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Fluctuation theorems for continuous quantum measurements and absolute irreversibility
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Fluctuation theorems are relations constraining the out-of-equilibrium fluctuations of thermodynamic quanti-
ties like the entropy production that were initially introduced for classical or quantum systems in contact with a
thermal bath. Here we show, in the absence of thermal bath, the dynamics of continuously measured quantum
systems can also be described by a fluctuation theorem, expressed in terms of a recently introduced arrow of time
measure. This theorem captures the emergence of irreversible behavior from microscopic reversibility in con-
tinuous quantum measurements. From this relation, we demonstrate that measurement-induced wave-function
collapse exhibits absolute irreversibility, such that Jarzynski-like equalities are violated, and that this property is
inherent to quantum information acquisition. We apply our results to different continuous measurement schemes
on a qubit: dispersive measurement, homodyne, and heterodyne detection of qubit’s fluorescence.
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I. INTRODUCTION

The emergence of macroscopic irreversibility from mi-
croscopic time-reversal invariant physical laws has been a
longstanding issue, well described by the formalism of sta-
tistical thermodynamics [1,2]. In this framework, the small
system under study follows stochastic trajectories in its phase-
space, where the randomness models the uncontrolled forces
exerted on the system by its thermal environment. Although
these trajectories are microscopically reversible, one direc-
tion of time is more probable than the other and an arrow
of time emerges for the ensemble of trajectories. In this
framework, the thermodynamic variables like the work, the
heat, and the entropy production during a process appear
as random variables, defined for a single realization (i.e., a
single trajectory), whose averages comply with the first and
second law of thermodynamics. Furthermore, the fluctuations
of these quantities are constrained beyond the second law, as
captured by the so-called fluctuation theorems (FTs) [3–5].
In particular, the integral FT can be written under the form
〈e−σ (�)〉 = 1, where σ (�) is the entropy production along a
single trajectory �. We denote 〈·〉, the ensemble average over
the realizations of the studied process (or equivalently, over
the possible trajectories). The stochastic entropy production
σ (�), fulfilling the FT is equal to the ratio of the probability
of the (forward in time) trajectory � and the probability of the
time-reversed (or backward in time) trajectory corresponding
to �. During the last decades, these results have been investi-
gated in the quantum regime where the system and the thermal
bath can be quantum systems, allowing the proof of quantum
extensions of the FTs [6–16]. Experiments have demonstrated
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the validity of these FTs in both classical and quantum
regimes [17–22].

However, it was shown that the form of the FTs must be
modified for special processes [23–32], which are such that
some theoretically allowed backward trajectories do not have
a forward-in-time counterpart. A canonical example is the
free expansion of a single particle gas initially contained in
the left half of a box by a wall. The wall is removed at time
t = 0, letting the gas expand and reach thermal equilibrium
in the whole box. The reverse process consists in starting
with the gas particle equilibrated in the whole box and
reinserting the wall in the middle. Half of the time, after
putting back the wall, the gas particle will be found in the
right half of the box. However, this configuration is forbidden
in the initial state of the gas, and then only the realizations
for which the particle is found in the left-hand side after
reinserting the wall can be associated to a realization of the
direct process [23,25,32,33]. Such phenomenon has been
named absolute irreversibility and is a general feature of
transformation on system initialized in small regions of their
configuration space [25,27]. For such processes, the FTs
takes the form 〈e−σ (�)〉 = 1 − λ, where λ ∈ [0, 1] is the
accumulated probability of the backward trajectories with
no forward counterparts. Absolutely irreversible processes
exhibit a strictly positive average entropy production, bounded
below by −ln(1 − λ) > 0. Reversibility, i.e., a zero average
entropy production, is impossible for such processes, no
matter the speed at which one implements the transformation
under study. Similar modifications of the FTs were also
demonstrated when the transformation undergone by the
system is interrupted by a quantum measurement [27,34].

Recently, stochastic thermodynamics was extended to de-
scribe quantum systems undergoing generic quantum maps
[35–39] and in particular quantum measurements in the ab-
sence of a thermal reservoir [40–46]. Indeed, the latter situ-
ation leads to quantum trajectories of the measured system
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that are analogous to the stochastic trajectories in phase space
of classical stochastic thermodynamics. The equivalent of the
first law and the second law have been derived for generic
form of measurements [42], leading to applications such as an
engine fueled by the quantum measurement process [47–50].

Here, we focus on the case of a qubit undergoing weak con-
tinuous quantum measurements. Such weak measurements
do not completely project the qubit’s wavefunction on an
eigenstate of the measured observable and therefore generate
coherent diffusive trajectories of the state of the measured sys-
tem. They have been studied intensively [51–57] and provide
a wide range of applications exploiting their low invasiveness
with respect to strong (projective) measurements [58–65],
which justifies to extend quantum stochastic thermodynamics
to describe them. In Refs. [44,45], a new quantity was intro-
duced to quantify the arrow of time in continuous monitoring.
More specifically, this arrow of time measure compares the
probability of the observed quantum trajectory as generated
in forward or backward-in-time. The underlying idea is that
a weak quantum measurement can always be reversed physi-
cally, i.e., the measured system can always be brought to the
state it was right before the measurement, by another weak
measurement [44,45,58,65]. Such backward measurement oc-
curs with a given probability, that can be larger or smaller than
the probability of the forward measurement. A correspon-
dence rule to identify the backward measurement correspond-
ing to a given forward measurement was demonstrated in
Ref. [45] using the time-reversal symmetry of the dynamical
equation, and used to study the average length of the arrow of
time for different measurement processes. The equivalent of
the second law in this context is that the average arrow of time
is indeed positive. Finally, experimental measurement of this
arrow of time was recently reported in Ref. [66].

Here we extend the analysis showing that the probability
distribution of the arrow of time is constrained by a FT anal-
ogous to those previously derived for the entropy produced
in contact with a heat bath. We demonstrate that continuous
quantum measurements lead to absolutely irreversible dynam-
ics, and that this property is deeply connected to the acquisi-
tion of quantum information during collapse of the wavefunc-
tion: Just as for the free expansion of a gas, the dynamics of
a measured quantum system generates backward trajectories
without forward counterparts as soon as the measurement
brings new information about the system. We emphasize that
the time-reversal rule used here exactly reverses the quantum
state dynamics along single trajectories, in contrast with previ-
ous proposals, and that the arrow of time is computed without
any projective end point measurement, leading to a FT with
absolute irreversibility different from its previous appearances
[23,26,27], and from other quantum generalizations of FTs
in general [6–10,12–15,21,22,40,67]. We apply our results
for different measurement schemes on a qubit, highlighting
how the arrow of time varies in these different contexts, and
investigating the influence of measurement strength.

This article is organized as follows: We first introduce
the arrow of time measure for a simple two-outcome weak
measurement of the qubit population and then for a general
weak measurement performed on a qubit. We then express
the FT and its proof. Finally, we apply our formal results to
several physical systems.

II. ARROW OF TIME MEASURE

We consider a qubit of Hamiltonian H0 = (h̄ω0/2)σz =
(h̄ω0/2)(|e〉〈e| − |g〉〈g|), initially in a pure state |x0〉 and then
weakly measured. To introduce our arrow of time measure,
we first consider that the measurement is a weak discrete
measurement of the qubit population characterized by the two
following Kraus operators Mk (r), associated with outcomes
r ∈ {1,−1}:

Mk (1) =
(√

1 − k 0
0

√
k

)
,

Mk (−1) =
(√

k 0
0

√
1 − k

)
. (1)

This POVM models, for example, a weak polarization mea-
surement using a single photon meter [68]. The parameter
k ∈ [0, 1/2] quantifies the measurement strength (k = 0 cor-
responds to a strong measurement, k = 1/2 corresponds to
a noninformative measurement). After the measurement, the
qubit is in state |x1(1)〉 ∝ Mk (1)|x0〉 (respectively, |x1(−1)〉 ∝
Mk (−1)|x0〉) when outcomes r = ±1 are obtained. As
Mk (r)Mk (−r) is proportional to identity, the forward trajec-
tory �|x0,r ≡ {x0, x1(r)} is reversed (i.e., the qubit follows
the backward trajectory �̃|x1(r),r ≡ {x1(r), x0}) when Kraus
operator Mk (−r) is applied on |x1(r)〉. This reversal of the
measurement is stochastic; it requires the result −r is realized,
which occurs with probability PB[r|x1(r)] = ‖M̃k (r)|x1(r)〉‖2,
where we have denoted M̃k (r) = Mk (−r) the backward Kraus
operator associated with Mk (r). The state |x1(r)〉 is properly
re-normalized such that PB[r|x1(r)] is a legitimate condi-
tional probability, conditioned on the normalized final state
|x1(r)〉 and the readout r. A quantitative measure of the arrow
of time can then be obtained by comparing the probabili-
ties PF [�|x0,r] = PF [r|x0] and PB[�̃|x1(r),r] = PB[r|x1(r)]. We
define the quantity Qk (�|x0,r ) = ln{PF [�|x0,r]/PB[�̃|x1(r),r]},
here given by Qk (�|x0,r ) = ln{[(r + z0 − 2kz0)2]/[4k(1 −
k)]}, with z0 = 〈x0|σz|x0〉. The sign of Qk (�|x0,r ) indi-
cates which time-direction of the trajectory—forward or
backward—is the most probable [44,45]. Note that Qk (�|x0,r )
diverges in the limit k → 0, which is consistent with the
fact that an ideal strong measurement has a zero probability
to be reversed this way. Interestingly, the average over the
measurement outcomes 〈Qk (�|x0,r )〉r is nonnegative for any
value of k [see Appendix A], demonstrating that a clear arrow
of time emerges in the measurement process despite micro-
scopic reversibility. The initial condition z0 = ∓1 corresponds
to a fixed point of the measurement, leading to deterministic
quantum state dynamics independent from the records. Yet,
when k ∈ [0, 1/2), one finds a nonvanishing arrow of time
reflecting the probabilistic nature of the weak measurement
readout r.

We now want to study weak measurements with contin-
uous outcomes, performed during some finite time T = Ndt
on the qubit. The evolution of the qubit follows a quantum tra-
jectory defined by the set of Kraus operators {M(rn)}0�n�N−1

associated with elementary outcomes rn obtained at times
tn = ndt . We introduce r = {r0, ..., rN−1} the measurement
record obtained in a single realization of the process which
together with the initial state x0 uniquely defines a quantum
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trajectory,

�|x0,r ≡ {x0, x1(r0|x0), x2(r1|x1)...xN (r)}, (2)

followed by the qubit. We denote xN (r) = xN [r(N−1)|x(N−1)]
for brevity. The probability density of the records reads

PF (�|x0,r ) ≡ PF (r|x0) = ‖←−∏
nM(rn)|x0〉‖2 where the arrow in-

dicates that the operators are ordered from right to left [45,57].
It has been demonstrated in Ref. [45] that the trajectory

�|x0,r followed by the qubit when record r is obtained can be
reversed by applying the Kraus operators given by

M̃(rn) = θ−1M†(rn)θ (3)

on the final state |xN (r)〉, in reversed order [i.e., starting
with M̃(rN−1)]. Here θ is the time-reversal operator, which in
the case of rank-2 Kraus operators ensures M̃(rn)M(rn) ∝ 1

[45]. Applying M̃(rn) sequentially generates the backward
trajectory �̃|xN (r),r̃ ≡ {xN (r) ... x0}, bringing the qubit through
the exact same sequence of states, in reversed order, back to
|x0〉.

We stress that the correspondence rule given in Eq. (3)
differs from previous approaches, e.g., defining the back-
ward measurement operator as the adjoint of the forward
measurement operator [35–37] and which do not necessary
bring back the system through the same sequence of quantum
states as M†(rn)M(rn) is not always proportional to identity.
However, a similar correspondence rule has appeared previ-
ously in Ref. [69] and was applied to the transformation of a
quantum system in contact with a thermal bath, interrupted by
discrete measurements. The particular choice of inverse given
in Eq. (3) maps a qubit unitary operator to its inverse unitary
operator, returns a complete POVM for unital maps, and
preserves the set of dynamical equations for the measurement
as discussed in Ref. [45]. Reversing exactly the dynamics is a
tighter constraint, and as a consequence the present approach
is valid solely when the Kraus operators are invertible (i.e.,
rank-2 when the system is a single qubit). Interestingly, this
method leads to an arrow of time measure particularly well-
suited for continuous measurement and zero temperature, two
limits in which previous ways of quantifying irreversibility
lead to divergences [42,46].

The probability to obtain the sequence of measure-
ment exactly reversing trajectory �|x0,r is finite and equal

to PB[�̃|xN (r),r̃] ≡ PB(r̃|xN ) = ‖←−∏
nM̃(r̃n)|xN 〉‖2, where r̃ =

{rN−n}1�n�N is the backward record. One can then define for
any trajectory �|x0,r the arrow of time measure,

Q(�|x0,r ) = ln
{
PF [�|x0,r]/PAC

B [�̃|xN (r),r̃]
}
. (4)

Here, the superscript AC indicates that we consider the ab-
solutely continuous part of PB with respect to PF , in the
sense of Lebesgue’s decomposition of probability distribu-
tions [70]. In less technical words, PAC

B [�̃|xN (r),r̃] is equal to
PB[�̃|xN (r),r̃], except when PF [�|x0,r] vanishes (when a given
backward trajectory does not have a forward counterpart),
where it is equal to 0. We discuss this prescription later in the
letter.

As an example, we review the continuous weak measure-
ment of observable σz, which can be implemented exploiting
a dispersive coupling between the qubit and a cavity (see
Fig. 1). The evolution of the qubit’s state between tn and tn+1

FIG. 1. Three different continuous measurement schemes com-
pared in the manuscript. Top: Homodyne detection of qubit flu-
orescence [single readout, I (t )]. Middle: Heterodyne detection of
qubit fluorescence [two readouts, Q(t ), I (t )]. Bottom: dispersive
spin measurement, having a single readout r(t ). In each case, we
plot an example of measurement record (the amplitude is in arbitrary
units), and the probability distribution of the arrow of time measure
Q for different measurement durations T = 0.5τ (blue, dotted), T =
τ (red, dashed), T = 2τ (green, joined). The qubit is initialized in
the eigenstate of σx with eigenvalue 1. We have set γ −1 = τ . The
remarkable shape of P(Q) for the Homodyne (top) and dispersive
(bottom) schemes is analytically explained in the appendices.

without Rabi drive is obtained by applying the Kraus oper-
ator Mz(rn) = (dt/2πτ )1/4e−(dt/4τ )(rn−σz )2

, with τ the charac-
teristic measurement time, and rn ∈ R. After T = Ndt , the
qubit’s state is |xN (r, x0)〉 ∝ e−(dt/4τ )

∑
n(rn−σz )2 |x0〉. The Kraus

operators generating the backward dynamics are given by
M̃z(rn) = Mz(−rn). We obtain the arrow of time in this case,
Qz [44],

Qz(�|z0,r ) = 2ln[ cosh (R) + z0 sinh (R) ], (5)

where R = dt
∑

n rn/τ . When z0 = 0 (i.e., when |x0〉 lays on
the equator of the Bloch sphere), one finds that Qz(�|z0,r ) >

0 for any r, leading to a strictly positive average [44]. This
special case is analogous to the example of free expansion of
a single particle gas where the entropy production is always
positive, subsequently violating the Jarzynski equality [25].
We revisit this example in Appendix D, and analytically verify
the FT presented in this paper.

In the remainder of this paper, we show that our arrow of
time measure satisfies a FT similar to the Integral Fluctuation
Theorem for the entropy production, extensively studied in
the case of a quantum system in contact with a thermal
reservoir [8,11,38,42,71,72]. We will apply our general results
to four different measurement schemes: the two examples
already presented, and the detection of the fluorescence of the
qubit via a Heterodyne setup (i.e., after a phase-preserving
amplification of the field yielding information on both its
quadratures In and Qn, stored in the record rn = In − iQn ∈ C)
and a Homodyne setup (after a phase-sensitive amplification
of the field gathering information about one quadrature stored
in rn ∈ R) [73]. The Kraus operators encoding the effect of
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such measurements during a small time step dt read:

MHe(rn) = e−|rn|2/2

√
π

(√
1 − ε 0√
ε r∗

n 1

)
,

(6)

MHo(rn) = e−r2
n /2

π1/4

(√
1 − ε/2 0√

ε rn 1

)
,

where ε = γ dt , with γ the spontaneous emission rate of the
qubit. The backward evolution operators and the arrow of time
measure Q can be computed following the same protocol de-
scribed in Eqs. (3) and (4). Their probability distributions are
plotted in Fig. 1 for the three different continuous detection
schemes, highlighting their strictly positive average value.
Interestingly, the average value of the arrow of time measure
depends on the measurement scheme, although the measure-
ment rates are chosen to be identical γ = 1/τ . The present
approach therefore brings new tools to compare the irre-
versibility of different measurement channels. We also study
the case of a qubit simultaneously driven and continuously
monitored in the Appendix.

III. FLUCTUATION THEOREM

To obtain our FT, we compute the average value of
e−Q(�) = PAC

B (�̃)/PF (�) over the forward trajectories �, i.e.,
〈e−Q(�)〉 = ∫

D�PF (�)e−Q(�). Since we need to integrate over
all possible realizations, the constraint that the measurement
readout r and the quantum state dynamics x at each step
correspond via the Bayesian update rule for each individual
realizations is imposed by defining

∫
D� appropriately as∫

D� = ∫
Dx

∫
Drδ[x − x(r)] (see Appendix B). We find the

central result of this paper:

〈e−Q(�)〉 = 1 − μ, (7)

where μ is a parameter equal to (see Appendix B)

μ = 1 −
∫

D�PAC
B (�) =

∫
Dr

|〈x̄0|M†(r)M(r)|x0〉|2
〈x0|M†(r)M(r)|x0〉 , (8)

where M(r) = ←−∏
nM(rn) is the global Kraus operator of the

sequence of measurements and |x̄0〉 is the normalized state or-
thogonal to |x0〉. From Eq. (8) it is clear that μ � 0. The
equality μ = 0 can be reached solely if |x0〉 is an eigenstate
of the global effect operator E (r) = M(r)†M(r) for any r.
Applying the Cauchy-Schwartz inequality for vectors |ψ〉 =
M(r)|x0〉 and |φ〉 = M(r)|x̄0〉 yields |〈φ|ψ〉|2/〈ψ |ψ〉 �
〈φ|φ〉, which demonstrates that

∫
Dr〈x̄0|M†(r)M(r)|x̄0〉 = 1

is an upper bound for μ.
Equation (7) constrains the fluctuations and average of the

arrow of time measure. In particular, it readily imposes via
Jensen’s inequality a lower bound on the average arrow of
time:

〈Q(�)〉 � −ln(1 − μ). (9)

IV. ABSOLUTE IRREVERSIBILITY

The right-hand side of the FT in Eq. (7) is strictly lower
than 1 when the initial state is not an eigenstate of the effect
matrix E (r), leading to a strictly positive value of 〈Q(�)〉. In
the literature related to FTs, this feature has been referred to
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FIG. 2. Absolute irreversibility of the three studied continuous
detection schemes: Left-hand side of the FT 〈e−Q(�)〉 (dashed) and
parameter μ (dotted) computed from Eq. (8), as a function of the
duration of the measurement T/τ , starting from T/τ = 0.1. The
qubit is initialized in the eigenstate of σx with eigenvalue 1. We have
simulated 1 × 106 trajectories, setting τ−1 = γ . The analytically
obtained value 1 − μD,exact for the dispersive measurement with no
Rabi drive is also marked in the figure.

as absolute irreversibility [25,27], and it reveals existence of
time-reversed trajectories that are accounted for by probability
law PB, but which do not bring the system back to its initial
state |x0〉. For such trajectories, the forward probability is
zero so that the ratio PB(r̃|xN )/PF (r|x0) and the arrow of time
diverges [27]. Taking the absolutely continuous part PAC

B of PB

in the definition of Q(�) is required to restrict the average in
Eq. (7) to allowed forward trajectories.

Physically, absolute irreversibility evaluated by Eq. (8)
quantifies how much two initially orthogonal quantum states
|x0〉 and |x̄0〉 become indistinguishable when they evolve sub-
ject to the same measurement record r. It reflects the fact that
as information about the system is acquired, the measurement
brings any state towards the same fixed point indicated by the
measurement readout. As a consequence, μ increases with the
measurement duration (see Fig. 2) and reaches unity when all
the possible information is obtained (when the measurement
becomes projective). Absolute irreversibility only disappears
when different realizations have no effect on the qubit’s state;
i.e., when the qubit is already in an eigenstate of E (r) for
any r. Note that one may still obtain a nonzero 〈Q〉 even
though μ is zero, for example, when applying the measure-
ment operators in Eq. (1) to an eigenstate of σz. Here the
readout fluctuates and keep bringing (redundant) information
about the state of the qubit. A perfectly reversible situation
(〈Q〉 = 0) requires in addition that the measurement gathers
no information at all, i.e., when the coupling of the qubit
with the measuring device approaches zero. This illustrates
that irreversibility (〈Q〉 > 0) and absolute irreversibility (μ 
=
0) are two different properties defined for a set of forward
trajectories which help characterize information acquisition
during quantum measurements. We finally emphasize that one
can generalize Eq. (7) to the case where the initial state of
the system is drawn from an ensemble {|x0〉} with probability
p(x0). This situation still leads to absolute irreversibility in
general (see Appendix C).

V. ANALYSIS OF THE EXAMPLES

We first apply our results to the weak measurement char-
acterized by Mk (±1) defined in Eq. (1). Here the parameter μ
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can be computed analytically:

μk = [
(1 − 2k)2

(
1 − z2

0

)]
/
[
1 − (1 − 2k)2z2

0

]
, (10)

which for k ∈ [0, 1/2] indeed belongs to [0,1]. We retrieve
in this example that μk = 0 for z0 = ±1 and μk is strictly
positive otherwise. The limit k → 0 (strong measurement)
corresponds to μk → 1−, such that the bound −ln(1 − μk )
goes to +∞, capturing that the arrow of time measure di-
verges for a strong measurement. Conversely, for k → 1/2,
μk goes to 0 for any value of z0: the measurement in this
limit does not gather any information and has no effect of the
qubit, such that the process becomes absolutely reversible, and
〈Qk〉 → 0. Interestingly, for a fixed z0 ∈ [−1, 1], the param-
eter k allows to go from a perfectly strong measurement to a
weak measurement, and even to no measurement at all. This
transition is accompanied by 〈Qk〉 going from +∞ to 0, and
absolute irreversibility is present but its amount, quantified by
μk decreases and finally reaches 0 when the measurement has
no back-action anymore on the qubit’s state.

For the dispersive σz, homodyne and heterodyne mea-
surements on a qubit for a finite duration T = Ndt , we
verify the FT by simulating qubit trajectories to compute
〈e−Q(�)〉 and numerically integrate Eq. (8). One can see on
Fig. 2 the agreement between both sides of Eq. (7), which
numerically validates our FT, and proves the presence of
absolute irreversibility as μ is found greater than zero. We
also compare our results to the analytic expression of μ for
the dispersive measurement with no Rabi drive, discussed
in the Appendix. Just as parameter k in the two-outcome
measurement example, the measurement time allows to switch
between an extremely weak measurement (for T � τ ) such
that μ � 1 and 〈Q(�)〉 � 0 to a strong measurement (for
T � τ ) such that μ goes to 1 and the lower bound for the
average arrow of time diverges. The agreement to our FT for
single step measurements, and for continuously monitoring a
qubit undergoing Rabi oscillations are also presented in the
Appendix.

VI. CONCLUSION

We have proved a fluctuation theorem for the arrow of
time in continuous quantum measurements, analogous to
FTs for transformation of a quantum system in contact with
a thermal reservoir. We have shown that this FT exhibits
absolute irreversibility, leading to a strictly positive average
arrow of time. This property is inherent to the wavefunction
collapse induced by a continuous quantum measurement, and
relates the irreversibility to information gained during the
measurement process.
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APPENDIX A: AVERAGE VALUE OF Qk FOR THE TWO
OUTCOME SPIN MEASUREMENT

For the single step, two outcome spin measurement de-
scribed by measurement operators,

Mk (1) =
(√

1 − k 0
0

√
k

)
,

Mk (−1) =
(√

k 0
0

√
1 − k

)
. (A1)

we compute the average value of Qk (�) as 〈Qk (�)〉 =
PF (�1)Qk (�1) + PF (�−1)Qk (�−1), where Qk (�r ) is
computed using the formula Qk (�r ) = ln{[(r + z0 −
2kz0)2]/[4k(1 − k)]}, for r ∈ {−1, 1}. In Fig. 3, we plot
the average 〈Qk〉 for the case z0 = 0, that demonstrate the
essential features discussed in the main text, its nonnegativity,
and positive divergence as k → 0.

APPENDIX B: DERIVATION OF THE
FLUCTUATION THEOREM

Here we derive the identity 〈e−Q(�)〉 = 1 − μ, by consider-
ing discrete state update using Kraus operators and then taking
the continuum limit. We first note that the probability distri-
bution function of the forward state update for a sequence
of N measurements—that imposes the constraint that a given
pair � = (x, r) has a nonvanishing probability if and only
if the sequence of states x = {xk}N

k=0 and the measurement
readouts r = {rk}N−1

k=0 correspond via the Bayesian update rule:
x(r) = {x0, x1(r0|x0), x2(r1|x1) ... xN (r(N−1)|x(N−1))}—can be
written as follows [51,57]:

PF (�) = δ(x0 − xin )
N−1∏
k=0

PF (xk+1|xk, rk )PF (rk|xk ). (B1)

Here the term PF (xk+1|xk, rk ) represents a deterministic state
update given the dynamics, imposed as a three-dimensional δ

function for each component of spin along the Bloch sphere
coordinates,

PF (xk+1|xk, rk ) =
3∏

i=1

δ

[
xi

k+1−Tr

(
σ̂ i UkM(rk )ρkM(rk )†U †

k

Tr[M(rk )ρkM(rk )†]

)]

= δ[xk+1 − (xk+1|xk, rk )], (B2)

and the probability of obtaining a readout rk given xk is given
by the expression

PF (rk|xk ) = Tr[M(rk )ρkM(rk )†]. (B3)

Note that imposing a delta function boundary condition at
each step as in Eq. (B1) ensures that the trajectories where rk

and xk do not correspond to each other have probability zero.
These trajectories—completely determined by the initial state
x0 and the measurement readout r—are labeled by the nota-
tion �|x0,r in the main text, referring to individual realizations
of the measurement process.
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FIG. 3. Here we consider a single-step weak discrete measurement of qubit population, when the qubit initialized at x = 1. In Fig. 3(a),
we show that the identity 〈exp(−Qk )〉 [solid line] = 1 − μk [dotted] is satisfied for different values of the measurement strength k ε [0, 1

2 ]. A
possible experimental implementation of this measurement scheme is shown in Fig. 3(b), where the quantum system (qubit) and the measuring
device (ancilla qubit) evolve via the controlled-NOT unitary. The measurement is completed by projecting the ancilla qubit onto the spin basis.
(c) Here we plot the average value 〈Qk〉 for k ∈ [0, 1/2] for a qubit initialized at z = 0, considering the two outcome z measurement discussed
in the main text.

For any given final state x f obtained at the end of the
forward measurement, the backward probability distribution
can be written similarly,

PB(�̃) = δ(xN − x f )
1∏

k=N

PB(xk−1|xk, rk−1)PB(rk−1|xk ), (B4)

where we have

PB(xk−1|xk, rk−1)

=
3∏

i=1

δ

[
xi

k−1

−Tr

(
σ̂ i M̃(rk−1)U †

k−1ρkUk−1M̃(rk−1)†

Tr[M̃(rk−1)U †
k−1ρkUk−1M̃(rk−1)†]

)]

= δ[xk−1 − (xk−1|xk, rk−1)]. (B5)

The update operator M̃(rk ) = θ−1M(rk )†θ , where θ is the time
reversal operator, and the backward probabilities,

PB(rk−1|xk ) = Tr[M̃(rk−1)U †
k−1ρkUk−1M̃(rk−1)†]. (B6)

We now proceed to compute the quantity 〈e−Q(�)〉 as a sta-
tistical average over all possible forward trajectories in the
ensemble being considered. The integration measure over all
the possible trajectories � with nonvanishing forward proba-
bilities can also be expressed in terms of the readouts r and
the corresponding Bloch sphere coordinates x as∫

D� =
∫

Dx
∫

Dr δ[x − x(r)], (B7)

where we assume
∫

Dx ≡ ∫ ∏N
k=1 Dxk . Note that the Bloch

sphere coordinates xk take continuum of values in the interval
[−1, 1], and the readout(s) r for the homodyne/heterodyne
measurements are also continuous variables. The δ function
imposes the constraints of the initial state and the Bayesian
state update,

δ[x − x(r)] = δ(x0 − xin )
N−1∏
k=0

δ[xk+1 − (xk+1|xk, rk )]. (B8)

The quantity 〈e−Q(�)〉 pertinent to our time-reversal scheme is
defined as the following integral over paths:

〈e−Q(�)〉 =
∫

D� PF [�]
PAC

B [�]

PF [�]
. (B9)

Here for a given trajectory �, we have defined PF [�] =∏N−1
k=0 PF (rk|xk ). We have also defined Q = ln PF [�]

PAC
B [�]

, where

PAC
B [�] correspond to the probability of obtaining a back-

ward trajectory which has a corresponding forward trajectory
(having forward probability PF [�]) in the ensemble of all
forward trajectories (denoted by the superscript AC, implying
absolute continuous part of the backward distribution, relative
to the forward distribution, used in the context of Lebesgue’s
decomposition theorem [70]). This probability of obtaining a
readout backward, given the intital state state x0 and measure-
ment record r can be written more concisely in terms of the
effect matrix as

PAC
B [�] =

1∏
k=N

PB(rk−1|xk ) = Det[E (r)]

Tr[ρx0E (r)]
. (B10)

Using Eq. (B1), we have

〈e−Q(�)〉 =
∫

D� PF [�]
PAC

B [�]

PF [�]

=
∫

Dx
∫

DrPF

∏1
k=N PB(rk−1|xk )∏N−1

k=0 PF (rk|xk )
(B11)

=
∫

Dx
∫

Dr δ(x0 − xin )
N−1∏
k=0

δ[xk+1

− (xk+1|xk, rk )]
1∏

k=N

PB(rk−1|xk )

=
∫

Dx
∫

Dr δ[x − x(r)]
Det[E (r)]

Tr[ρx0E (r)]

=
∫

Dr
Det[E (r)]

Tr[ρx0E (r)]
. (B12)
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FIG. 4. (a) Absolute irreversibility of the three studied continuous detection schemes for a single step measurement: Left-hand side of the
FT 〈e−Q(�)〉 (dashed) and parameter μ (dotted) computed from Eq. (B15), as a function of the duration of the measurement rate τ−1 = γ .
The qubit is initialized in the eigenstate of σx with eigenvalue 1. (b) Verifying the FT for the three studied continuous detection schemes for
different Rabi drive frequency �: Left-hand side of the FT 〈e−Q(�)〉 (dashed) and parameter μ (dotted) computed from Eq. (B15) for T = 0.5τ .
The qubit is initialized in the eigenstate of σx with eigenvalue 1. We have simulated 1 × 106 trajectories, setting τ−1 = γ .

We performed the integration over x since the integrant de-
pends only on r and x0. We now write the effect matrix E (r) in
the basis of {|x0〉, |x̄0〉}, where ρx0 = |x0〉〈x0|, and 〈x0|x̄0〉 = 0
as

E (r) =
[

a(r) c(r)
c∗(r) b(r)

]
. (B13)

For a given initial state, sum over all probabilities in the
forward direction is equal to one implies that the effect matrix
E (r) satisfies the following relation:∫

Dr E (r) =
[

1 0
0 1

]
. (B14)

We therefore obtain

〈e−Q(�)〉 =
∫

Dr
Det[E (r)]

Tr[ρx0E (r)]
=

∫
Dr

a(r)b(r) − |c(r)|2
a(r)

=
∫

Dr b(r) −
∫

Dr
|c(r)|2
a(r)

= 1 − μ, (B15)

where we have defined∫
Dr

|c(r)|2
a(r)

≡ μ, (B16)

leading to Eq. (7) of the main text. We verify this identity in
Fig. 4, considering (a) single step measurement described by
measurement operator MX , and (b) continuously monitoring a
qubit subject to Rabi drive, where the effective time evolution
operator is U (rn, dt ) = MX (rn) e− i

h̄ Hdt (for H = h̄�σy/2),
with X = z, He, Ho, labeling continuous dispersive σz mea-
surement, Heterodyne and Homodyne detection of qubit’s
fluorescence respectively. Equation (B15) can be analytically
verified in certain special cases. An example of such a case
is presented in Sec. D, where we look at the dispersive spin
measurement with no Rabi drive, and obtain a probability
distribution that estimates μ analytically.

APPENDIX C: FT IN THE CASE OF A RANDOM INITIAL
QUBIT STATE

We now assume that the initial state of the system is
drawn from a set {|x0〉} according to a probability law

p(x0). As the consequence, the average over the trajectory
involved in the fluctuation theorem Eq. (B15) now corre-
sponds to 〈·〉 = ∫

dx0 p(x0)
∫

D�|x0 PF [�](·) instead of 〈·〉|x0
=∫

D�|x0 PF [�](·) we used earlier, although we had suppressed
the conditioning on x0 for brevity in our earlier discussions
[and in Eq. (7) of the main text], by absorbing it to the
delta function constraint involved in the integration measure∫

D�. However, the definition of the arrow of time measure
Q(�|x0,r ) associated with a given initial state x0 and record r
is unchanged. We emphasize that the sum over x0 runs onto
the qubit’s Hilbert space, and the distribution p(x0) is allowed
to be either discrete (e.g., when the preparation is due to the
projective measurement of an observable) or continuous.

In this situation, the IFT becomes〈
e−Q(�)

〉 = 1 − 〈μ〉x0
, (C1)

where 〈μ〉x0
is the average of μ over the distribution of initial

state:

〈μ〉x0
=

∫
dx0 p(x0)μ

=
∫

dx0 p(x0)
∫

Dr
|〈x̄0|M†(r)M(r)|x0〉|2
〈x0|M†(r)M(r)|x0〉 . (C2)

In general, such average is not a sufficient condition to have
〈μ〉x0

= 0, even when drawing the state from a set of states
preserved by the measurement. A simple example is the case
of the two-outcome spin measurement described by Eq. (A1),
applied to a state drawn from the circle of the qubit states of
zero y coordinate in the Bloch sphere. One gets

〈μ〉x0
=

∫ 1

−1
dz0 p(z0)

(1 − 2k)2
(
1 − z2

0

)
1 − (1 − 2k)2z2

0

, (C3)

which takes for instance the value 1 − 4k(1 − k)ArcTanh(1 −
2k)/(1 − 2k) 
= 0 for a flat probability distribution p(z0) =
1/2 of the initial z coordinate denoted z0.

This contrast with usual FTs with absolute irreversibility
is explained by our choice of (i) defining the arrow of time
from the probabilities of the forward (respectively, backward)
trajectory, conditioned to the initial (respectively, final) state,
rather than from a joint probability p(x0)PF [�|x0,r] (respec-
tively, p(xN )PAC

B [�̃|xN ,r̃]) of picking the initial (respectively,
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FIG. 5. Here we plot (a) the distribution of Q [44], indicating their strictly positive average value, and (b) the distribution of λ, indicating
their mean value 〈λ〉 = μ, for different durations: T/τ = 0.5 (dotted, blue), T/τ = 1 (dashed, red), and T/τ = 2 (joined, green), and compare
with the numerical simulation of 106 trajectories in each case. (c) We verify the fluctuation theorem for dispersive qubit measurement with no
Rabi drive starting at z0 = 0 for different values of T/τ . Left-hand side of the FT 〈e−Q〉 (solid) and parameter 1 − μ (dotted) computed from
Eq. (B15), using the analytical approach discussed in Sec. D. The data obtained using numerical simulations used in (a) and (b) are indicated
using (overlapping) blue circle and orange square markers. (d) Here we compare the analytical solution obtained in Sec. E with the numerical
simulation of 106 trajectories for ε ′ = T/τ = 0.5.

final state) and obtaining the record r; and (ii) not performing
a final projective measurement on the system. If one adds
these two conditions, one finds another fluctuation theorem
of the form 〈

e−Q(�)−�s[�]
〉 = 1 − μ′. (C4)

Here, �s[�] = ln[p(x0)/p(xN )] is a boundary contribution
that corresponds to the difference of stochastic entropies of
the initial and final set of qubit states. In this case, the absolute
irreversibility parameter μ′ vanishes provided p(x0) has a
support spanning every final states of the reversed trajectories.
The price to pay is that the fluctuation theorem does not
involve only the arrow of time measure, but also �s[�]. In
addition, one can expect that the final projective measurement
has a strong impact, possibly overcoming the contribution of
the weak continuous measurement under study.

APPENDIX D: SPECIAL CASE: DISPERSIVE
MEASUREMENT WITH NO RABI DRIVE

Here we look at the particular case of dispersive measure-
ment with no Rabi drive, where the total integrated signal
R = 1

τ

∫ T
0 dt r(t ) completely describes the measurement dy-

namics. The probability distribution of Q in this case can be
obtained by methods described in Ref. [44] that allows us to
compute 〈exp(−Q)〉 analytically as the integral 〈exp(−Q)〉 =∫

dQ exp(−Q)P (Q). Here we note that a similar analytical
result can be obtained for μ as well, that permits us to analyti-
cally verify the identity 〈exp(−Q)〉 = 1 − μ. To achieve this,
we define μ as the mean value of the probability distribution
of a random variable λ

λ(R) = Tr[ρ(0)E (R)ρ̃(0)E (R)]

Tr[ρ(0)E (R)]2
. (D1)

Note that λ = |c(R)|2
a(R)2 , by multiplying and dividing the in-

tegrand of the left-hand side of Eq. (B16) by the forward
probability a(R). Here ρ(0) is the initial state, which is
assumed to be pure, and ρ̃(0) is the state orthogonal to that.
The probability distribution P (λ) can be obtained from the
probability distribution P (Q) by noting that

P (Q) dQ = P (λ)dλ (D2)

or

P (λ) = P (Q)
dQ
dλ

∣∣∣∣
Q=Q(λ)

. (D3)

We note that for the case when qubit is initialized at z = 0,
this result is rather simple. In this case, we obtain λ(R) =
(tanh R)2 = 1 − exp(−Q), where Q = 2ln cosh R for the ini-
tial state z = 0, as obtained in Ref. [44]. We obtain

dQ
dλ

= 1

1 − λ
. (D4)

Using the relation Q(λ) = −ln(1 − λ), we obtain the follow-
ing expression for P (λ) (for qubit initialized at z = 0),

P (λ) =
√

τ

2πT

1

(1 − λ)2

√
1 − λ

λ

× exp

(
− T

2τ
− τ

2T

[
arccosh

1√
1 − λ

]2)
, λε[0, 1].

(D5)

We note that μ = 〈λ〉 = ∫ 1
0 dλ λP (λ), that satisfies 〈exp

(−Q)〉 = 1 − μ. Please refer to Fig. 5 where we numerically
verify this identity for different durations of the measurement
T/τ .

APPENDIX E: HOMODYNE MEASUREMENT

From the Kraus operator MHo given in main text, we first
compute the arrow of time measure corresponding to a single
step homodyne measurement performed during dt . We use the
identity

Q(r) = −ln

( |Det[M(r)]|2
Tr{ρx0 M†(r)M(r)}2

)
. (E1)

We find for x0 being the eigenstate of σx of eigenvalue +1:

QHo(r) = ln

(
1 − ε/4 + √

εr + εr2/2

1 − ε/2

)
. (E2)

This expression allows to check that, QHo(r) admits a min-
imum negative value Qmin = 2ln[

√
1 − ε/2/2], reached for

rmin = −1/
√

ε. The probability P(dt )
Ho (Q) for QHo to take the
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value Q is given by

P(dt )
Ho (Q) = P(r|x0)

(
dQHo(r)

dr

)−1
∣∣∣∣∣
r=r(Q)

, (E3)

with

P(r|x0) = e−r2

√
π

(
1 + √

εr − ε

4
+ r2ε

2

)
(E4)

and r(Q) is obtained inverting Eq. (E2):

r(Q) = 1√
ε

⎛
⎝

√
eQ/2

√
1 − ε

2
+ ε

2
− 1 − 1

⎞
⎠. (E5)

For finite durations of the measurement, the concatenated
measurement operators can be written as a single effective
measurement,

MHo(r) = e− ∑N
n=1 r2

n /2

πN/4

(
(1 − ε/2)N/2 0√

Nε y(r) 1

)

� e− ∑N
n=1 r2

n /2

πN/4

(√
1 − ε′/2 0√
ε′ y(r) 1

)
, (E6)

with the effective readout y(r) = 1√
N

∑N
n=1 rn(1 −

ε/2)(n−1)/2, and ε′ = Nε, and this approximation is valid
when ε � 1. We use this approximation to reproduce the
shape of the distribution of Q for the Homodyne measurement
with no Rabi drive (presented in Fig. 1 of the main text), in
Fig. 5(d).
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