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Motivated by a recent experiment [Fuchs et al., Nat. Phys. 11, 964 (2015)], we theoretically investigate
the process of x-ray nonlinear Compton scattering (XNLC). Our approach is based on the time-dependent
Schrödinger equation for an atomic system subject to an intense x-ray pulse, and explicitly accounts for the
spontaneous scattering into a quantized photonic mode. We employ our framework to study multiple nonlinear
scattering scenarios. Initially, we consider soft x rays at 500 eV photon energy to scatter nonlinearly off a
helium target. For this, we find that XNLC is dominated by certain third-order processes rather than the
naïvely expected mechanisms pertaining to the lowest order of perturbation theory. Subsequently, we apply
our model to XNLC in helium at 4.0 keV photon energy and beryllium at 9.7 keV. Contrary to the conclusions
drawn from the experimental observations, our results suggest a good agreement of the XNLC spectrum with
simple, free-electron model predictions. Moreover, our studies reveal striking qualitative similarities of linear
and nonlinear Compton scattering cross sections in this regime.
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I. INTRODUCTION

Over the past decade, the advent of x-ray free-electron
laser (FEL) sources [1–6] has opened up experimental op-
portunities at unprecedentedly high x-ray intensities (up
to 1020 W/cm2). This development has enabled numerous
ground-breaking investigations that crucially rely on weak,
linear signals (e.g., single molecule imaging [7]), yet more-
over, it has uncovered a novel—namely the nonlinear—
regime of x-ray-matter interaction [8–17].

Probing this regime at the Linac Coherent Light Source [4],
a study by Fuchs et al. recently resulted in the observation of
a nonlinear scattering signal, which was interpreted in terms
of x-ray nonlinear Compton scattering (XNLC) [18]. In this
process, two incoming x-ray photons nonsequentially interact
with the target material (beryllium foil), being converted in the
process into a single scattered photon at higher photon energy.
Analogous to the case of regular Compton scattering, XNLC
proceeds inelastically, i.e., it involves the transfer of energy
onto a recoiling electron. This effect had previously been
elusive in the x-ray regime, though its prediction dates back
to 1963, when Kibble and Brown formulated their theoretical
description of nonlinear Compton scattering for a free electron
in strong electromagnetic fields [19]. Their findings notably
include a relation between incoming (ωin) and scattered (ωNLC)
photon energies:

ωNLC = n ωin

1 + (n α2ωin)(1 − cos ϑ )
, (1)

*Corresponding author: robin.santra@cfel.de

which parallels the well-known and -tested linear Compton
kinematic [20,21], albeit for multiple (n) incoming photons
[22]. In printing Eq. (1), we employ the system of atomic
units (a.u.) [23], which we adhere to throughout this article.
Furthermore, we use α (≈1/137) to denote the fine-structure
constant and ϑ to denote the scattering angle.

Contrasting with Eq. (1), the experimentally observed
spectrum from Ref. [18] exhibits systematically larger red-
shifts than predicted by the free-electron model for the
XNLC process. This was interpreted as a breakdown of the
free-electron approximation for bound-state contributions to
XNLC [18]. In order to understand the redshift and verify its
interpretation in terms of anomalous XNLC, the theoretical
description of the process has to be improved beyond the
free-electron case. Therefore, we aim to develop a description
of XNLC that accounts both for the scattering process and the
interaction with a binding potential.

Technically, this endeavor holds considerable challenges,
as the conventional treatment of x-ray-matter interaction
in terms of perturbation theory becomes “tremendously in-
volved” [24] for nonlinear processes. This is due both to a
rapidly increasing number of contributing terms and the in-
tricacies arising from the description of intermediate states in
a perturbative expansion. Moreover, any theoretical approach
to XNLC is complicated by the necessity to account for
nondipole effects owing to the short x-ray wavelength. Recent
perturbative investigations of XNLC by Hopersky et al. [25],
therefore, have been conducted only in the limit of several
approximations regarding the above aspects. Most signifi-
cantly, quoted work is restricted to the evaluation of a single
contributing term pertaining to lowest order of perturbation
theory (LOPT).
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Faced with the same difficulties, we decided to develop a
nonperturbative approach for the theoretical investigation of
(nonlinear) scattering phenomena. We base this approach on
the explicit solution of the time-dependent Schrödinger equa-
tion (TDSE) in terms of propagating a wave-function ansatz
that accounts both for the atomic system and the scattered
photon—the latter in terms of a quantized photonic mode.
This ansatz draws on our positive experiences with the time-
dependent configuration-interaction singles (TDCIS) method
[26–31], yet differs decidedly in its support for spontaneous
emission or scattering into a nonparametric photon field. It is
this time-dependent QED aspect that also sets our approach
apart from most other wave-packet propagation schemes—
with the notable exceptions of model studies by Grobe and
co-workers [32–34], a strong field approach by Gonoskov and
co-workers [35], and recent developments in quantum electro-
dynamical density-functional theory [36–38]. However, to the
best of our knowledge, none of the aforementioned techniques
have so far seen application to a realistic (three-dimensional)
system. For this, we conduct our time-dependent QED simu-
lations, investigating both regular (linear) Compton scattering
and subsequently XNLC.

Choosing wave-packet propagation over conventional per-
turbative approaches provides us with a versatile model that
can be applied to a variety of problems besides XNLC.
Thereby, it offers otherwise unparalleled options for checks
and benchmarks. Its versatility, however, comes at the price of
considerable computational effort even for smaller systems.
To meet this challenge, we base our model on an efficient
partial discrete variable representation (DVR) and tailor its
implementation to capitalize on the computing power of to-
day’s graphics processing units (GPUs) [39].

The main body of our work below consists of Sec. II,
wherein we introduce the foundations of our approach, and
Sec. III, which contains three applications of our model to
XNLC scenarios. We summarize our findings in Sec. IV. In
addition, we provide appendixes that address details of the nu-
merical implementation (Appendix A) and present validation
of our model (Appendix B).

II. THEORY

In order to describe XNLC at incoming photon energies of
a few keV, we adopt a nonrelativistic description in terms of
the TDSE:

i
∂

∂t
|�〉 = Ĥ |�〉. (2)

This is well justified, as the energy transferred to an electron
during XNLC by two photons is small compared to its rest
energy of 511 keV [40].

In our investigation, we numerically solve Eq. (2) for an
atomic system subject to an intense x-ray pulse and extract
from its temporal evolution the probability for a spontaneous
scattering event to occur. The TDSE describing such a scatter-
ing event may be pictured to resemble a two-level system:

i
∂

∂t

(
β(t )
α(t )

)
=

(
Ĥ11 Ĥ↑
Ĥ↓ Ĥ00

)(
β(t )
α(t )

)
, (3)

where the states represented by α(t ) exhibit no scattered
photon, while those represented by β(t ) do. Each set of states
evolves under the influence of its pertaining Hamiltonian
segment (α(t ): Ĥ00, β(t ): Ĥ11) and is coupled to the other set
by Ĥ↑ or Ĥ↓, respectively, which mediates the creation or
annihilation of a scattered photon.

In the following, we construct the constituents of the
outlined model. In Sec. II A, we discuss the Hamiltonian that
describes the coupled light-matter system, subsequently dedi-
cating Sec. II B to the introduction of a suitable wave-function
ansatz. In the course of this, α(t ) and β(t ) are reintroduced
as expansion coefficients. In Sec. II C, both elements are
combined, recasting the TDSE into a set of coupled equations
of motion (EOMs) for the expansion coefficients. At this point
the Hamiltonian assumes a partitioning akin to Eq. (3). Finally
in Sec. II D, we outline the relation of the simulation results
to an experimentally accessible scattering cross section. For
further details on the numerical implementation, we refer the
reader to Appendix A.

A. Hamiltonian

Within the framework of nonrelativistic QED [41,42] the
most general Hamiltonian description of our setup may be
written as

Ĥ = ĤAT + ĤEM + ĤINT, (4)

with ĤAT pertaining to the atomic system, ĤEM to the electro-
magnetic field, and ĤINT comprising the interaction of the two.
The latter part accounts for—among other things—the scat-
tering of photons by the atom and therefore is pivotal to our
investigation. In order to incorporate its complexity into our
model, and thus allow for an accurate description of XNLC,
we, however, have to accept considerable simplifications with
regard to the other components. Otherwise, we would find
the challenging numerical calculations rendered completely
unfeasible.

In our first step towards a solvable model, we approximate
the atomic Hamiltonian ĤAT. Instead of treating its electron-
electron interaction at full complexity, we resort to a simpler
mean-field description in terms of the Hartree-Fock-Slater
(HFS) model [43]. This approach has proven effective in nu-
merous applications (see for example [44–47]) and provides
us with a sensible approximation of the electronic structure
of light atoms. The according Hamiltonian for Nelec electrons
reads

ĤAT =
Nelec∑
n=1

(
p̂2

n

2
+ VHFS(|r̂n|)

)
, (5)

where p̂n denotes the canonical momentum operator pertain-
ing to the nth electron and r̂n its position operator. The HFS
potential in turn is marked by VHFS(|r|).

Next, we consider the modeling of the electromagnetic
field, encompassing both the incoming FEL pulse and the
scattered photon. In describing the spontaneous creation of
the latter, it is mandatory to account for the quantized nature
of the field, whereas the description of the FEL radiation may
well be accomplished classically [48]. Given the considerable
computational facilitation yielded by a (partially) classical
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treatment, we adopt a mixed description, writing the overall
vector potential as the sum of the classical incoming pulse
and a quantized part accounting for the scattered photon:

Â(r, t ) = Ain(r, t ) + Âq(r). (6)

Herein, we require both parts to satisfy the Coulomb gauge
[∇ · A(r) = 0] independently. We further choose the incom-
ing pulse to be of a plane-wave nature, using a carrier fre-
quency ωin = |kin|/α that is modulated by a slowly varying
pulse envelope A(t ):

Ain(r, t ) = A(t ) (εin ei(kin·r−ωint ) + H.c.). (7)

Here, εin is the complex unit vector marking the polarization
of the pulse (εin ⊥ kin) and the notation “H.c.” is used to
indicate the Hermitian conjugate of the preceding term.

Regarding the quantized part of the field Âq(r), we are
left with the challenge to cover a large set of modes, into
which the scattered photon could be emitted. In order to
simplify this problem, we proceed in analogy to common
perturbative scattering analyses, restricting our model to a
single mode per calculation. Thereby, we significantly reduce
the computational complexity of a simulation run, albeit at
the expense of requiring multiple, successive calculations to
scan a full spectrum [49]. The vector potential employed to
represent the quantized field then reads

Âq(r) =
√

2π

V ωqα2
(âq εq eikq·r + H.c.), (8)

where âq and â†
q are the annihilation and creation operators,

respectively, for a photon in the quantized mode (q). Its
energy is given by ωq = |kq|/α, while εq once again marks its
polarization (εq ⊥ kq). The quantization volume of the elec-
tromagnetic field (cf., e.g., Ref. [41]) enters the calculations
in terms of V , however, it should be noted that all physical
results are independent of its numerical value (cf. Sec. II D).

With the above setup in place, ĤEM concerns only the
quantized mode (q) and therefore reads

ĤEM = n̂q ωq. (9)

This expression is adjusted for the global energy offset caused
by the vacuum contribution ωq/2 and thus focuses only on the
number of photons actually occupying the mode. The latter is
counted by the number operator n̂q = â†

qâq.
Based on the modeling of ĤAT and ĤEM, we can now

introduce the light-matter interaction term without the need
for further approximations. We adopt the principle of minimal
coupling [50], rendering ĤINT:

ĤINT =
Nelec∑
n=1

(
α p̂n · Â(r̂n, t ) + α2

2
Â2(r̂n, t )

)
. (10)

B. Wave-function ansatz

The second decisive part of TDSE modeling concerns the
formulation of a wave-function ansatz that spans a suitable
space of states.

Regarding the atomic system, we hereunto adopt an expan-
sion analogous to the TDCIS approach of Ref. [26], which
has been shown to capture the physics of various atomic

phenomena [28,29,51]. In particular, we base our description
on the HFS ground state |�0〉 and additionally account for
one-particle one-hole configurations |�a

i 〉. The latter denote
spin-symmetrized excitations [52] on top of |�0〉, in which an
electron is (spatially) promoted from its initial orbital |ϕi〉 into
a previously unoccupied orbital |ϕa〉.

Besides the electronic configuration, the wave-function
ansatz also has to account for the state of the photonic mode
(q). To this end, each electronic state is paired with one
of the two states of the photonic system, i.e., |nq〉 = |0〉
and |nq〉 = |1〉, representing the possible absence or presence
of a scattered photon, respectively. Thus, our overall wave-
function ansatz reads

|�(t )〉 =α0(t )|�0〉|0〉 +
∑
i,a

αa
i (t )

∣∣�a
i

〉|0〉

+ β0(t )|�0〉|1〉 +
∑

j,b

βb
j (t )

∣∣�b
j

〉|1〉, (11)

wherein the structure of the two-level system of Eq. (3)
is reflected. Note that the summation indices of the above
ansatz implicitly relate to the underlying HFS orbitals |ϕp〉,
for which we adhere to the following convention: Indices
i, j, k, and l are taken to refer to initially occupied orbitals,
whereas indices a, b, c, and d remain reserved for their
unoccupied (virtual) counterparts.

All single-particle orbitals |ϕp〉—regardless of their
indices—are solutions of the self-consistent HFS equation,(

p̂2

2
+ VHFS(|r̂|)

)
|ϕp〉 = εp|ϕp〉, (12)

with the spatial representation

ϕp(r) = unp lp (|r|)
|r| Ylp mp (�r ). (13)

Herein, unp lp (|r|) marks the radial part of the orbital wave
function, while its angular component is represented by the
spherical harmonic Ylp mp (�r ).

C. Equations of motion

With both the Hamiltonian Ĥ and the wave-function ansatz
|�(t )〉 outlined, we proceed to recast the TDSE [Eq. (2)] into
equations of motion (EOMs) for the expansion coefficients
α0(t ), β0(t ), αa

i (t ), and βb
j (t ). To this end, we project the

assembled TDSE of our model onto the various constituent
states of the ansatz given in Eq. (11).

Any electronic matrix element that occurs in this process
can subsequently be simplified using the Slater-Condon rules:

〈�0|Ĥ |�0〉 = 2
∑

j〈ϕ j |Ĥ |ϕ j〉 =: 2 〈Ĥ〉occ, (14)〈
�0

∣∣Ĥ ∣∣�a
i

〉 =
√

2 〈ϕi|Ĥ |ϕa〉, (15)〈
�c

k

∣∣Ĥ ∣∣�a
i

〉 = δi k 〈ϕc|Ĥ |ϕa〉− δa c 〈ϕi|Ĥ |ϕk〉+ δi kδa c 2 〈Ĥ〉occ,

(16)

in which δi k denotes the Kronecker symbol and the trace over
initially occupied orbitals 〈...〉occ is introduced to improve
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readability. Note that on the right-hand side of Eqs. (14)–(16)
the operator Ĥ is understood to act only on a single electron.

Following the above rules, the EOMs written in terms of
the HFS orbitals read

i
∂

∂t
α0 = 2 α0 〈Ĥ00〉occ +

√
2

∑
i,a

αa
i 〈ϕi|Ĥ00|ϕa〉 + 2 β0 〈Ĥ↓〉occ +

√
2

∑
j,b

βb
j 〈ϕ j |Ĥ↓|ϕb〉, (17)

i
∂

∂t
αc

k = 2 αc
k 〈Ĥ00〉occ +

√
2 α0〈ϕc|Ĥ00|ϕk〉 −

∑
i

αc
i 〈ϕi|Ĥ00|ϕk〉 +

∑
a

αa
k 〈ϕc|Ĥ00|ϕa〉

+ 2 βc
k 〈Ĥ↓〉occ +

√
2 β0〈ϕc|Ĥ↓|ϕk〉 −

∑
j

βc
j 〈ϕ j |Ĥ↓|ϕk〉 +

∑
b

βb
k 〈ϕc|Ĥ↓|ϕb〉, (18)

i
∂

∂t
β0 = 2 α0 〈Ĥ↑〉occ +

√
2

∑
i,a

αa
i 〈ϕi|Ĥ↑|ϕa〉 + 2 β0 〈Ĥ11〉occ +

√
2

∑
j,b

βb
j 〈ϕ j |Ĥ11|ϕb〉, (19)

i
∂

∂t
βc

k = 2 αc
k 〈Ĥ↑〉occ +

√
2 α0〈ϕc|Ĥ↑|ϕk〉 −

∑
i

αc
i 〈ϕi|Ĥ↑|ϕk〉 +

∑
a

αa
k 〈ϕc|Ĥ↑|ϕa〉

+ 2 βc
k 〈Ĥ11〉occ +

√
2 β0〈ϕc|Ĥ11|ϕk〉 −

∑
j

βc
j 〈ϕ j |Ĥ11|ϕk〉 +

∑
b

βb
k 〈ϕc|Ĥ11|ϕb〉, (20)

where we omit to carry the time dependence of the expansion coefficients in favor of visual clarity.
More importantly, we choose to partition the single-particle Hamiltonian in a way that reflects the two-level nature of the

quantized photonic system [cf. Eq. (3)]. To this end, we collect all terms which act solely on the lower level (nq = 0) into the
Ĥ00 block, while the Ĥ11 part pertains to the upper level (nq = 1) in an analogous way. Furthermore, we compile all operators
that mediate transitions between the two levels into either Ĥ↑ or Ĥ↓, which refer to the creation of a scattered photon or its
annihilation, respectively.

Looking at each of these blocks in detail [53], we can identify different contributing processes, which we print alongside their
diagrammatic representation for illustration:

(21)

(22)

(23)

Ĥ↓ = (Ĥ↑)†. (24)

Here, we employ red wiggly lines (thick) to symbolize inter-
action with the classical field and blue wiggly lines (thin) to
depict interactions with the quantized mode (q).

Knowledge of the contributions shown above consequently
allows us to investigate the mechanisms underlying XNLC.
To this end, we may modify the propagation of the EOM by

selectively switching on or off contributing processes, based
on Eqs. (21)–(24).

D. Evaluation of scattering

Implementing the presented model, we are—in principle—
in a position to simulate various scattering scenarios. The
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remaining task is to prescribe appropriate initial conditions to
each simulation run and relate the propagated outcome to an
overall scattering probability.

Both aspects are complicated in comparison to conven-
tional atomic TDSE simulations (e.g., photoabsorption studies
[29]) by the fact that there is permanent coupling among the
light and matter subsystems. This particular coupling to the
quantized mode (q) is mediated via the terms [cf. Eqs. (23)
and (24)]:

(25)

and manifests itself as the virtual emission and reabsorption
of a photon, i.e., the Lamb effect [54,55].

In this context, the ground state of the uncoupled system
(|�0〉|0〉) is no longer stationary and should not be chosen
as the starting point of a scattering simulation. Instead, we
choose to converge the coupled system to its true ground state
prior to each simulation run by performing a (pre)propagation
in imaginary time (cf., e.g., [56,57]). Thereby, the coupled
system acquires a permanent population share in the one-
photon sector, on top of which the real scattering process—
driven by Ain(r, t )—induces further population transfer.

In order to distinguish the two contributions and count only
the latter towards the scattering probability, we discriminate
based on the physical response of the coupled system. While
the ground state’s population in the one-photon sector is nec-
essarily bound, its scattering-induced counterpart corresponds
to an ionized electronic wave packet (provided 2ωin − ωq >

IP). Thus, by observing the outgoing flux of the wave func-
tion, we are able to obtain the probability Pq for Compton-like
scattering in each simulation run (see also Appendix A 2).

Based on Pq, we formulate the (generalized) double differ-
ential scattering cross section (DDSCS) for XNLC:

d2σ (2)

d�q dωq
= V

(2π )3
α3 ω2

q

Pq

F (2)
in

. (26)

Herein, we account for the nonlinear dependence of XNLC on
the incoming field (cf. findings by Ref. [18]), by normalizing
by the second-order nonlinear fluence F (2)

in :

F (2)
in =

∫ tend

0
dt [Jin(t )]2 =

∫ tend

0
dt

α2ω2
in

(2π )2
[A(t )]4. (27)

Finally, note that the conversion prefactor of Eq. (26), includes
the quantization volume V explicitly, which compensates for
the implicit dependence on V carried by Pq. Thus, the resultant
DDSCS is rendered independent of the particular numerical
choice of V .

III. APPLICATIONS

Once our XNLC model is implemented, we pursue two
lines of applications: The first is concerned with the nu-
merical reproduction of well-known phenomena in order to
validate the functioning of our model (for details on this,
see Appendix B). The second line, on the other hand, is
dedicated to the actual study of nonlinear scattering processes.
Focusing here on the latter, we investigate three cases of
XNLC in the following subsection. In Sec. III A, we report

on XNLC in helium for comparatively low photon ener-
gies [ωin = 18.37 a.u. (≈500 eV)], addressing in this sce-
nario the previous work of Hopersky et al. [25], whereas in
Secs. III B and III C we consider XNLC at higher energies in
an effort to retrace the experimental observations by Fuchs
et al. [18]. These sections concern XNLC in helium at
ωin = 147 a.u. (≈4.0 keV) and XNLC in beryllium at ωin =
358 a.u. (≈9.7 keV), respectively.

A. XNLC in helium at 500 eV

The first application of our XNLC program to nonlinear
scattering concerns a scenario previously investigated by Hop-
ersky et al. [25]. In quoted work, the authors conduct a per-
turbative analysis of nonlinear scattering in helium for incom-
ing photon energies of 500 eV. They restrict their treatment
to lowest order of perturbation theory (LOPT), considering
initially the diagrammatic contributions:

. (28)

Subsequently, they reduce the above set by argument to the
first term only.

Overall, this ansatz appears problematic to us, as it neglects
contributions of the fully p̂ · Â-type diagrams:

. (29)

While these expressions indeed do not pertain to LOPT, they
nevertheless exhibit the same order of interaction strength (α3)
as the terms implied by the diagrams (28). Therefore, it seems
unjustified to ignore them a priori.

In the following, we employ our nonperturbative
approach—partly truncated—to investigate the importance of
these additional contributions and thereby test the adequacy
of the LOPT ansatz. In all of these calculations, we ensure
that our results remain comparable to perturbation theory
in general, by choosing the applied field well within the
perturbative (multiphoton) regime. Specifically, we conduct
all investigations using Gaussian pulses with a maximum
pulse envelope of A(tmax) = 0.5 a.u. [58].

As a first step, we attempt to simulate the behavior of the
restricted scattering mechanism employed by Ref. [25]:

.
(30)

To this end, we disable the vertices

(31)

within the Hamiltonian segments Ĥ↑ and Ĥ↓ [Eqs. ((23),
(24))] of our model, which then allows for nonlinear scattering
only through

(32)
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 24  26  28  30  32  34  36

d2 σ(2
) /(

dΩ
qd

ω
q)

 (
a.

u.
 s

r-1
)

Scattered photon energy ωq (a.u.)

full XNLC model
truncated XNLC model

FIG. 1. The DDSCS for nonlinear Compton scattering at ωin =
18.37 a.u. (≈500 eV) calculated both with the truncated XNLC
model (green dash-dotted line) and its full implementation (red solid
line).

to lowest order. This gives the closest representation of
Ref. [25] within our model, as we cannot control the time
ordering of the contributions. In our simulations, we repro-
duce the scattering geometry employed by Hopersky et al.,
fixing a scattering angle of ϑ = π/2 with both fields polarized
perpendicular to the scattering plane.

The DDSCS that we extract from these calculations is
plotted as the “truncated model” (green dash-dotted line) in
Fig. 1 [59].

The cross section obtained from the truncated model ex-
hibits a peak at the upper edge of the spectrum (ωq ≈ 2ωin −
IP), which is reminiscent of the linear scattering case. Passing
through a minimum at ωq ≈ 33 a.u., it then rises steeply
towards lower scattered photon energies (ωq → ωin).

In contrast, employing the full model, i.e., enabling all
terms of the Hamiltonian Ĥ↑ and Ĥ↓ in our simulations, we
find a distinctly different result (red solid line). The accord-
ing scattering signal features no peaked structure, but rises
smoothly from its value at the upper edge (ωq ≈ 2ωin − IP)
towards smaller ωq. Apart from this qualitative difference,
there is also a striking disparity in the strength of both signals,
with the full model dominating by approximately two orders
of magnitude.

These findings strongly suggest that the restricted descrip-
tion in terms of the truncated model and—by extension—the
treatment of Ref. [25] are insufficient to capture XNLC at the
present photon energies.

Regarding the mechanism ultimately responsible for the
disparity, it should be noted that further analyses, e.g., by
disabling the vertices

(33)

in Ĥ00 (and Ĥ11, respectively), which suppresses the XNLC
contributions

(34)

 0

 2x10-13

 4x10-13

 6x10-13

 8x10-13

 1x10-12

0 π/6 2π/6 3π/6 4π/6 5π/6 π

d2 σ(2
) /(

dΩ
qd

ω
q)

 (
a.

u.
 s

r-1
)

Scattering angle ϑ

ωq = 27.56 a.u.
ωq = 31.24 a.u.

FIG. 2. The angular dependence of the DDSCS for XNLC in
the plane of the incoming wave vector and polarization [ωin =
18.37 a.u. (≈500 eV)]. The pattern is shown for ωq = 27.56 a.u.
(≈750 eV) (red solid line) and ωq = 31.24 a.u. (≈850 eV) (red
dashed line), where each data set represents the sum of two orthogo-
nal polarizations of the scattered photon.

show no significant impact on the “full model” signal. These
studies then lead us to conclude that indeed the dominant
contributions to XNLC at ωin = 18.37 a.u. (≈500 eV) stem
from the third-order terms depicted by the diagrams (29).

Angular distribution of the scattered photon. In addition to
studying the fixed scattering geometry assumed in Ref. [25],
we also employ our full model to investigate the angular
distribution of nonlinearly scattered photons. To this end, we
assume the same simulation parameters, but initially orient
the scattered photon’s kq colinear to the wave vector of the
incoming field kin (along the negative y axis). We then scan
the DDSCS at two fixed ωq for various directions of kq in
the y-z plane, or respectively scattering angles from ϑ = 0 to
ϑ = π .

The resultant scattering patterns for ωq = 27.56 a.u.
(≈750 eV) (red solid line) and ωq = 31.24 a.u. (≈850 eV)
(red dashed line) are shown in Fig. 2, where ϑ = 0 denotes
forward scattering, ϑ = π backward scattering and ϑ = π/2
marks scattering along the polarization of the incoming field.
Each data set represents the summed DDSCS for two orthog-
onal polarization states of the scattered photon.

In both cases, we can observe an angular distribution of the
XNLC scattering probability that resembles a dipolar emis-
sion pattern for the scattered photon. They deviate, however,
from this simple form in terms of a slight forward-backward
asymmetry, favoring the forward direction. Moreover, there
remains a nonvanishing probability for scattering to occur
along the polarization direction of the incoming field (as
pointed out previously in Ref. [18]).

B. XNLC in helium at 4.0 keV

In this second application of our XNLC model, we extend
our studies on helium into the regime of high photon ener-
gies. Choosing ωin = 147 a.u. (≈4.0 keV), we approach the
conditions of Ref. [18]. Therein, Fuchs et al. present
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FIG. 3. The DDSCS for nonlinear Compton scattering at ωin =
147 a.u. (≈4.0 keV) in helium (red solid line) is contrasted with the
linear Compton DDSCS at twice the incoming photon energy (blue
dashed line, not to scale). The vertical line indicates the scattered
photon energy expected from the free-electron model in both cases
[cf. Eq. (1)].

evidence for a nonlinear scattering signal obtained from
a solid beryllium target, which is irradiated with high in-
tensity x-ray pulses at photon energies up to ωin_exp =
358 a.u. (≈9.7 keV). This signal exhibits a significant redshift
with respect to the nonlinear Compton line predicted by the
free-electron model discussed in Sec. I. Accounting properly
for the bound situation of the electrons during the XNLC
process, we assess in the following study, whether we can
observe a similar redshift and thus support the interpretation
of the experimental findings in terms of (anomalous) XNLC.

We adjust the scattering geometry such that the incoming
pulse [60] propagates along the negative y direction and bears
a polarization parallel to the z axis. The scattered photon in
the quantized mode (q), on the other hand, is observed at
a scattering angle of ϑ = 0.75 π (= 135◦) in the y-z plane,
in accordance with Ref. [18]. Two orthogonal polarization
states of the scattered photon are chosen for the propagation
and their respective results added in the construction of the
DDSCS. The result is plotted in Fig. 3 (red solid line). In
contrast to the measured signal of Ref. [18], the resultant
XNLC profile is peaked around the free-electron line expected
from Eq. (1) (ωNLC ≈ 286 a.u.), showing no indication of an
anomalous redshift.

Moreover, the profile exhibits a striking qualitative similar-
ity to the linear Compton DDSCS for scattering at twice the
incoming photon energy (ωin_linear = 2ωin = 294 a.u.), which
we plot for comparison (blue dashed line). The latter result is
obtained by means of the XATOM toolkit [61] and scaled to
match the magnitude of the XNLC curve.

We want to point out that both observations can be con-
firmed in studies on beryllium (cf. Sec. III C) and strongly
suggest in conjunction that our XNLC model does not support
an anomalous Compton shift.

XNLC mechanisms at higher photon energies. Apart from
our investigation into the anomalous redshift of XNLC, we
may furthermore use the present results to once again study
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FIG. 4. Comparison of the DDSCS for nonlinear Compton scat-
tering at ωin = 147 a.u. (≈4.0 keV) in helium obtained using the
full XNLC model (red solid line) and the truncated model (green
crosses).

the mechanisms underlying nonlinear scattering. Hereunto,
we supplement the present results (cf. Fig. 3)—obtained using
the full XNLC model—by an analysis in the truncated model
as detailed in Sec. III A [cf. diagrams (32)]. The results of
these restricted simulations are shown in Fig. 4 (green crosses)
for a subset of the full model data points (red solid line).
From the comparison, we can learn that the previously striking
disparity of both descriptions (cf. Sec. III A) has decreased
significantly at ωin = 147 a.u. (≈4.0 keV). In fact, rather than
being dwarfed by the full model result, the truncated model
now accounts for roughly half the DDSCS itself. Conversely,
this nevertheless implies that the contributions omitted by
Ref. [25] remain significant even at comparatively high pho-
ton energies.

C. XNLC in beryllium at 9.7 keV

In the third application of our XNLC model, we directly
address the experimental situation of Ref. [18] by simulat-
ing XNLC in atomic beryllium at ωin = 358 a.u.(≈9.7 keV).
While this study promises the most immediate insight into
the reported anomalous red shift, it also poses the biggest
numerical challenge—by far. This is due to the fact that at
such high photon energies scattering is largely caused by
nondipole operators, which couple a broad range of angular
momentum states. Treating these with sufficient numerical
accuracy, unfortunately, exhausts our present computational
capabilities, such that we could not reach converged results
across the entire XNLC profile. Nevertheless, there is con-
siderable insight to be gained from the partially converged
DDSCS and its convergence behavior, as we report below.

Using the same scattering geometry as in Sec. III B, we
perform XNLC simulations within different ranges of angular
momentum states, in order to study the convergence behavior.
The resultant DDSCSs are plotted in Fig. 5 (red symbols),
labeled by the maximum angular momentum (lmax) accounted
for, respectively. For reference, note that the fastest of these
calculations (lmax = 4) can be performed in just under 8 h per
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FIG. 5. DDSCSs for XNLC in beryllium at ωin =
358 a.u. (≈9.7 keV), sequences pertain to different stages of
convergence with respect to lmax (red symbols). For the sake of
readability, the lower-lmax sequences are plotted at coarse intervals
only. In addition, the DDSCSs for linear Compton scattering (LC) at
ωin_linear = 2ωin is given (blue solid lines) in a sequence from small
lmax (bottom) to large lmax (top). The scattering geometry for both
sequences is fixed as in Sec. III B. The inlay shows the converged
LC result employed as an extrapolation of the DDSCS for XNLC.

data point, while ∼10 days are required at lmax = 16 using
our current implementation and computational hardware [62].

We can clearly observe that the unconverged cross sections
each attain their maximum value around the position predicted
by the free-electron model [cf. Eq. (1), ωNLC ≈ 672 a.u.],
without exhibiting an anomalous redshift. Moreover, we find
from Fig. 5 that the wings of the XNLC profile are already
well converged at lmax = 16, while only the magnitude of
the peak still changes with lmax. This further disfavors the
notion of an anomalous redshift, as it should have been visible
predominantly in the region of the left-hand side wing. In
conjunction with the previous results (Sec. III B), we therefore
rule out the occurrence of an anomalous redshift of the the
XNLC profile within our XNLC model.

In addition to the above discussion, we point out that
the observed convergence behavior, i.e., converging from the
wings inwards, mirrors a general trend. We have found the
same behavior throughout our high-energy XNLC studies
and—notably—also in the calculation of regular Compton
profiles. Illustrating this point, we superimpose in Fig. 5 a
sequence of DDSCSs (blue solid lines) that pertain to linear
Compton scattering at twice the incoming photon energy
[ωin_linear = 716 a.u.(≈19.4 keV)]. These results are calcu-
lated using the XATOM toolkit [61] by imposing the same
lmax restrictions as in the corresponding XNLC cases. We
stress that only a single overall scaling factor is required
to match all linear Compton profiles remarkably well to the
left-hand wings of their respective XNLC counterparts. This
mutual agreement suggests the use of XATOM as a means
of extrapolating the XNLC cross section towards numerically
expensive regions. Doing so in the present case, we obtain an
estimate of the converged cross section, which is shown as
an inset in Fig. 5. Notably, angular momentum states up to
lmax = 64 have to be included in these calculations to reach

convergence. Attaining the same level of accuracy with our
current XNLC implementation, however, would be highly
impracticable—requiring an estimated computation time of
∼2.6 years per data point.

IV. CONCLUSION

In the present work, we have developed and implemented
a theoretical approach to investigate x-ray scattering phe-
nomena in atomic systems. The method is based on the
explicit solution of the TDSE in terms of propagating a
wave-function ansatz that accounts for both the atomic system
and a quantized photonic mode. As the scheme is inherently
nonperturbative, it allows us to treat x-ray scattering for a wide
range of conditions. In particular, it is applicable to nonlinear
cases as well as linear Compton scattering.

Making use of this versatility, we have benchmarked our
approach on said process, reproducing the well-established
linear Compton scattering cross sections.

After validation, we have first applied our method to a
nonlinear scattering scenario at low photon energies [ωin =
18.37 a.u. (≈500 eV)], which has previously been investi-
gated by Hopersky et al. [25]. For this setup, we have demon-
strated within our model that the scattering cross section is
unexpectedly dominated by contributions of p̂ · Â-type opera-
tors, which would pertain to third-order terms in a perturbative
analysis. This finding suggests that the original work [25] is
insufficient to explain XNLC, as its calculations are a priori
restricted to second order of perturbation theory.

In two subsequent studies, we have addressed XNLC at
higher photon energies in an effort to trace the anomalous
redshift reported by Fuchs et al. [18]. Hereunto, we have
first evaluated the DDSCS for XNLC in helium at ωin =
147 a.u. (≈4.0 keV) before we have studied the experimental
situation in atomic beryllium [ωin_exp = 358 a.u. (≈9.7 keV)].
In neither of these cases have we been able to observe anoma-
lous Compton shifts. In fact, the resultant scattering profiles
are consistently peaked around the expected value for the
respective free-electron case and compare well to scaled cross
sections of linear Compton scattering at twice the incoming
photon energy. Notably, these findings are incompatible with
the current interpretation of the nonlinear scattering signal in
Ref. [18] in terms of XNLC. This allows for two possible
conclusions—in our view—either of which resolves the con-
flict:

(1) Our modeling assumptions could be insufficient for the
description of anomalous XNLC. This implies in particular
that the anomaly is not (solely) caused by the presence of a
binding atomic potential; or

(2) The interpretation of the experimental results in terms
of a Compton-like nonlinear process could itself be invalid.
This opens the discussion to consider alternative processes,
like nonlinear parametric downconversion, as an explanation
of the observed signal.

In our opinion, both routes warrant further investigation
and immediately suggest certain steps to this effect. In the
first case, the assumed failure of our present model conse-
quentially provides indications as to the effects responsible.
It would in particular suggest an increased importance of
multielectron or solid-state effects, both of which are not yet
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accounted for. Proceeding to include electronic correlation
effects into our model can be achieved on the level of TDCIS
by retrofitting DVR-based Coulomb operators, for instance,
in the spirit of Ref. [63]. On the experimental side, studies
of disordered (gaseous or liquid) targets can be employed
to place constraints on speculative solid-state effects. In the
second case, dedicated theoretical investigations are required
in order to identify alternative nonlinear scattering processes.
The essential test of the XNLC interpretation of Ref. [18],
however, would be provided by a measurement setup that can
detect XNLC photons and their accompanying recoil electrons
simultaneously.
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APPENDIX A: NUMERICAL IMPLEMENTATION

With the basic theory of our model outlined in Sec. II, we
want to elaborate at this point more on its numerical imple-
mentation. We begin from the EOMs [Eqs. (17)–(20)], which
in their present form do not yet lend themselves to immediate
numerical solution. Instead, we first need to transform them
into a more efficient representation (Appendix A 1) and more-
over, impose appropriate limitations of the simulated space
in terms of absorbing boundary conditions (Appendix A 2).
Both measures, however, leave the above logic conceptually
unchanged.

1. Basis transformation

The EOMs in their current form [Eqs. (17)–(20)]—though
conceptually simple—remain prohibitively expensive in their
numerical solution. This is due to the partially inefficient
choice of HFS orbitals as the single-particle basis. While
the occupied orbitals |ϕi〉 lend themselves naturally to the
representation of “holes” in our expansion about the HFS
ground state, their unoccupied counterparts |ϕa〉 are an inef-
ficient representation of the excited states. Their delocalized
nature and the absence of selection rules—we do not impose
the dipole approximation, for instance—lead to nonsparse
coupling matrices 〈ϕc|Â2(r̂, t )|ϕa〉 and 〈ϕc|p̂ · Â(r̂, t )|ϕa〉 on
the right-hand side of Eqs. (18) and (20), which quickly
exhaust computational resources. Notably, even the “smallest”
numerical case presented in this article (Sec. III A) would
require us to store multiple matrices of ≈68 gigabytes in size.

In order to alleviate this computational burden, while keep-
ing the occupied orbitals in place, we resort to a partial basis
transformation. We relate all unoccupied orbitals |ϕa〉 to a new

set of basis functions |ρα〉:

ρα (r) = gtα (|r|)
|r| Ylα mα

(�r ) (A1)

via the unitary transformation

|ϕp〉 =
∑

α

Uα p|ρα〉. (A2)

In contrast to Eq. (13), the new basis functions feature strongly
localized radial components gtα (|r|), which form a DVR
[64,65] in the |r| domain. Thereby, the radial part of any local
operator—including Â and Â2—is rendered (approximately)
diagonal, which already yields a considerable reduction of
the respective matrices’ sizes. For the resultant operators,
we can then afford on-the-fly generation on modern GPU
accelerators and thus bypass memory bottlenecks altogether.
The initial construction of nonlocal operators as well as the
preparation of the DVR functions themselves proceeds via
the intermediate use of a finite-elements method (FEM) (cf.
Ref. [66]). Notably, we adhere to the convention of quoted
work to choose all radial functions real, which implies for the
transformation coefficients

Uα p = 〈
gtα

∣∣unp lp

〉
δlα lp δmα mp = U∗

α p. (A3)

Applying the transformation [Eq. (A2)] to the EOM—
starting from Eqs. (17) and (19)—we rewrite unoccupied
orbitals in expressions such as, e.g.,∑

i,a

αa
i (t )〈ϕi|Ĥany|ϕa〉 =

∑
i,α

∑
a

Uα a αa
i (t )〈ϕi|Ĥany|ρα〉.

(A4)

At this point, the old expansion coefficients αa
i (t ) and βb

j (t )
become cumbersome, as they no longer reference the excited
states in use. We therefore contract them with the introduced
transformation matrices, defining new, adapted expansion co-
efficients as

Aα
i (t ) =

∑
a

Uα a αa
i (t ) (A5)

and analogously Bβ
j (t ) for βb

j (t ). With the above in place,
Eqs. (17) and (19) read

i
∂

∂t
α0 = 2 α0 〈Ĥ00〉occ +

√
2

∑
i,α

Aα
i 〈ϕi|Ĥ00|ρα〉

+ 2 β0 〈Ĥ↓〉occ +
√

2
∑
j,β

Bβ
j 〈ϕ j |Ĥ↓|ρβ〉, (A6)

i
∂

∂t
β0 = 2 α0 〈Ĥ↑〉occ +

√
2

∑
i,α

Aα
i 〈ϕi|Ĥ↑|ρα〉

+ 2 β0 〈Ĥ11〉occ +
√

2
∑
j,β

Bβ
j 〈ϕ j |Ĥ11|ρβ〉. (A7)

We proceed similarly for the EOM of αc
k (t ) and βc

k (t )
[Eqs. (18) and (20)], replacing the ket states |ϕa〉 and |ϕb〉
as previously shown alongside redefining their coefficients. In
addition, we have to transform the occurring bra states 〈ϕc|,
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as well as the expansion coefficients αc
any and βc

any themselves.
To this end, we subject the two sets of EOM to an additional
overall transformation of the form∑

c

Uγ c

(
i

∂

∂t
αc

k (t )

)
= i

∂

∂t
Aγ

k (t ) (A8)

and again analogous for βc
k (t ).

While this procedure yields the desired expansion coeffi-
cients, it fails to transform the states 〈ϕc| due to the incomplete
sum over c (only virtual orbitals are included; cf. Sec. II B).
This problem, in turn, is resolved by augmenting the summa-
tion to include occupied orbitals (here labeled by the index l)
as well:

∑
c

Uγ c 〈ϕc| =
all∑
p

Uγ p 〈ϕp| −
∑

l

Uγ l 〈ϕl |

= 〈ργ | −
∑

l

Uγ l 〈ϕl |, (A9)

albeit at the cost of introducing an additional projector. This
reflects the fact that the radially localized functions |ργ 〉
are not intrinsically orthogonal to the occupied orbitals |ϕl〉.
Implemented into the EOM, the projector prevents artificial
overlap of excited states with the ground state by ensuring
reorthogonalization at each time step.

A closely related issue concerns the expansion coefficients,
which should respect the orthogonality of occupied and virtual
orbitals (〈ϕi|ϕa〉 = δi a = 0) at all times, implying the identity

∑
α

Aα
i (t )U∗

α k =
∑

α

(∑
a

αa
i (t )Uα a

)
U∗

α k

=
∑

a

αa
i (t ) δa k = 0. (A10)

An analogous expression holds for Bβ
j (t ).

Bearing this in mind and applying the former, Eqs. (18) and
(20) become

i
∂

∂t
Aγ

k = 2Aγ

k 〈Ĥ00〉occ +
√

2 α0〈ργ |Ĥ00|ϕk〉 −
∑

i

Aγ

i 〈ϕi|Ĥ00|ϕk〉 +
∑

α

Aα
k 〈ργ |Ĥ00|ρα〉

−
∑

l

Uγ l

(√
2 α0〈ϕl |Ĥ00|ϕk〉 +

∑
α

Aα
k 〈ϕl |Ĥ00|ρα〉

)
+ 2Bγ

k 〈Ĥ↓〉occ +
√

2 β0〈ργ |Ĥ↓|ϕk〉

−
∑

j

Bγ

j 〈ϕ j |Ĥ↓|ϕk〉 +
∑

β

Bβ

k 〈ργ |Ĥ↓|ρβ〉 −
∑

l

Uγ l

⎛
⎝√

2 β0〈ϕl |Ĥ↓|ϕk〉 +
∑

β

Bβ

k 〈ϕl |Ĥ↓|ρβ〉
⎞
⎠, (A11)

i
∂

∂t
Bγ

k = 2Aγ

k 〈Ĥ↑〉occ +
√

2 α0〈ργ |Ĥ↑|ϕk〉 −
∑

i

Aγ

i 〈ϕi|Ĥ↑|ϕk〉 +
∑

α

Aα
k 〈ργ |Ĥ↑|ρα〉

−
∑

l

Uγ l

(√
2 α0〈ϕl |Ĥ↑|ϕk〉 +

∑
α

Aα
k 〈ϕl |Ĥ↑|ρα〉

)
+ 2Bγ

k 〈Ĥ11〉occ +
√

2 β0〈ργ |Ĥ11|ϕk〉

−
∑

j

Bγ

j 〈ϕ j |Ĥ11|ϕk〉 +
∑

β

Bβ

k 〈ργ |Ĥ11|ρβ〉 −
∑

l

Uγ l

⎛
⎝√

2 β0〈ϕl |Ĥ11|ϕk〉 +
∑

β

Bβ

k 〈ϕl |Ĥ11|ρβ〉
⎞
⎠, (A12)

which—in conjunction with Eqs. (A6) and (A7)—serve as the
basis of our XNLC implementation.

As a concluding remark, we want to point out that our
partial transformation of the CIS-like equations resembles the
more abstract approach of Rohringer et al. in Ref. [67].

2. Complex absorbing potential

This section is concerned with the numerical intricacies
arising at the boundary of the spatial simulation range. Once
an outgoing electron encounters this boundary, it undergoes
reflection as off an open ending of a waveguide. Given that
such reflections would contaminate any further time evolution
and thereby distort the results in an unphysical manner, pre-
ventive measures have to be taken.

A straightforward remedy is to increase the size of the sim-
ulation box up to the point at which it encloses all electronic
dynamics for the duration of the simulation (for an example
consider Ref. [68]). However, in view of the potentially huge

boxes required and the associated computational cost, we
refrain from such a solution.

Alternatively, the boundary region may be modified to
absorb outgoing electronic flux rather than reflect it. Hereunto,
we adopt the widely used method of applying a complex
absorbing potential (CAP) [69–74]. This scheme involves the
addition of a weak complex potential to the Hamiltonian,
which induces the wave function to decay in the outer re-
gion of the simulation volume. While CAPs are themselves
not completely devoid of artefacts, their behavior has been
thoroughly studied and well understood [75–77].

We implement the CAP as the additional complex one-
body potential:

VCAP(|r̂|) = −iηW (|r̂|) = −iη(|r̂| − rabs)2 �(|r̂| − rabs),

(A13)

sporting a purely radial dependence. The input parameters
η ∈ R+ and rabs ∈ R+ are employed to specify the strength
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and the onset radius of the absorbing region, respectively, with
�(|r̂| − rabs) denoting the Heaviside step function. During the
propagation of the EOM, the CAP term is added directly to the
HFS potential acting on the excited states, while in accordance
with Ref. [26] the ground state (i.e., any occupied orbital) is
assumed to be unaffected.

While this procedure stabilizes the numerical propagation
in the desired manner, it also inevitably alters the norm of
the propagated wave function. This artifact, however, can be
used to our advantage, as the absorbed part of the wave func-
tion corresponds to the outgoing (electronic) flux, which—in
turn—relates to the scattering probability Pq (cf. Sec. II D).

In order to obtain the absorbed portion, we adapt a scheme
presented in Ref. [26]. Hereunto, we focus on the reduced
density matrix (RDM) of the photonic two-level system:

ρ̂phot(t ) = Trel(ρ̂(t )) = Trel(|�(t )〉〈�(t )|), (A14)

writing Trel(. . .) to signify the trace over all electronic states.
The temporal evolution of the photonic RDM is governed by

∂

∂t
ρ̂phot(t ) = −i Trel([Ĥ, ρ̂(t )]) − 2η Trel(Ŵ ρ̂(t )), (A15)

where Ĥ denotes the CAP-free Hamiltonian and Ŵ —
reflecting the influence of the CAP—is understood to be
Ŵ = ∑

n W (|r̂n|). Following Ref. [26], we account for the
discrepancy of physical and artificial evolution in terms of a
correction term:

δρ̂phot(t ) = ρ̂
phot
PHYS(t ) − ρ̂phot(t ), (A16)

which is generated solely from the CAP absorption:

∂

∂t
δρ̂phot(t ) = 2η Trel(Ŵ ρ̂(t )). (A17)

Focusing on the 11 term of the photonic RDM, i.e., the
absorbed flux in the one-photon sector, we write

∂

∂t
δρ

phot
11 (t ) = 2η

∑
i,α

W (rα )
∣∣Bα

i (t )
∣∣2

. (A18)

The above expression may now be integrated numerically
alongside the propagation of the expansion coefficients and
thereby yield the desired Pq [78].

APPENDIX B: VALIDATION

Before investigating XNLC, we have sought to validate
the functioning of our (numerical) model. Hereunto, we
have made use of its versatility and applied it to several,
well-studied phenomena for benchmarking. Conducting, for
instance, photoabsorption simulations, we have successfully
tested the conventional aspects of our wave-packet propaga-
tion scheme. At this point, however, we shall focus our discus-
sion on the model’s unique feature—the quantized mode (q)—
and assess its implementation. To this end, the investigation
of regular Compton scattering has provided a natural test bed,
requiring essentially the same mechanisms as XNLC.

In the following sections, we briefly outline the frame-
work of these tests (Appendix B 1) and show results for
two selected cases at (mean) incoming photon energies
of ωin = 18.37 a.u.(≈500 eV) in Appendix B 2 and ωin =
294 a.u.(≈8.0 keV) in Appendix B 3.

1. Testing framework

Analogous to the nonlinear case, we can evaluate the linear
scattering results in terms of a DDSCS as given by Eq. (26).
This time, though, we assume the scattering probability Pq

to depend linearly on the incoming field and thus normalize
Eq. (26) by the linear fluence F (1)

in :

F (1)
in =

∫ tend

0
dt Jin(t ) =

∫ tend

0
dt

αωin

2π
[A(t )]2, (B1)

instead of F (2)
in . As a benchmark to the DDSCS obtained in this

way, we employ Compton spectra generated by the XATOM
toolkit [61,79]. It should be noted that these spectra reflect the
popular Â2 approximation (cf., e.g., Ref. [21]), i.e., scattering
is described exclusively in terms of the Â2 diagram from first
order of perturbation theory:

. (B2)

In contrast, our model generally allows for scattering into the
quantized mode (q) via multiple terms of the Hamiltonian [cf.
Eq. (23)]:

(B3)

in a nonperturbative manner. While some of these additional
terms can have noticeable effects at low photon energies
(see indication in Appendix B 2) or in resonant scattering
processes (cf., e.g., Ref. [80]), they generally become in-
significant at high photon energies and beyond resonances,
justifying the XATOM benchmark.

2. Compton scattering at 500 eV

Employing the same scattering setup as in Sec. III A, but
with ωq—the photon energy of the quantized mode (q)—
tuned below ωin = 18.37 a.u.(≈500 eV), we investigate regu-
lar Compton scattering in helium at comparatively low photon
energies. We sample ωq from 11 to 17 a.u. in coarse steps of
1 a.u. and plot the resultant DDSCS in Fig. 6. There, we give
results both for our full XNLC model [red crosses (+)] and a
truncated version [green crosses (×)]—corresponding to the
Â2 approximation—on top of the XATOM reference (blue
solid line) [81]. Note that we trace only the inelastic portion
of the scattering process that involves the ionization of the
atomic system. This fact is indicated in Fig. 6 by the spectral
gap towards the position of the elastic line (18.37 a.u.), mea-
suring the ionization potential (IP).

We find excellent agreement of the truncated model with
the reference data, which validates the basic functionality of
our implementation. In addition—by choosing a logarithmic
scale—we can expose the slight deviation of the full model
from its truncated counterpart. This observation, in turn, is in
good agreement with recent findings by Drukarev et al. [82].
In quoted work, its authors demonstrate perturbatively that
scattering contributions from p̂ · Â terms gain in importance
with respect to Â2 contributions on going towards lower
scattered photon energies.
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FIG. 6. The DDSCS for regular Compton scattering in helium
calculated with the full XNLC model [red crosses (+)] as well as
using the Â2 approximation [green crosses (×)] and the XATOM
toolkit (blue solid line). Here, the polarization of incoming and scat-
tered photons is chosen parallel and the scattering occurs at an angle
of ϑ = π/2 in the plane perpendicular to the polarization vector. The
incoming photons are of mean energy ωin = 18.37 a.u. (≈500 eV).

We want to emphasize that these results rely crucially on
the capability of our implementation to account for light-
matter coupling beyond the dipole approximation [83]. With-
out this functionality, any inelastic scattering due to Â2 con-
tributions, for instance, would be forbidden.

3. Compton scattering at 8.0 keV

As an example at higher photon energies, we present our
validatory studies of regular Compton scattering in helium
at ωin = 294 a.u.(≈8.0 keV). Here, we choose the same scat-
tering geometry as in our XNLC simulations of Sec. III B. By
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FIG. 7. The DDSCS for regular Compton scattering in helium
calculated with the full XNLC model [red crosses (+)] and the
XATOM toolkit (blue solid line). The mean incoming photon energy
is chosen to be ωin = 294 a.u. (≈8.0 keV) and the scattering geome-
try is fixed as in Sec. III B.

employing twice the incoming photon energy, while focusing
only on the linear scattering process, we also achieve the
same kinematics as in Sec. III B’s study and ultimately probe
similarly extensive coupling matrices. We plot the results of
our time-dependent scattering simulations in Fig. 7. There,
DDSCS values as obtained from our full XNLC model [red
crosses (+)] are given for a range of scattered photon energies
(280−290 a.u.). In addition, we show the XATOM reference
(blue solid line). Once again, we observe very good agreement
of both approaches, verifying the functioning of our XNLC
model.

Note that we abstain from plotting separate results of the
truncated XNLC model in contrast to the previous Fig. 6
(Appendix B 2). In the present case, such data points are
redundant, as they coincide with the results of the full model.
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