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to higher-order correlators
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In the tests for macrorealism proposed by Leggett and Garg, the temporal correlation functions of a
dichotomic variable Q must be measured in a noninvasive way to rule out alternative classical explanations
of Leggett-Garg inequality violations. Ideal negative measurements in which a null result is argued to be a
noninvasive determination of the system’s state are often used. From a quantum-mechanical perspective, such
a measurement collapses the wave function and will therefore typically be found to be invasive under any
experimental check. Here, a simple modified ideal negative measurement protocol is described for measuring
the correlation functions, which is argued to be noninvasive from both classical and quantum perspectives and
hence the noninvasiveness can then be checked experimentally, thereby permitting a quantitative measure of
the degree of clumsiness of the measurement. It is also shown how this procedure may be extended to measure
higher-order correlation functions, and a number of higher-order conditions for macrorealism are derived.
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I. INTRODUCTION

A number of experiments in recent years have aimed to test
the world view known as “macroscopic realism” (macroreal-
ism), the view that a system evolving in time can be regarded
as possessing definite properties at each time, regardless of
past or future measurements. This view, first put forward
by Leggett and Garg [1,2], is made precise by breaking
macrorealism (MR) into the following three assumptions: the
system is in one of the states available to it at each moment of
time (macrorealism per se, MRps); it is possible in principle
to determine the state of the system without disturbing the
subsequent dynamics (noninvasive measurability, NIM); fu-
ture measurements cannot affect the present state (induction).

MR is traditionally investigated using a single dichomotic
variable Q which is measured in a number of different ex-
periments involving three (or more) pairs of times, thereby
determining a set of temporal correlation functions of the form

C12 = 〈Q(t1)Q(t2)〉, (1.1)

and also the averages of Q at each time, 〈Q1〉, etc., where
Q1 denotes Q(t1). For a macrorealistic theory, the above
three assumptions imply the existence of a joint probability
distribution for Q at three times t1, t2, t3, and it readily follows
from this that the temporal correlation functions obey the
Leggett-Garg (LG) inequalities:

1 + C12 + C23 + C13 � 0, (1.2)

1 − C12 − C23 + C13 � 0, (1.3)

1 + C12 − C23 − C13 � 0, (1.4)

1 − C12 + C23 − C13 � 0. (1.5)

*j.halliwell@imperial.ac.uk

These inequalities are necessary conditions for macrorealism
but they are not sufficient. However, they may be turned into
a sufficient set of conditions by adjoining them with a set of
12 two-time LG inequalities of the form

1 + 〈Q1〉 + 〈Q2〉 + C12 � 0, (1.6)

1 − 〈Q1〉 − 〈Q2〉 + C12 � 0, (1.7)

1 + 〈Q1〉 − 〈Q2〉 − C12 � 0, (1.8)

1 − 〈Q1〉 + 〈Q2〉 − C12 � 0, (1.9)

plus two more sets of four inequalities, at time pairs (t2, t3) and
(t1, t3) [3,4]. These 16 inequalities are a sufficient set because
they have a mathematical parallel with the Bell case and Fine’s
theorem then applies [5,6]. A decisive test of macrorealism
for measurements at three different times entails measurement
of the three correlation functions and three averages (in six
different experiments, one for each) and checking the 16 LG
inequalities. Almost all tests of the LG inequalities check only
a subset of the above 16 inequalities, although there has been
a recent attempt to test all 16 [7]. Many experimental tests
and theoretical aspects of the LG inequalities are reviewed in
Ref. [8] (and see also Ref. [9] for a critique and clarification
of what the LG inequalities actually test).

Recently an alternative approach to characterizing macro-
realism was proposed which consists of determining the un-
derlying probability using a single experiment in which Q
is measured sequentially at all three times [10,11]. (See also
Refs. [9,12].) We denote this probability by p123(s1, s2, s3),
which is the probability that Q1 takes the value s1 = ±1, etc.
This probability is then compared with probabilities obtained
the same way in experiments involving measurements at
one and two times, and a series of “no-signaling in time”
(NSIT) conditions are imposed, which for one and two time
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measurements have the form∑
s1

p12(s1, s2) = p2(s2). (1.10)

These, together with further similar conditions on the three-
time probability, ensure that such sequential measurements
are noninvasive. These conditions are much stronger than
the LG inequalities (and are related to “coherence witness”
conditions [13,14]). As argued in Ref. [4], they entail a
stronger notion of NIM and hence of macrorealism. Mention
should also be made of the Wigner-Leggett-Garg inequalities
which lie midway between traditional LG tests and NSIT
conditions [15].

The first aim of the present paper is to focus on how
to satisfy the NIM condition, which is the most tendentious
issue around tests of the LG inequalities. Leggett and Garg
proposed that the measurement of the correlation functions
be carried out using ideal negative measurements in which
the detector is coupled to, say, only the Q = +1 state, at
the first time, and a null result then implies that the system
is in the Q = −1 state but without any interaction taking
place. The experiment is then repeated with coupling to the
Q = −1 state. This procedure rules out alternative classical
explanations [16–18] and has been successfully implemented
in a number of recent experiments [19–22]. Alternative pro-
tocols for implementing (or modifying) NIM have also been
proposed [23–30]. Many other experimental tests of the LG
inequalities have also been carried out on a variety of differ-
ent physical systems (see, for example, the extensive list of
references in Refs. [4,8]).

Although thorough arguments for noninvasiveness using
ideal negative measurements are given in the reports of exper-
imental tests of the LG inequalities, what is clearly desirable
is an experimental check of invasiveness. A purely classical
system measured using an ideal negative measurement could
determine a two-time probability p12(s1, s2) and we would
expect it to obey the NSIT condition, Eq. (4.2). It would fail
to satisfy this condition only if there was some inadvertent
“clumsiness” in the experimental procedure. Such clumsiness
is always present in any realistic experimental arrangement,
but conditions such as Eq. (4.2) can be employed to make sure
that clumsiness is kept sufficiently small [31,32].

However, experimental devices obey the laws of quantum
mechanics and the above classical argument does not neces-
sarily apply. The problem is that ideal negative measurements
still collapse the wave function [33], and as result, the NSIT
condition Eq. (4.2), which is sensitive to interference, will not
be satisfied in general, even for the most skillfully conducted
ideal negative measurement. This means that the NSIT condi-
tion Eq. (4.2) is not necessarily a good detector of clumsiness
since it cannot distinguish clumsiness from collapse of the
wave-function effects. These observations by no means un-
dermine any of the tests of the LG inequalities that use ideal
negative measurements, but any observed violation of the LG
inequalities will clearly be a more convincing refutation of
macrorealism if it is accompanied by an experimental confir-
mation of no signaling. It is therefore useful to find a modified
ideal negative measurement protocol which separates collapse
of the wave-function effects from experimental clumsiness

and enables NSIT conditions to be put to use as practically
useful checks of NIM.

Simple experimental checks of NIM were first suggested
by Leggett in Ref. [2]. Wilde and Mizel defined an “adroit
measurement” using conditions which, in the language of the
present paper, are approximate NSIT conditions [31]. (This
approach was tested in Ref. [32].) Katiyar et al. [21] and
Knee et al. [34] addressed the clumsiness loophole using
control experiments (which consisted of assessing the degree
of invasiveness for a set of control states in which Q takes a
definite value). George et al. [35] and Emary [25] exhibited
situations in which an LG inequality violation is accompanied
by certain NSIT conditions being satisfied, in a three-level
system.

In the present paper, it will be shown how the usual ideal
negative measurement protocol may be modified in a simple
way so that a NSIT condition should be satisfied for a properly
executed experiment for arbitrary initial states and arbitrary
choices of times of measurements. It will not be necessary to
choose special initial states of choices of times to satisfy NSIT
(in contrast, for example, to Refs. [25,31,35]). We will focus
on the definition of macrorealism described above which uses
an extended set of LG inequalities, with NSIT conditions
used purely as checks on NIM (and not as definitions of
macrorealism itself).

The second aim of this paper is to consider how the
LG framework is generalized when higher-order correlation
functions are involved. This has become interesting of late,
since experiments have been done which can measure third-
and higher-order correlators (see, for example, Ref. [36]).
In particular, we will write down necessary and sufficient
conditions for macrorealism which include third- and fourth-
order correlators. This development is logically separate from
the first aim of this paper. However, it clearly provides a
natural challenge for extending the modified ideal negative
measurement protocol to a more complicated situation, and
we show how to do this.

The modified ideal negative measurement protocol is de-
scribed in Sec. II. In Sec. III, LG tests involving higher-order
correlators are considered. Measurement of such correlators
using the modified ideal negative measurement protocol is
described in Sec. IV. We summarize in Sec. V. Some useful
quantum-mechanical results are outlined in Appendix.

II. A MODIFIED IDEAL NEGATIVE
MEASUREMENT PROTOCOL

A. The approach

We consider a standard LG test involving the two- and
three-time LG inequalities described above. We will assume
that the system starts out at t = 0 in an initial state described
by a density operator ρ (which may be unknown), and mea-
surements of Q are made in a set of experiments at one or two
times, chosen from the set t1, t2, t3 (where 0 < t1 < t2 < t3).
By doing three experiments with a single time measurement
in each we may determine the three averages 〈Q1〉, 〈Q2〉, and
〈Q3〉. There is no issue of invasiveness, since only a single
measurement is made in each experiment.
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The three correlation functions are determined in another
three experiments with a pair of measurements made in each
using ideal negative measurements. The question we address
is how to modify the ideal negative measurement protocol so
that it is noninvasive as defined by a NSIT condition. Our
approach is to consider modifications which consist of some
operation carried out just before the time of the first measure-
ment in each pair which would be acceptable to a macrorealist
and which could potentially improve the situation with regard
to invasiveness.

B. Quantum-mechanical analysis

As discussed, the reason for the failure of NSIT in general
is quantum mechanical in nature so a quantum-mechanical
analysis is required. However, it must, of course, ultimately
be phrased in macrorealistic terms, and we will do this at the
end of this section.

For a system in initial state ρ at t = 0 the quantum-
mechanical probability for a single time measurement at time
t1 is

p1(s1) = Tr[Ps1 (t1)ρ], (2.1)

where the projection operators Ps(t ) are defined by Ps(t ) =
eiHt Pse−iHt (in units in which h̄ = 1) and

Ps = 1
2 (1 + sQ̂). (2.2)

The probability for sequential projective measurements at
times t1, t2 is

p12(s1, s2) = Tr
[
Ps2 (t2)Ps1 (t1)ρPs1 (t1)

]
. (2.3)

Note that this expression involves only the terms
P+(t1)ρP+(t1) and P−(t1)ρP−(t1) in p12(s1, s2), which
means that it depends only on the diagonal part of
ρ(t1) = e−iHt1ρeiHt1 , which we denote ρdiag(t1) and may
be written

ρdiag(t1) =
∑

s1

Ps1ρ(t1)Ps1 . (2.4)

(That is, ρdiag is an initial density matrix, not necessarily
diagonal, which evolves to become equal to the diagonal part
of ρ in the Q basis at t1.) This also means that the temporal
correlation function

C12 =
∑
s1,s2

s1s2 p12(s1, s2) (2.5)

is unchanged by replacing ρ(t1) with ρdiag(t1). (In fact, in
the simplest two-state systems the correlation function is
completely independent of the initial state.)

Summing over the initial measurement we find∑
s1

p12(s1, s2) = Tr[Ps2 (t2)ρdiag]. (2.6)

The right-hand side of Eq. (2.6) is not in general equal to the
single-time-measurement result,

p2(s2) = Tr[Ps2 (t2)ρ], (2.7)

hence the NSIT condition Eq. (4.2) is not satisfied. This is
readily seen to be related to interference between different
histories of the system, as outlined in the Appendix.

However, NSIT clearly will be satisfied if ρ(t1) = ρdiag(t1).
This suggests the following strategy for determining the corre-
lator C12 (and only the correlator) using a method that satisfies
NSIT. First, ideal negative measurements are used to deter-
mine p12(s1, s2), with an initial state ρ, and the correlation
function C12 is read off. The probability for Q at time t2 only
p2(s2) is determined in a separate, single-measurement exper-
iment and the NSIT condition is checked. It will generally be
found to fail (but if not, no further steps are required).

We then do a different experiment in which an operation
is carried out immediately before the first measurement, con-
sisting of a rapidly acting diagonalization procedure (about
which more below) shortly before time t1, which has the effect
of replacing ρ(t1) with its diagonal counterpart ρdiag(t1). The
two-time-measurement probability p12(s1, s2) is again mea-
sured with this different initial state and checked to see that it
gives the same result as the original experiment, as predicted
by quantum mechanics. In particular, the correlators should
be the same. (This check will confirm that the diagonalizing
mechanism is not doing anything spurious.) Again, a single-
time measurement at t2 in a separate experiment is carried out,
but now with the diagonalizing mechanism just before t1 still
in place, yielding a result

p̃2(s2) = Tr[Ps2 (t2)ρdiag]. (2.8)

Crucially, this now means that the NSIT condition Eq. (2.6) is
satisfied. (Note that p̃2(s2) is, of course, different from p2(s2),
but this does not matter since we are not using this experiment
to determine 〈Q2〉.)

In brief, because the correlation function is insensitive to
diagonalization at time t1, we can replace the original situation
of interest that does not satisfy NSIT with a very similar
situation with the same correlation function but which does
satisfy NSIT. In essence, we have classicalized the system
in terms of its behavior at two times, which means that, for
the purposes of measuring the correlator only, the classical
and quantum descriptions of ideal negative measurements
coincide. Since NSIT is in principle satisfied, for a perfectly
executed experiment, this means that any detected violation
of it must come not from wave-function collapse but from
experimental clumsiness. This is, therefore, the sought-after
check on the noninvasiveness of ideal negative measurements
of the correlation function.

C. The diagonalization procedure

The diagonalization procedure can be carried out in a
number of different ways. Of course, it is generally known
that coupling a system to some sort of environment which is
averaged out tends to create a situation in which the density
matrix tends towards diagonality. One could simply couple
the system to an environment for the entire time period of
interest, but this would also change the correlation functions
and significantly lessen the LG inequality violation. A brief
but very efficient period of decoherence just before the time
of the first measurement in each pair is what is required.

Two such methods which have been used experimentally
are conveniently summarized in Ref. [37]. One is “artificial
dephasing,” in which a random distribution of phase factors is
applied to the density operator and then averaged over [13].
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A second possibility is a “blind measurement” [14], in which
the density operator is measured in the preferred basis (i.e.,
eigenstates of Q) at the first time measurement and then the
result is simply discarded.

As it happens, some of the recent experimental tests of
the LG inequalities which implement ideal negative measure-
ments use an ancilla system [19–21,38] which could easily be
utilized to carry out a blind measurement. In these approaches,
the primary system at time t1 is interacted with an ancilla
using a controlled-NOT gate, and the state of the total system
immediately afterward has the form

|�T 〉 = P+e−iHt1 |ψ〉 ⊗ |a+〉 + P−e−iHt1 |ψ〉 ⊗ |a−〉, (2.9)

where we have taken a pure initial state |ψ〉 for the primary
system and |a±〉 denotes the ancilla states. A measurement of
the primary system is subsequently made at time t2 along with
a measurement of the ancilla (whose state remains constant for
t > t1). Since the ancilla states |a±〉 are perfectly correlated
with s1, these measurements thus determine p12(s1, s2).

To check NSIT, a measurement is made of the primary
system only at time t2 with the ancilla still coupled in but its
result discarded. This means that the system is then described
by the mixed state, obtained by tracing out the following
ancilla:

ρS = P+|ψt1〉〈ψt1 |P+ + P−|ψt1〉〈ψt1 |P−, (2.10)

where |ψt1〉 = e−iHt |ψ〉. This is, as desired, diagonal in Q at
time t1, which means that the NSIT condition will be satisfied.
This method of implementing the modified ideal negative
measurement protocol is perhaps the most practically useful
one since it makes use of existing techniques.

D. Macrorealistic formulation

The above analysis is quantum mechanical in nature and
it is important in the LG framework to phrase things in
macrorealistic terms. A convenient way to do this is to simply
rephrase the above analysis as a testable assumption, about
an ideal negative measurement of the correlation function,
namely: There exists an operation which acts very briefly just
before the first measurement time which does not change the
value of the correlation function and for which the resultant
two-time probability is, in principle, compatible with the NSIT
condition. Here, “in principle” means for a perfectly executed
experiment. This assumption clearly provides a justification
for using the NSIT condition as a detector of clumsiness.

The strength of this assumption is that it is actually true
from the quantum-mechanical perspective. Furthermore, the
macrorealist, who in effect sees only diagonal density ma-
trices and so is indifferent to the diagonalization process,
would find the first part of the assumption very plausible.
The macrorealist would also expect NSIT to hold since the
measurement is an ideal negative measurement. Hence, both
parts of the assumption are macrorealistically reasonable.
Moreover, they can both be checked experimentally.

A possible objection to the above procedure concerns the
degree to which NSIT conditions really characterize nonin-
vasiveness. They were originally described as a statistical
version of NIM [10] and with a mixed initial state can be
satisfied essentially by averaging two situations which are

individually invasive [39,40]. However, this is not a concern
here, since we are using ideal negative measurements which
are ontically noninvasive.

E. Generalizations to many-valued measurements

The approach above is given for a measurements of a single
dichotomic variable Q, but some LG tests entail measure-
ments onto three or more alternatives at each time, labeled
n, say, where n = 1, 2, . . . N to yield a two-time probability
p12(n1, n2). For example, Refs. [25,35] considered a three-
state system. The two-time probability still has the general
form Eq. (2.3) in quantum mechanics, which means that the
correlation functions are again insensitive to diagonalization
of the density matrix at the first time. However, the situation
with regard to NSIT conditions is more complicated. The
natural NSIT to consider is∑

n1

p12(n1, n2) = p2(n2), (2.11)

and this consists of two independent conditions. However,
there are other types of NSIT conditions obtained, for ex-
ample, by constructing a single dichotomic variable Q at the
first time with values s1 = ±1 and measuring only this (rather
than all values of n1) to yield the probability p̃12(s1, n2). The
corresponding NSIT condition is∑

s1

p̃12(s1, n2) = p2(n2). (2.12)

In a macrorealistic theory these different types of NSIT con-
ditions are trivially related, but not so in quantum mechanics.
This leads to some interesting new features, for example,
correlation functions which can violate the Tsirelson inequal-
ities [22] and to situations in which there are violations of the
two-time LG inequalities but the NSIT condition Eq. (2.11) is
still satisfied [25,35].

A more thorough discussion of NSIT and other conditions
in this situation will be given elsewhere. What is clear from
the form of the above NSIT conditions is that the basic
method of causing NSIT conditions to be satisfied using a
diagonalization procedure will still hold. Hence the modified
ideal negative measurement protocol for measuring correla-
tion functions may be applied here.

III. LEGGETT-GARG TESTS OF MACROREALISM WITH
HIGHER-ORDER CORRELATION FUNCTIONS

Another natural generalization to consider is measurement
of higher-order correlation functions, but first it is useful to
develop conditions for macrorealism that involve them. Al-
though the Leggett-Garg framework was originally introduced
in the context of experiments in which measurements are
made of Q at pairs of times chosen from three or four possible
times, the most general possible situation in which macrore-
alism could be tested, for a dichotomic variable involves a
set of n possible times and a set of measurements made in
each experiment at m times, where m � n. The case m = 2
for arbitrary n involves n-time LG inequalities, considered,
for example, in Refs. [41,42] (reviewed in Ref. [8]). The
case m > 2 does not appear to have been considered in any
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detail in a Leggett-Garg framework, although measurements
of higher moments have been discussed [43] and a recent
LG-type experiment to test them has been conducted [36].

Of course, in the stronger tests for macrorealism defined
purely in terms of NSIT in conditions outlined above [10,11],
one could quite simply use sequential measurements at n
times and then impose a series of NSIT conditions on the re-
sulting measured probability p12...n(s1, s2, . . . sn). Here, how-
ever, we are interested in the weaker notion of macrorealism
which entails measuring correlation functions in a series of
different experiments and then seeking LG-type conditions
under which they can be assembled into a unifying probability.

A. Measurements at three times

We consider first the case of measurements involving just
three times. This turns out to be quite simple. We suppose
that measurements have been used to determine the averages
at one time 〈Qi〉 (where i = 1, 2, 3), the correlators at two
times Ci j (where i j = 12, 23, 13), but also a single third-order
correlation function,

D123 = 〈Q1Q2Q3〉 (3.1)

(where it is assumed that all seven moments are measured in
seven different experiments). This case is simple because the
above moments together fix the three-time candidate proba-
bility uniquely to be

p(s1, s2, s3) = 1
8 (1 + s1〈Q1〉 + s2〈Q2〉 + s3〈Q3〉
+ s1s2C12 + s2s3C23 + s1s3C13 + s1s2s3D123).

(3.2)

It is a candidate probability since an expression of the form
Eq. (3.2) constructed from a set of moments is not necessarily
non-negative, and indeed, we expect that it could be negative
under certain circumstances in quantum mechanics.

However, for a macrorealistic theory, a joint probability of
the variables Q1, Q2, Q3 must exist and p(s1, s2, s3) may then
be written

p(s1, s2, s3) = 1
8 〈(1 + s1Q1)(1 + s2Q2)(1 + s3Q3)〉, (3.3)

which is manifestly non-negative. This means that the set of
eight conditions

p(s1, s2, s3) � 0 (3.4)

form a necessary and sufficient set of conditions for macro-
realism. The contrast with the usual LG framework involving
two and three time inequalities is that the correlator D123 is
not fixed and the 16 (two and three time) LG inequalities are
the necessary and sufficient condition that there exists some
value of D123 for which p(s1, s2, s3) � 0.

B. Measurements at more than three times

For measurements at n times, if all possible correlation
functions are determined the candidate probability is again
uniquely determined and the above condition readily gener-
alizes to

p(s1, s2 . . . sn) = 1

2n

〈
n∏

i=1

(1 + siQi )

〉
� 0. (3.5)

As argued in the Appendix, quantities of this general type can
be negative in quantum mechanics.

The n = 4 case is given explicitly by

p(s1, s2, s3, s4) = 1

16

⎛
⎝1 +

∑
i

si〈Qi〉 +
∑

i j

sis jCi j

+
∑
i jk

sis jskDi jk,+s1s2s3s4E

⎞
⎠, (3.6)

where the indices i, j, k run over the values 1,2,3,4, the
summation over i j has i < j, and the summation over i jk has
i < j < k. There are six second-order correlation functions
Ci j , four third-order correlation functions

Di jk = 〈QiQjQk〉, (3.7)

and one fourth-order correlation function

E = 〈Q1Q2Q3Q4〉. (3.8)

The usual LG scenario in this case involves measurement of
the four averages 〈Qi〉 and four of the six correlation functions,
C12,C23,C34,C14. The necessary and sufficient conditions for
MR are then the sixteen two-time LG inequalities and the
eight four-time LG inequalities [4].

One can imagine more complicated situations in which
some, but not all, of the higher-order correlation functions
are measured. The general procedure employed here is a
generalization of a simple method described in Ref. [6].
Requiring that Eq. (3.6) is non-negative for all values of
s1, s2, s3, s4 yields a set of lower and upper bounds on the
unfixed correlators, where the lower and upper bounds depend
on the fixed quantities. The unfixed quantities may then be
chosen so that Eq. (3.6) is non-negative as long as all of their
upper bounds are greater than or equal to all of their lower
bounds. This yields a set of conditions on the fixed quantities
which ensure that the unifying probability may be constructed
(Of related interest is the work of Avis et al. [41] who consider
the situation in which measurements are made at five times
and a condition for macrorealism involving all ten two-time
correlation functions is derived. This is stronger than the usual
five-time LG inequality, which involves only five correlation
functions.).

Note, however, that in the case in which not all correlators
are fixed, there can exist simplifications in which the existence
or not of a four-time probability reduces to a set of conditions
on some three-time probabilities. Suppose for example, that
measurements have been made that completely fix the two
three-time probabilities p(s1, s2, s3) and p(s1, s2, s4), and they
are non-negative. This fixes all the averages and all correlators
except C34, D234, D134, and E . One could follow the above
general procedure to determine whether values of the unfixed
correlators can be chosen so that there exists a non-negative
four-time probability p(s1, s2, s3, s4) which matches the fixed
three-times ones. However, it turns out that there is a much
simpler way, which is to use the ansatz first introduced by
Fine [5], and note that the solution is

p(s1, s2, s3, s4) = p(s1, s2, s3)p(s1, s2, s4)

p12(s1, s2)
, (3.9)
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since summing out s3 or s4 is readily seen to yield p(s1, s2, s4)
and p(s1, s2, s3), respectively. This suggests that the most
interesting cases involving higher-order correlators are those
in which all the correlators are known.

C. A different type of MR condition

We also note that there is a different type of condition
involving measurements at arbitrary numbers of times which
is neither a NSIT condition nor a LG test. Suppose sequential
measurements are made at, say, three times to determine
p123(s1, s2, s3) and this is compared with the two-time result
p23(s2, s3). For a macrorealistic theory we expect that a NSIT
condition of the form

p23(s2, s3) =
∑

s1

p123(s1, s2, s3) (3.10)

should hold. But since every term on the right-hand side is
non-negative, this implies that

p123(s1, s2, s3) � p23(s2, s3) (3.11)

for any s1. Similarly, for two-time measurements, a macrore-
alistic theory should satisfy,

p12(s1, s2) � p2(s2). (3.12)

Generalization to arbitrary numbers of measurements is ob-
vious. Conditions of this type were tested experimentally
in Ref. [36]. They do not seem to have been investigated
elsewhere, although they are very similar to the Wigner-
Leggett-Garg inequalities [15], if not actually the same in
some cases. They can be violated in quantum theory, as
outlined in Appendix.

IV. MEASUREMENT OF HIGHER-ORDER
CORRELATION FUNCTIONS

We describe now the noninvasive measurement of a third-
order correlation function using the modified ideal negative
measurement protocol. We assume that the averages 〈Qi〉 and
second-order correlators Ci j have already been determined
in a set of separate experiments. The third-order correlator
is needed in order to check whether the condition Eq. (3.4)
holds.

The approach is to use two ideal negative measurements
to noninvasively determine the three-time sequential measure-
ment probability p123(s1, s2, s3) from which the third-order
correlator,

D123 =
∑
s1s2s3

s1s2s3 p123(s1, s2, s3), (4.1)

is readily obtained. The three-time probability p123(s1, s2, s3)
is used only to determine the third-order correlator and not to
determine any of the lower moments, which are determined
already.

Two different ideal negative measurements are required
involving two detectors. In the first measurement, the first
detector is coupled to, say, the Q = +1 state at time t1 and the
second detector to the Q = +1 state at time t2. We denote this
the (+,+) configuration. A projective measurement of the
system is also made at time t3, with result s3. We are interested

only in the situation in which neither detector triggers. All
other situations are discarded. The fraction of runs in which
neither triggers determine the probabilities is p123(+,+, s3).
This procedure is then repeated three more times, for the
(+,−), (−,+), and (−,−) configurations, thereby determin-
ing the corresponding probabilities. The combination of the
four experiments yields the probability p123(s1, s2, s3).

Actually, knowledge of the averages 〈Qi〉 and second-order
correlators Ci j means that we need to know just one compo-
nent of the three-time probability, such as p123(+,+,+), to
read off the third-order correlation via Eq. (3.2). However, we
need all components of the three-time probability in order to
check the NSIT conditions.

A complete set of NSIT conditions [10,11] for the three-
time probability is

∑
s2

p23(s2, s3) = p3(s3), (4.2)

∑
s2

p123(s1, s2, s3) = p13(s1, s3), (4.3)

∑
s1

p123(s1, s2, s3) = p23(s2, s3). (4.4)

Violations of these conditions signal invasiveness. Like the
two-time situation, these conditions will not be satisfied in
general under ideal negative measurements, due to the pres-
ence of interferences, so we use the modified protocol.

For convenience we use the ancilla approach so two ancil-
las are required, one for each time. We will assume, in analogy
to the two-time case, that p123(s1, s2, s3) is independent of
whether or not the result of the measurement performed by the
ancilla is discarded. Like the two-time case, this assumption is
readily seen to be true in a quantum-mechanical description—
the usual measurement formula for three times,

p(s1, s2, s3) = Tr[Ps3 (t3)Ps2 (t2)Ps1 (t1)ρPs1 (t1)Ps2 (t2)], (4.5)

is clearly independent of whether a diagonalization procedure
is acting at times t1 and t2 (since no off-diagonal terms are
involved) and likewise the third-order correlator.

The NSIT condition Eq. (4.2) is identical in form to that
discussed in Sec. II. It will therefore be satisfied if, in the
measurement of p3(s3), the ancilla at time t2 is left in place and
allowed to perform a blind measurement. To check the NSIT
condition Eq. (4.3), p13(s1, s3) is determined in a separate
experiment to that determining p123(s1, s2, s3), but again the
ancilla at time t2 is allowed to perform a blind measurement
during the determination of p13(s1, s3). Similarly, Eq. (4.4) is
satisfied if the ancilla at time t1 is allowed to perform a blind
measurement during the determination of p23(s2, s3). In each
case the blind measurement performed by the ancilla simply
diagonalizes the density operator at that time and it is this that
ensures that all NSIT conditions are satisfied.

We thus find the that modified ideal negative measurement
protocol readily generalizes to a three-time scenario and the
set of NSIT in time conditions are, for a perfectly executed
experiment, satisfied. Any observed violations of them are
therefore reflections of experimental clumsiness. The gener-
alization to four or more times is clearly straightforward but
progressively more complicated.
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V. CONCLUSION

This paper addresses two aspects of Leggett-Garg tests of
macrorealism. The first consists of a modified ideal nega-
tive measurement protocol which can check for invasiveness
unhindered by the effects of wave-function collapse. It is
based on two simple observations: first, that the correlation
function is unchanged by diagonalizing the density operator at
the first time, and second, that this diagonalization procedure
is readily accomplished with commonly used ancilla-based
measurements in which the ancilla is used to perform a blind
measurement. A quantum-mechanical understanding of the
method was presented, but a macrorealistic formulation of the
protocol was then given in terms of a plausible and testable
assumption.

The second aspect concerned tests for macrorealism when
higher-order correlation functions are involved. At n times,
when all possible correlation functions are measured, the nec-
essary and sufficient conditions for macrorealism consist of
the set of inequalities Eq. (3.5). More complicated conditions
arise in the event that some but not all the higher-order correla-
tors are measured. A different type of condition for macroreal-
ism was also described involving comparing the probabilities
for strings of sequential measurements. It was also shown how
to extend the modified ideal negative measurement protocol to
measurements of higher-order correlators.

Experimental implementation of the ideas presented in
this paper would clearly be of interest. This should not be
too difficult by comparatively straightforward modification of
existing experimental approaches.

ACKNOWLEDGMENTS

I am very grateful Clive Emary, George Knee, Johannes
Kofler, Owen Maroney, and James Yearsley for many useful
discussions and email exchanges about the Leggett-Garg in-
equalities.

APPENDIX: SOME QUANTUM-MECHANICAL RESULTS

As stated in Sec. II, the failure of the NSIT condition
is related to quantum interferences. To see that, note that
Eq. (2.3) may be written

p12(s1, s2) = q(s1, s2) − 1

2

∑
s1 �=s′

1

ReD(s1, s2|s′
1, s2), (A1)

where

D(s1, s2|s′
1, s2) = Tr[Ps2 (t2)Ps1 (t1)ρPs′

1
(t1)] (A2)

is the decoherence functional, whose off-diagonal compo-
nents are measures of interference between pairs of histories.
Also,

q(s1, s2) = ReTr[Ps2 (t2)Ps1 (t1)ρ] (A3)

is a quasiprobability which formally satisfies the NSIT con-
dition exactly but can be negative. (In fact, the two-time
LG inequalities may be written, in quantum theory, as the
inequalities q(s1, s2) � 0). Hence NSIT for p12(s1, s2) fails
when the off-diagonal terms of the decoherence functional are
nonzero. Furthermore, it can be seen from Eq. (A1) that since
p12(s1, s2) is always non-negative, q(s1, s2) can be negative
if the interference terms are sufficiently large and of the
appropriate sign.

Similar statements apply to the more general quasiproba-
bility

q(s1, s2, . . . sn) = ReTr[Psn (tn) . . . Ps2 (t2)Ps1 (t1)ρ], (A4)

and in particular, when negative, nonzero interference must be
present. The condition

q(s1, s2, . . . sn) � 0 (A5)

is the quantum-mechanical counterpart of condition Eq. (3.5).
The above quantities are simply related to the “coherence

witness” measure,

W (s2) ≡ p2(s2) −
∑

s1

p12(s1, s2), (A6)

which is clearly a measure of the degree to which the NSIT
condition Eq. (4.2) is violated. It is readily seen from Eq. (A1)
to be equal to the sum of off-diagonal terms of the decoher-
ence functional and we have that

p12(s1, s2) = q(s1, s2) − 1
2W (s2). (A7)

Since p12(s1, s2) � 0, a consequence of this is that for
q(s1, s2) � 0 (i.e., for the two-time LG inequalities to hold)
we need either W (s2) � 0, or W (s2) < 0 with

|W (s2)| � 2p12(s1, s2). (A8)

This allows us to compare the two-time LG inequality
violation with the condition Eq. (3.12), since this condition
may be written

q(s1, s2) − 1
2W (s2) � q(s1, s2) + q(−s1, s2). (A9)

Cancelling an identical term from both sides and using
Eq. (A7) again, we have

p12(s1, s2) + W (s2) � 0 (A10)

for all s1. This means that either W (s2) � 0 or W (s2) <

0, with |W (s2)| � p12(s1, s2), an upper bound half that in
Eq. (A8). This means that first, the condition Eq. (3.12) is
violated by sufficiently large interference terms and second,
that it can be violated with the two-time LG inequalities still
satisfied. Hence Eq. (3.12) is a stronger condition than the
two-time LG inequalities.
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