by invoking the
SE and the HVT. This can be used as an essential condition
for an exact quantum system. Besides this, Eq. (5b) in its
complete form has been found to be a sufficient condition for
these bound, stationary states. Generalized expressions have
been derived for impenetrable, penetrable, and shell-confined
quantum systems along with the sharp and smooth situations.
The change in boundary condition does not influence the
form of these relations. Their applicability has been tested
and verified by doing pilot calculations on quantum harmonic

oscillator and H atom—a total of seven different confining
potentials, as well as the respective free systems. In all cases
these conditions have been satisfied. Under the impenetrable,
sharp (hard) confinement condition the perturbing term does
not survive in the final expression. However in impenetrable-
smooth, penetrable-sharp, and penetrable-smooth cases it oc-
curs in the eventual form. It is worth mentioning that these
relations are applicable in other coordinate systems, such as
ellipsoidal, parabolic, cylindrical, spheroidal, etc., as well as
in angular confinement. There are several open questions that
may lead to important conclusions and that require further
scrutiny, such as the use of these sufficient conditions in the

TABLE VII. En,�, (�Vn,�)2, (�Tn,�)2, 〈T 〉n,�〈V 〉n,� − 〈TV 〉n,�, and 〈T 〉n,�〈V 〉n,� − 〈V T 〉n,� for 1s, 2s, and 2p states in a HPCHA at six select
rc values, namely, 0.1, 0.2, 0.5, 1, 5, and ∞, having U = 10 and w = 1000. The last column indicates values at rc = ∞ and U = 0. See text
for detail.

State Property rc = 0.1 rc = 0.2 rc = 0.5 rc = 1 rc = 5 rc = ∞, U = 0

E1,0
a 9.4871580 9.35868 5.25360 1.1528598 − 0.4973688 − 0.499999999

(�V1,0)2 1.15378 2.4119 6.6390 3.25938 1.0133575 0.9999999999
1s (�T1,0)2 1.15378 2.4119 6.6390 3.25938 1.0133575 0.9999999999

〈T 〉1,0〈V 〉1,0 − 〈TV 〉1,0 1.15378 2.4119 6.6390 3.25938 1.0133575 0.9999999999
〈T 〉1,0〈V 〉1,0 − 〈V T 〉1,0 1.15378 2.4119 6.6390 3.25938 1.0133575 0.9999999999

E2,0 9.8734148 9.8593719 9.7728942 9.029792 0.10745905 − 0.1249999999
(�V2,0)2 0.20807 0.346874 0.153805 5.11808 0.7615043 0.1874999999

2s (�T2,0)2 0.20807 0.346874 0.153805 5.11808 0.7615043 0.1874999999
〈T 〉2,0〈V 〉2,0 − 〈TV 〉2,0 0.20807 0.346874 0.153805 5.11808 0.7615043 0.1874999999
〈T 〉2,0〈V 〉2,0 − 〈V T 〉2,0 0.20807 0.346874 0.153805 5.11808 0.7615043 0.1874999999

E2,1 9.8749992211 9.87497532482 9.869939026 4.980371 − 0.011992 − 0.124999999
(�V2,1)2 0.02083685 0.0209243374 0.04006099 0.36608 0.03609 0.02083333333

2p (�T2,1)2 0.02083685 0.0209243374 0.04006099 0.36608 0.03609 0.02083333333
〈T 〉2,1〈V 〉2,1 − 〈TV 〉2,1 0.02083685 0.0209243374 0.04006099 0.36608 0.03609 0.02083333333
〈T 〉2,1〈V 〉2,1 − 〈V T 〉2,1 0.02083685 0.0209243374 0.04006099 0.36608 0.03609 0.02083333333

aLiterature results [15] of E1,0 for rc = 0.1, 0.2, 0.5, 1.0, 5.0, and ∞ are 9.4973, 9.3620, 5.2456, 1.1761, −0.4947, and −0.5000, respectively.
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context of determining optimized wave functions for various
quantum systems, in both ground and excited states. Impor-
tantly, one can perform unconstrained optimization (without
employing the orthogonality criteria) of trial states by adopt-
ing this condition. A parallel inspection in many-electron
systems would be highly desirable.

ACKNOWLEDGMENTS

Financial support from the DST, SERB (New Delhi,
India; Sanction Order No. EMR/2014/000838), is gratefully
acknowledged. The authors acknowledge valuable discussion
with Prof. A. K. Nanda.

[1] J. R. Sabin, E. Brändas, and S. A. Cruz (Editors), The Theory
of Confined Quantum Systems, Parts I and II, Advances in
Quantum Chemistry Vols. 57 and 58 (Academic Press, San
Diego, 2009).

[2] H. Pang, W.-S. Dai, and M. Xie, J. Phys. A 44, 365001 (2011).
[3] K. D. Sen (Editor), Electronic Structure of Quantum Confined

Atoms and Molecules (Springer, Cham, Switzerland, 2014).
[4] K. D. Sen (Editor), Statistical Complexity: Applications in

Electronic Structure (Springer, Dordrecht, 2012).
[5] N. Aquino and R. A. Rojas, Eur. J. Phys. 37, 015401 (2016).
[6] R. M. Yu, L. R. Zan, L. G. Jiao, and Y. K. Ho, Few-Body Syst.

58, 152 (2017).
[7] F. M. Fernàndez and E. A. Castro, Int. J. Quantum Chem. 21,

741 (1982).
[8] A. Ghosal, N. Mukherjee, and A. K. Roy, Ann. Phys. (Berlin)

528, 796 (2016).
[9] A. Michels, J. de Boer, and A. Bijl, Physica 4, 981 (1937).

[10] J. Katriel and H. E. Montgomery, Jr., J. Chem. Phys. 137,
114109 (2012).

[11] C. Zicovich-Wilson, J. H. Planelles, and W. Jaskólski, Int. J.
Quantum Chem. 50, 429 (1994).

[12] S. H. Patil and Y. P. Varshni, The Theory of Confined Quan-
tum Systems, Part I, Advances in Quantum Chemistry Vol. 57
(Academic Press, 2009), pp. 1–24.

[13] E. Lee-Koo and S. Rubinstein, J. Chem. Phys. 71, 351
(1979).

[14] J. Adamowski, M. Sobkowicz, B. Szafran, and S. Bednarek,
Phys. Rev. B 62, 4234 (2000).

[15] N. Aquino, A. Flores-Riveros, and J. F. Rivas-Silva, Phys. Lett.
A 377, 2062 (2013).

[16] K. D. Sen, J. Chem. Phys. 123, 074110 (2005).
[17] J. M. Randazzo and C. A. Rios, J. Phys. B 49, 235003 (2016).
[18] R. Cabrera-Trujillo, R. Méndez-Fragoso, and S. A. Cruz, J.

Phys. B 49, 015005 (2016).
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