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The Redfield and Lindblad forms of the master equations are obtained under not only the Born and Markov
approximations but also the secular approximation. In this paper, we propose a computable form of the master
equation for open multilevel quantum systems beyond the secular approximation. The proposed form can retain
some dynamical effects that are lost due to use of the secular approximation. Two kinds of open multilevel
quantum systems are investigated by using this method, and the results are compared to the ones obtained from
the Redfield equation and an exactly numerical path integral approach. It is shown that the results obtained
from this computable form match those from the exact numerical path integral approach better than results from
the Redfield equation. The normal-diffusion coefficient, momentum-damping coefficient, anomalous-diffusion
coefficient, etc. in the master equation are also reevaluated.
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I. INTRODUCTION

Strictly speaking, any quantum system in any dynami-
cal process will unavoidably suffer from interactions with
uncontrollable degrees of freedom in surrounding. There-
fore, the evolution of a quantum state will be affected by
the environment of the system, although the influence is
always overlooked in low-temperature conditions. However,
when we investigate the evolution of quantum states of
condensed systems, especially those of living substances in
room-temperature surroundings, the environmental influence
may be important and should not be ignored. Thus, un-
derstanding the dissipative quantum dynamics of a system
embedded in a complex environment is an important topic
across various subdisciplines of matter science [1,2]. Some
significant progress in this field [3–5] has been achieved in
last few years. A few prototypical physical models such as the
Caldeira-Leggett model [6] and spin-boson model [1] have
been developed and applied to these studies. In most cases
the environment is described with a bosonic bath, which is a
set of noninteracting harmonic oscillators whose influence on
the system is concisely encoded in a spectral density function
[2]. The prevalent adoption of a bosonic bath is based on the
argument that knowing the linear response of an environment
near equilibrium should be sufficient to predict the dissipative
dynamics of the open quantum systems [7,8].

The theory and methods of studying open quantum sys-
tems have been strongly developed in recent decades [9–12],
pushed by technological demand. The basic tool of these
studies is the master equation [13], which allows for insight
into some physical properties by computing average physical
quantities [14–21]. However, it is difficult to obtain and in
particular to solve the general master equation of an open
quantum system. The Born-Markov master equation, which is
derived from the von Neumann–Liouville equation by means
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of Born and Markov approximations, is a good starting point
for the task. To obtain reliable results from the Born-Markov
master equation, the investigated system must satisfy the
following two conditions: First, the interaction between the
system and its environment must be sufficiently weak and the
environment large enough in comparison to the size of the
system such that the bath state does not change significantly
because of the interaction. Second, the timescale of the system
dynamics must be larger than the reservoir correlation time.
However, even if these conditions are satisfied, with the
exception of the two-level system and the harmonic oscillator,
it is still difficult to obtain and solve the Born-Markov master
equation for open multilevel quantum systems [22].

The dynamics of open multilevel quantum systems can
be investigated by using the Redfield equation, which was
derived from the Born-Markov master equation by imposing
the secular approximation. It has been widely employed and
is attractive because its numerical time propagation is sim-
plified and the positivity is guaranteed. Furthermore, when
the interaction Hamiltonian between the interest system and
its environment can be written as a sum of products of the
system and environment operators, the Lindblad equation can
be derived from the Redfield equation. Insofar as simplicity
and positivity are concerned, the master equations of the
Redfield and Lindblad forms have many advantages [23,24].
However, in these methods, the secular approximation which
eliminates some relaxation terms results in partial destruction
of the reduced dynamics of the open quantum system [25].
Namely, the secular approximation distorts the true dynamics
within the Redfield framework.

A direction for solving the quantum dissipative dynamics
including non-Markovian effects is formulating the reduced
density matrix based on the path integral [2,26]. Makri and
co-workers have developed an exact numerical dynamics
approach—quasi-adiabatic propagator path integral (QUAPI)
method [15,27]. This is an efficient way of including memory
effects via tensor products of element memory kernels. A dif-
ferent approach was proposed by Tanimura and co-workers,
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who introduced a hierarchical treatment of non-Markovian
dynamics in which the primary density operator is coupled
to an auxiliary one, describing the effects of successively
higher-order system-bath interaction [16,28]. These two kinds
of non-Markovian dynamical methods are extensively used
in the investigations of decoherence, disentanglement, energy
transformation, and spectral analysis in quantum open sys-
tems. Many other methods have also been proposed and used
in recent years [29–31]. However, to discover other dynamical
schemes for open quantum systems is still expected, because
in the existing methods, huge analytical and/or numerical
efforts should be made.

In this paper, we propose a scheme to formulate the
Born-Markov master equation into a computable form. In the
derivation of this form, the Born and Markov approximations
are used. However, different from the derivation of the Red-
field form, the secular approximation does not need to be used
in this scheme. By using this computable form of the master
equation, we can compute the evolution of the reduced density
matrix of open multilevel quantum systems. As examples, we
shall study the dynamics of two models. One is a three-level
model, and the other is the Fenna-Matthews-Olson (FMO)
complex [32], which is a model extensively used to study pho-
tosynthetic pigment protein complex in green sulfur bacteria.
It is shown that compared with the traditional Redfield form
[33,34], the form of the master equation we propose agrees
better with the numerical path integral method [15,27] and
requires less computation.

II. THE BORN-MARKOV MASTER EQUATION

A. The general form of Born-Markov master equation

The total system-environment Hamiltonian is set as

H = Hs + Hb + Hsb. (1)

Here, Hs, Hb, and Hsb are the Hamiltonians of the system, bath,
and the interaction between them. It is convenient to switch
to the interaction picture in the derivations of the master
equation. Thus, we set

H0 = Hs + Hb, HI = Hsb, (2)

where H0 denotes the total free Hamiltonian, and HI repre-
sents the interaction one. By using the Born approximation,
namely,

ρ(t ) ≈ ρs(t ) ⊗ ρb, ∀t � 0, (3)

one has

dρ (I )
s (t )

dt
= −

∫ t

0
dt ′Trb[HI (t ), [HI (t ′), ρ (I )

s (t ′) ⊗ ρb]]. (4)

Suppose the coupling of the system to its environment is
described by the interaction Hamiltonian as

HI =
∑

α

Sα ⊗ Eα. (5)

Here Sα and Eα are the system and environment operators. By
using the Markov approximation, one can obtain the equation

in Schrödinger picture as [13]

dρs(t )

dt
= −i[Hs, ρs(t )] −

∫ ∞

0
dτ

∑
αβ

{Wαβ (τ )

[Sα, Sβ (−τ )ρs(t )] + Wβα (−τ )[ρs(t )Sβ (−τ ), Sα]}. (6)

Here and in the following we set h̄ = 1, and

Wαβ (τ ) = Trb{Eα (τ )Eβρb}. (7)

Set

Bα =
∫ ∞

0
dτ

∑
β

Wαβ (τ )Sβ (−τ ),

Cα =
∫ ∞

0
dτ

∑
β

Wβα (−τ )Sβ (−τ ), (8)

with

Eα (τ ) = eiH0τ Eαe−iH0τ ,

Sα (τ ) = eiH0τ Sαe−iH0τ , (9)

and the master equation can be written as

d

dt
ρs(t ) = −i[Hs, ρs(t )]

−
∑

α

{[Sα, Bαρs(t )] + [ρs(t )Cα, Sα]}. (10)

We call Eq. (10) the Born-Markov master equation.

B. The Born-Markov master equation for the open two-level
system (spin-boson model)

The Born-Markov master equation Eq. (10) is not a general
computable form. The computable forms of the Born-Markov
master equation for a two-level system and harmonic oscilla-
tor have been obtained [35]. In this section, we shall review
the derivation of the computable form of the Born-Markov
master equation for the spin-boson model. The Hamiltonian
of a simplified spin-boson model can be written as

H = −1

2
�σx +

∑
k

(
p̂2

k

2mk
+ 1

2
mkω

2
k q̂2

k

)
+ σz

∑
k

ckq̂k .

(11)

Here, Sα = σz. From Eq. (7), we have

W (τ ) =
∑

jk

c jck〈q̂ j (τ )q̂k〉ρb ≡ ν(τ ) − iμ(τ ), (12)

where

ν(τ ) = 1

2

∑
k

c2
k〈{q̂k (τ ), q̂k}〉ρb

=
∫ ∞

0
dωJ (ω) coth

(
ω

2kBT

)
cos(ωτ ),

μ(τ ) = i

2

∑
k

c2
k〈[q̂k (τ ), q̂k]〉ρb =

∫ ∞

0
dωJ (ω) sin(ωτ ),

(13)
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with Boltzmann constant kB, temperature T , and J (ω) is
the spectral density function of the environment. Here Hs =
− 1

2�σx, and thus we have

S(τ ) = eiHsτ σze
−iHsτ = σz cos(�τ ) + σy sin(�τ ), (14)

and

B =
∫ ∞

0
dτW (τ )[σz cos(�τ ) − σy sin(�τ )],

C =
∫ ∞

0
dτW ∗(τ )[σz cos(�τ ) − σy sin(�τ )]. (15)

Setting

ξ =
∫ ∞

0
dτW (τ ) cos(�τ ), ζ =

∫ ∞

0
dτW (τ ) sin(�τ ), (16)

we have B ≡ ξσz − ζσy and C = ξ ∗σz − ζ ∗σy. Setting ξ =
D̄ − ik̄ and ζ = f̄ − iγ̄ , with

D̄ =
∫ ∞

0
dτν(τ ) cos(�τ ), κ̄ =

∫ ∞

0
dτμ(τ ) cos(�τ ),

f̄ =
∫ ∞

0
dτν(τ ) sin(�τ ), γ̄ =

∫ ∞

0
dτμ(τ ) sin(�τ ), (17)

we can finally obtain

d

dt
ρs(t ) = −i[Hs, ρs(t )] − D̄[σz, [σz, ρs(t )]]

+ iκ̄[σz, {σz, ρs(t )}]
+ f̄ [σz, [σy, ρs(t )]] − iγ̄ [σz, {σy, ρs(t )}]. (18)

This is the computable form of the Born-Markov master equa-
tion for the simplified spin-boson model. It means that if only
the coefficients D̄, κ̄, f̄ , and γ̄ are determined, the equation
can be exactly numerical analyzed. These coefficients are
evaluated in detail in the Appendix.

C. The computable form of the Born-Markov master equation
for open multilevel quantum systems

This computable form Eq. (18) cannot be directly extended
to the open multilevel quantum system, because the latter does
not have the simple coupling form between the interest system
and its bath. In this section, we propose a scheme to formulate
the computable form of the Born-Markov master equation for
the open multilevel quantum system. This is the core part of
this paper. The general Hamiltonian of the open multilevel
quantum system can be written as

H = Hs +
∑

k

[
p̂2

k

2mk
+ 1

2
mkω

2
k q̂2

k +
∑

α

|α〉〈α|ckα q̂k

]
. (19)

where Hs is the system’s Hamiltonian, q̂k and p̂k are the
coordinate and momentum operators, mk and ωk the mass
and angular frequency of the kth harmonic oscillator of the
bath, respectively, and ckα is the coupling coefficient between
the αth diagonal mode of the system and the kth harmonic
oscillator of the bath. |α〉 is the αth basis state of the mul-
tilevel quantum system. This is actually the Frenkel-exciton
Hamiltonian, which is widely used in the study of molecular
aggregates in photosynthesis systems and other condensed
systems [36–38]. In the study of the master equation, the

FIG. 1. The strategy sketch for studying the dynamics of non-
diagonal Hamiltonian system by means of the Born-Markov master
equation of the diagonal Hamiltonian.

Frenkel-exciton Hamiltonian is a general form of an open
multilevel quantum system, while Eq. (2) can only be used to
describe a two-level system. For convenience, we first derive
the computable form of the Born-Markov master equation
of an open multilevel quantum system with a diagonalized
Hamiltonian H̃s. The evolution of reduced density matrix of a
nondiagonal Hamiltonian Hs can be obtained through solving
the computable form of the diagonal Hamiltonian of the open
multilevel quantum system, which can be understood from
Fig. 1. Therefore in the following we concentrate on deriving
the computable form of the Born-Markov master equation of
the diagonal multilevel Hamiltonian model. From Eq. (10) we
have

d

dt
ρ̃s(t ) = −i[H̃s, ρ̃s(t )]

−
∑

α

{[̃Sα, B̃αρ̃s(t )] + [̃ρs(t )C̃α, S̃α]}. (20)

Here, x̃ = V xV −1, and V is the transformation matrix from Hs

to H̃s, namely,

H̃s = V HsV
−1 = diag(λα ), (21)

where λα are the eigenvalues of the H̃s, S̃α = V |α〉〈α|V −1, and

B̃α =
∫ ∞

0
dτ

∑
β

Wαβ (τ )̃Sβ (−τ ),

C̃α =
∫ ∞

0
dτ

∑
β

Wβα (−τ )̃Sβ (−τ ). (22)

When α �= β, Wαβ (τ ) = 0, and we then denote Wα (τ ) =
Wαα (τ ). Thus we have

B̃α =
∫ ∞

0
dτWα (τ )̃Sα (−τ ), C̃α =

∫ ∞

0
dτWα (−τ )̃Sα (−τ ).
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Setting

S̃α =

⎛⎜⎜⎜⎝
S̃(11)

α S̃(12)
α S̃(13)

α ...

S̃(21)
α S̃(22)

α S̃(23)
α ...

S̃(31)
α S̃(32)

α S̃(33)
α ...

... ... ... ...

⎞⎟⎟⎟⎠, (23)

we have

S̃α (−τ ) =

⎛⎜⎜⎜⎝
S̃(11)

α S̃(12)
α eiω12τ S̃(13)

α eiω13τ ...

S̃(21)
α eiω21τ S̃(22)

α S̃(23)
α eiω23τ ...

S̃(31)
α eiω31τ S̃(32)

α eiω32τ S̃(33)
α ...

... ... ... ...

⎞⎟⎟⎟⎠
≡ S̃(0)

α (−τ ) + S̃(12)
α (−τ ) + ... + S̃(mn)

α (−τ ) + · · · .

(24)

Here and in the following, n, m = 1, 2, ...N (N is the dimen-
sion of the matrix Hs, and m < n), and

S̃(0)
α (τ ) = diag(̃S(nn)

α ),

S̃(12)
α (τ ) = S̃(12)

αx cos(ω12τ ) + S̃(12)
αy sin(ω12τ ),

S̃(13)
α (τ ) = S̃(13)

αx cos(ω13τ ) + S̃(13)
αy sin(ω13τ ),

... ... ...

S̃(mn)
α (τ ) = S̃(mn)

αx cos(ωmnτ ) + S̃(mn)
αy sin(ωmnτ ),

... ... ... (25)

with ωmn = λn − λm, and S̃(mn)
αx is a matrix with elements

S̃(mn)
αx (m, n) = S̃α (m, n), S̃(mn)

αx (n, m) = S̃α (n, m), and other el-
ements are zero. Similarly, S̃(mn)

αy is a matrix with elements
S̃(mn)

αy (m, n) = −ĩSα (m, n), S̃(mn)
αy (n, m) = ĩSα (n, m), (m < n),

and other elements are zero. Thus we have

B̃α =
∫ ∞

0
dτWα (τ )

∑
α

[̃S(0)
α + S̃(12)

α + · · · + S̃(mn)
α + · · · ],

C̃α =
∫ ∞

0
dτW ∗

α (τ )
∑

α

[̃S(0)
α + S̃(12)

α + · · · + S̃(mn)
α + · · · ].

Setting S̃(00)
αx = S̃(0)

α , we have

B̃α =
∫ ∞

0
dτ [να (τ ) − iμα (τ )]

×
∑
mn

[̃
S(mn)

αx cos(ωmnτ ) − S̃(mn)
αy sin(ωmnτ )

]
,

C̃α =
∫ ∞

0
dτ [να (τ ) + iμα (τ )]

×
∑
mn

[̃
S(mn)

αx cos(ωmnτ ) − S̃(mn)
αy sin(ωmnτ )

]
,

(m = n = 0; m = 1, n = 2; m = 1, n = 3; . . . ). (26)

Setting

ξmn
α =

∫ ∞

0
dτ [να (τ ) − iμα (τ )] cos(ωmnτ ),

ζ mn
α =

∫ ∞

0
dτ [να (τ ) − iμα (τ )] sin(ωmnτ ), (27)

we have

B̃α =
∑
mn

ξmn
α S̃(mn)

αx − ζ mn
α S̃(mn)

αy ,

C̃α =
∑
mn

ξmn∗
α S̃(mn)

αx − ζ mn∗
α S̃(mn)

αy . (28)

Thus it is clear that

[̃Sα, B̃αρ̃s(t )] = ξmn
α [̃Sα, S̃(mn)

αx ρ̃s(t )] − ζ mn
α [̃Sα, S̃(mn)

αy ρ̃s(t )],

[̃ρs(t )C̃α, S̃α] = ξmn∗
α [̃ρs(t )̃S(mn)

αx , S̃α] − ζ mn∗
α [̃ρs(t )̃S(mn)

αy , S̃α].

So we can obtain the computable form of the Born-Markov
master equation with a diagonalized Hamiltonian as

d ρ̃s(t )

dt
= −i[H̃s, ρ̃s(t )] −

∑
α

∑
mn

{
D̄mn

α [̃Sα, [̃S(mn)
αx , ρ̃s(t )]]

− iκ̄mn
α

[̃
Sα,

{̃
S(mn)

αx , ρ̃s(t )
}]− f̄ mn

α

[̃
Sα,

[̃
S(mn)

αy , ρ̃s(t )
]]

+ iγ̄ mn
α

[̃
Sα,

{̃
S(mn)

αy , ρ̃s(t )
}]}

, (29)

where ξmn
α , ζ mn

α , D̄mn
α , κ̄mn

α , f̄ mn
α , and γ̄ mn

α are obtained from
ξ, ζ , D̄, κ̄, f̄ , and γ̄ in Eq. (17) by replacing � with ωmn, and
using Jα (ω). In the following calculations, we set Jα (ω) =
J (ω), namely, we assume different modes of the system are
embedded in the same baths. Finally, we can obtain ρs(t ) =
V −1ρ̃s(t )V . Equation (29) is the core result of this paper, from
which we can obtain the computable form of the Born-Markov
master equation for any open multilevel quantum systems.

III. TWO EXAMPLES

In this section we shall investigate the dynamics of an open
three-level quantum system model and FMO complex model
by using our computable form of the Born-Markov master
equation, Eq. (29) in the last section. The results will be com-
pared with those obtained from the Redfield master equation
[39] and the numerical path integral approach [15,27].

A. An open three-level quantum system model

In the open two-level quantum system Hamiltonian, the
system operator of coupling to a bath can be simply set as σz,
as Eq. (2), or other Pauli matrices. It is known that when the
system has more than two energy levels, we cannot describe
the total system in this simple form. However, no matter
whether for two-level or more than two-level systems, the total
Hamiltonian can be described with the form as in Eq. (19). In
this sense, to study the dynamics of open quantum systems
by using this method, the three-level model is general. In this
section, we investigate an open three-level quantum system
model. The system’s Hamiltonian is set as

Hs =
⎛⎝E1 V12 0

V21 E2 V23

0 V32 E3

⎞⎠, (30)

where we set E1 = 0, E2 = −2.67 cm−1, E3 = −3.67 cm−1,
and V12 = V21 = V23 = V32 = 0.67 cm−1, and the environ-
ment is described with the Drude spectral density function

J (ω) = ηω�

ω2 + �2
. (31)
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FIG. 2. The evolution of elements of the reduced density ma-
trices for an open three-level quantum system model [left three
panels (a), (b), (c)] and the FMO model [right three panels (d),
(e), (f)]. The dynamics is respectively described by numerical path
integral (a), (d), our form of the Born-Markov master equation,
Eq. (29) (b), (e), and the Redfield form of master equation (c),
(f). The initial states of the systems are set as ρ(0) = |1〉〈1|, the
environmental spectral density functions are set as the Lorentz-Drude
form, with η = 0.125, � = 100 cm−1 for the three-level model, and
η = 12.5, � = 1000 cm−1 for the FMO model. The temperature is
set as T = 300 K. Other model parameters can refer to text.

Here we set η = 0.125, � = 100.0 cm−1, and suppose the
environmental temperature is 300 K. Setting the initial state
as ρ(0) = |1〉〈1|, we solve the reduced dynamics of the open
three-level system by using our method, the Redfield equation,
and the QUAPI. The evolution of the elements of the reduced
density matrix is plotted in Figs. 2(a)– 2(c).

The numerical path integral method [15,27] is considered
as the exact numerical method because the memory effects
of the environment within �kmax�t are included, where �t
is the time step in the calculation program. This means that
the strength of nonlocal interaction arising from dissipative
environments is omitted beyond a certain value of �kmax.
Here we set �kmax = 3. It can be seen from Fig. 2 that the
dynamics predicted from the QUAPI and our method are
similar, but the Redfield equation predicts a much longer
relaxation time and decoherence time than the other two
approaches. This distortion must result from the fact that some
degeneracy terms which do not meet the criteria of secular
approximation have been discarded in the derivations of the
Redfield equation [39].

B. FMO model

In this section, we investigate the dynamics of FMO [32].
The FMO is a photosynthetic pigment-protein complex model
whose characteristics of energy transfer and optical spectra
have been extensively investigated by using various dynamical

TABLE I. The values of the site energies εm (cm−1), the coupling
strengths �mn(cm−1) of the FMO.

BChl1 BChl2 BChl3 BChl4 BChl5 BChl6 BChl7

BChl1 12400 –106 8 –5 6 –8 –4
BChl2 –106 12540 28 6 2 13 1
BChl3 8 28 12120 –62 –1 –9 17
BChl4 –5 6 –62 12295 –70 –19 –57
BChl5 6 2 –1 –70 12440 40 –2
BChl6 –8 13 –9 –19 40 12480 32
BChl7 –4 1 17 –57 –2 32 12380

methods [40–47]. In the model, the seven pigments of one
FMO subunit were independently treated as seven two-level
systems with electronically coupled excited states. The effects
of vibrations and protein environment were taken into account
by the couplings of the electronic degrees of freedom to the
phonon bath. The elements of the Hamiltonian are listed in
the Table I. Here, the diagonal elements are the values of the
site energies εm (cm−1), and the off-diagonal elements denote
the coupling strengths �mn (cm−1).

The environment is also described with the Drude spectral
density function, and we set η = 12.5, � = 1000.0 cm−1,
and suppose the environmental temperature is 300 K. The
evolution of the elements of reduced density matrix for the
FMO model obtained from our method, the Redfield equation,
and the QUAPI is plotted in Figs. 2(d)– 2(f). Here we assume
that the system is initially populated in the Bchl1. The results
obtained from the numerical path integral and our method
show that partial populations quickly move to site 2 (Bchl2)
from site 1 (Bchl1) in the beginning of the evolution, then
they evolve with strong oscillations, and they finally decay
to their equilibrium states. But some of these characteristics
have not been shown in the results obtained from the Redfield
equation. The evolution of the populations in sites of the FMO
obtained from our method is similar to that obtained by other
groups [48] and by other methods, such as density-functional
theory and time-dependent density-functional theory [47].
This means that our computable form of the Born-Markov
master equation is reliable for investigating the dynamics of
the open multilevel quantum systems.

We see from Fig. 2(f) that the relaxation time predicted
from the Redfield equation is much longer than that from the
QUAPI and our form of the Born-Markov master equation.
The reason is similar to the three-level model discussed in
last section, namely, some relaxation terms which do not
satisfy the secular approximation are omitted in the Redfield
equation. Thus when the quantum system under investigation
is quite complicated or when some experimental results, such
as optical spectra, are investigated, application of the Redfield
form of the Born-Markov master equation may lose some
information because of the use of the secular approximation.

IV. DISCUSSION AND CONCLUSIONS

In this paper we introduce a computable form of the Born-
Markov master equation without the aid of secular approxima-
tion. It is shown that the equation can be used to investigate
the dynamics of open multilevel quantum systems and some
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dynamical characteristics lost in the Redfield equation are
well kept. By using the computable form, we investigate a
simple open three-level quantum system model and the FMO
complex model, and the results have been compared with the
ones obtained from the Redfield equation and QUAPI. The
different results imply that the secular approximation imposed
in the Redfield and Lindblad forms of the master equations ac-
tually weakens the decay of the state and distorts the reduced
dynamics of the open quantum system. Compared with the
Redfield form, our computable form of the master equation
agrees better with the QUAPI method. It retains some effects
that are lost due to use of the secular approximation in the
Redfield and Lindblad forms of the Born-Markov master
equation.
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APPENDIX: ON THE FOUR INTEGRALS IN Eq. (17)

(1) On the coefficient D̄, and γ̄ . According to the double
Fourier transform [35], we have

D̄ =
∫ ∞

0
dω

∫ ∞

0
dτJ (ω) coth

(
ω

2kBT

)
cos(ωτ ) cos �τ

= π

2
J (�) coth

(
�

2kBT

)
(A1)

and

γ̄ =
∫ ∞

0
dω

∫ ∞

0
dτJ (ω) sin(ωτ ) sin �τ = π

2
J (�). (A2)

(2) On the coefficient κ̄ . We set the environmental spectral
density function in Lorentz-Drude form, as in Eq. (31). It is
an odd function of ω, so we have

κ̄ = 1

2

∫ ∞

0
dτ

∫ ∞

−∞
dωJ (ω) sin(ωτ ) cos(�τ ). (A3)

Referring to Fig. 3, we consider a contour integral in a
complex plane, namely,

I1 =
∮

F1(z)dz, (A4)

FIG. 3. The computing strategy of contour integral Eq. (A4).

FIG. 4. The computing strategy of contour integral Eq. (A10).

where z = x + iy, and

F1(z) = J (z)eiτ z

2
. (A5)

F1(z) has two simple poles z = �i and z = −�i, and their
residues are [49]

Res
z=±i�

F1(z) = zη�eiτ z

2(z2 + �2)′
|z=±�i = η�e∓τ�

4
. (A6)

According to Jordan’s lemma we have

lim
R→∞

∫
c(R)

F1(z)dz = 0,

and according to the residue theorem we have

I1 =
∫ ∞

−∞

η�xeiτx

2(x2 + �2)
dx = iη�πe∓τ�

2
. (A7)

Replacing x with ω, we have

κ̄ =
∫ ∞

0
Im(I1) cos(�τ )dτ

= η�π

4

∫ ∞

0
e−�τ cos(�τ )dτ = ηπ�2

2(�2 + �2)
, (A8)

where
∫ ∞

0 e−aτ cos(bτ )dτ = a/(a2 + b2) is used.
(3) On the coefficient f̄ . In Ref. [35], it is supposed that

when � � � and kBT � �, the coefficient f̄ can be ex-
plicitly evaluated to give the result f̄ = 2γ0kBT/�. Here, the
constant γ0 describes the effective coupling strength between
the system and its environment, and � is the cut-off frequency
of the bath. It is clear that this is a result of high-temperature
approximation. In the following, we evaluate the constant of
f̄ by using another method. In this method we do not limit
the range of the corresponding parameters. The integral can
be written as

f̄ = 1

2

∫ ∞

0
dτ

∫ ∞

−∞
dωJ (ω) coth

(
βω

2

)
cos(ωτ ) sin(�τ ),

(A9)

where β = 1/(kBT ). Referring to Fig. 4, we consider a con-
tour integral in a complex plane as

I2 =
∮

F2(z)dz, (A10)
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FIG. 5. 1
250a χ ′(x) (red circle dots) and δ( x

150 ) (black square points).

where

F2(z) = 1

2
J (z) coth

(
βz

2

)
exp(izτ ). (A11)

It is clear that F2(z) has the following simple poles: z =
i�,−i� and z = 0,± 2π i

β
,± 4π i

β
,± 6π i

β
, · · · . The contour inte-

gral can be written as∮
F2(z)dz =

[∫
AP

+
∫

�

PMQ
+

∫
QB

+
∫

BC

+
∫

CU
+

∫
�

UWV
+

∫
V D

+
∫

DA

]
F2(z)dz. (A12)

At first we investigate the integrals
∫

�

PMQ
F2(z)dz and∫

�

UWV
F2(z)dz. According to Jordan’s lemma we have∫

�

PMQ
F2(z)dz = 0 and

∫
�

UWV
F2(z)dz = 0.

Second, we consider the integrals [
∫

AP + ∫
QB]F2(z)dz. In

the complex plane, we have[∫
AP

+
∫

QB

]
F2(z)dz =

∫ R

−R
dxJ (x) coth

(
βx

2

)
exp(ixτ ) .

Third, we investigate the integrals [
∫

CU + ∫
V D]F2(z)dz.

Fixing h = 2(n + 1)π/β (see Fig. 4) and setting J (ih +
x)e−hτ � χ (x)J (x), we have[∫

CU
+

∫
V D

]
F2(z)dz

= −
∫ R

−R
dxχ (x)J (x) coth

(
βx

2

)
eixτ ,

where χ (x) = χ ′(x) + iχ ′′(x), and

χ ′(x) = Re

(
e−hτ J (ih + x)

J (x)

)
,

χ ′′(x) = Im

(
e−hτ J (ih + x)

J (x)

)
→ 0.

Using the Dirac δ function,

δ(x) = lim
a→0+

1

a
√

π
e−x2/a2

, (A13)

we can numerically find out

1

250a
χ ′(x) � δ

( x

150

)
, (A14)

which can be seen from Fig. 5. Thus we have

χ ′(x) � 150 × 250δ(x). (A15)

Within the dynamical timescale of such quantum systems,
τ < 1 ps, then e−hτ → 1. Therefore, by using L’Hôpital’s
rule, we have[∫

CU
+

∫
V D

]
F2(z)dz � 7500η

β
→ 0. (A16)

Finally, we investigate the integrals
∫

BC F2(z)dz and∫
DA F2(z)dz. From Fig. 4 we have∫

BC
F2(z)dz =

∫ C

B
dy f1(y),

∫
DA

F2(z)dz =
∫ A

D
dy f2(y),

where

f1,2(y) = J (iy ± R) coth

(
β(iy ± R)

2

)
exp[(iy ± R)iτ ] .

It is clear that limR→∞ | f1,2(y)| = 0, so we have

I2 =
∫ R

−R
dxJ (x) coth

(
βx

2

)
exp(ixτ ) . (A17)

In the following we calculate the residues in the contour
integral shown in Fig. 4.

If � < 2π/β, namely, T > �
2πkB

, we can choose a circle of
integral, one in which there is only one pole, z0 = i�. So we
have

Res
z=i�

F2(z) = (z − i�)
1

2
J (z) coth

(
βz

2

)
eizτ |z=i�

= η�

4
ctan

(
β�

2

)
e−�τ , (A18)

I2 = 2π i Res
z=i�

F2(z) = iπη�

2
ctan

(
β�

2

)
e−�τ ,

where the integral formula
∫ ∞

0 e−aτ sin(bτ )dτ = b/(b2 + a2)
is used. So, according to the residue theorem, we have

f̄ =
∫ ∞

0
Re(I2) sin(�τ )dτ = 0.

If 2π/β < � < 4π/β, namely, �
4πkB

< T < �
2πkB

, we can
choose a circle of integral, one in which there are two simple
poles, z0 = i� and z1 = 2π i/β. We have

Res
z=2π i/β

F2(z) = J (z)
(eβz + 1)eizτ

2(eβz − 1)′
|z= 2π i

β
= iη�ω̄e−ω̄τ

β(�2 − ω̄2)

and

I2 = 2π i Res
z=2π i/β

F2(z) = −2πη�ω̄e−ω̄τ

β(�2 − ω̄2)
.

So we have

f̄ =
∫ ∞

0
Re(I2) sin(�τ )dτ

= 2πη�ω̄�

(ω̄2 − �2)(ω̄2 + �2)
, (A19)

where ω̄ = 2π/β.
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If 2nπ/β < � < 2(n + 1)π/β, namely, �
2(n+1)kB

< T < �
2nkB

, there are simple poles z0 = i�, and z1 = 2π i/β, z2 =
4π i/β, . . . , zn = 2nπ i/β in the circle of integral. Similarly, we have

f̄ =
∑

n

2πη�ω̄n�(
ω̄2

n − �2
)(

ω̄2
n + �2

) , (A20)

where ω̄n = 2nπ/β, and n is the number of poles except for i� in the contour integral, shown in Fig. 4.
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