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Estimation of parameters in circuit QED by continuous quantum measurement
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Designing high-precision and efficient protocols is of crucial importance for quantum parameter estimation in
practice. Estimation based on continuous quantum measurement is one possible type of this, which also appears
to be the most natural choice for continuous dynamical processes. In this work we consider the state-of-the-art
superconducting circuit quantum-electrodynamics (QED) systems, where high-quality continuous measurements
have been extensively performed in the past decade. Within the framework of Bayesian estimation and
particularly using the quantum Bayesian rule in circuit QED, we numerically simulate the likelihood function as
an estimator for the Rabi frequency of qubit oscillations. We find that, by proper design of the interaction strength
of measurement, the estimate precision can scale with the measurement time beyond the standard quantum limit,
which is usually assumed for this type of continuous measurement. This unexpected result is supported by the
simulated Fisher information and can be understood as a consequence of the quantum correlation between the
output signals by simulating the effect of quantum efficiency of measurement.
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I. INTRODUCTION

The problem of accurately estimating unknown parameters
is of both theoretical interest and of practical importance [1,2].
In order to minimize the estimation uncertainties, a variety
of strategies have been developed in the science of quantum
metrology over the past decades [3–5]. In this context, a
central topic is how to exploit quantum techniques to achieve
parameter estimation with precision beyond that obtainable
by any classical scheme [3–5]. For example, if a system is
initially prepared in a spin coherent state, the precision of
frequency estimation scales with the total spin number N as
1/

√
N , which is referred to as the standard quantum limit

(SQL). However, if extra quantum resources such as spin
squeezing or entanglement are exploited, an enhanced preci-
sion can be achieved approaching the ultimate Heisenberg-
limit (HL) scaling (∼1/N) [6,7].

For the theory of quantum parameter estimation, the con-
cept of quantum Fisher information [8,9] and the associ-
ated quantum Cramér-Rao bound (CRB) [10,11] have been
developed to set the minimum variance for unbiased es-
timation strategies based on measurements. However, it is
not obvious how to design appropriate, optimal schemes of
measurement. For different measurement schemes, which is
usually characterized by a specific positive operator-valued
measure (POVM) or estimator, the associated Fisher infor-
mation would set different bounds of precision according to
the Cramér-Rao inequality. Designing a high-precision and
efficient scheme of measurement is thus of crucial importance
for parameter estimation in practice.

Owing to the practical use and the rich underlying physics,
in the past years there has been considerable interest in the
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quantum estimation of parameters using the output signals of
continuous measurement [12–19]. This is also the most natu-
ral choice for parameter estimation in continuous dynamical
processes. This scheme has the obvious advantage of a high
efficiency—unlike the conventional ensemble measurement
in quantum theory, it does not need to generate identical
copies of the quantum system in order to extract meaningful
results from measurements. Following the seminal work [12],
subsequent studies by Mølmer et al. [13–16] formulated the
parameter estimation based on continuous measurement as
a Bayesian scheme for the specific example of fluorescence
radiation from two-level atoms. More recently, the same prob-
lem was investigated with a focus on how to speed up the
estimation by avoiding numerically integrating the stochastic
master equation [17]. This type of parameter estimation has
also been considered to include the technique of quantum
smoothing [20–23] as a generalization of the classical signal
smoothing.

In the present work, we extend the research further to
the superconducting circuit quantum-electrodynamics (QED)
system [24–26], which is one of the leading platforms for
quantum information processing and for quantum measure-
ment and control studies. Particularly, sound studies have been
performed for continuously tracking the stochastic evolution
of the qubit state in this system, say, tracking the so-called
quantum trajectories (QT) [27–32]. On the theoretical side,
the quantum Bayesian rule has been well developed for circuit
QED in the past years [33–37], in some cases promising the
advantage of being more efficient than numerically integrating
the quantum trajectory equation [38–40]. Therefore, within
the framework of Bayesian parameter estimation [13–17],
it seems a perfect choice for us to employ the quantum
Bayesian rule of circuit QED for state updates associated with
the continuous measurement. For parameter estimation, the
quantum Bayesian approach can make the calculation of the
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associated likelihood function very straightforward and quite
efficient [17], i.e., using the accumulated output currents over
a relatively large time interval.

In this work we perform direct simulation for a large
number of estimations to extract the statistical errors. Our
simulation is based on the realistic (and “standard”) dis-
persive readout in circuit-QED systems. We investigate the
effects of measurement strength, measurement time (process-
ing time T of data collection), and quantum efficiency of
the measurement. As expected, we find that the estimate
precision is improved with increasing T . However, interesting
and surprisingly, we find that by proper adjustment of the
measurement strength, the estimate precision can exceed the
standard quantum limit, manifesting a scaling behavior with
T in between the SQL (1/

√
T ) and HL (1/T ). This result

differs from what has been assumed for similar estimations of
this type [13–17], where the SQL scaling was concluded. We
attribute our results to quantum correlation between the output
signals of the measurement [41,42]. This type of correlation
in time shares some of the nature of quantum entanglement
[42], while the latter (as a unique quantum resource) can
usually result in precision better than SQL. We may also relate
this understanding with hints from extreme cases, such as
vanishing probe interactions [14,16,43] and dynamical phase
transitions [44,45], which can result in precise Heisenberg
scaling owing to the quantum correlation in time.

II. BAYESIAN RULE IN CIRCUIT QED

Let us consider a superconducting qubit coupled to a
waveguide cavity, i.e., the circuit-QED architecture. In the dis-
persive regime, the qubit-cavity interaction is well described
by the Hamiltonian [24,25] Hint = χa†aσz, where χ is the
dispersive coupling strength, a† and a are the creation and
annihilation operators of the cavity mode, and σz is the qubit
Pauli operator. Associated with single-quadrature homodyne
measurement for microwave transmission or reflection, the
output current can be reexpressed as (after the so-called
polaron transformation to eliminate the degrees of freedom
of the cavity photons) [35–38]

I (t ) = −
√

�ci(t )〈σz〉 + ξ (t ). (1)

In this result, ξ (t ), originating from the fundamental quantum
jumps, is a Gaussian white noise and satisfies the ensemble-
average property E [ξ (t )] = 0 and E [ξ (t )ξ (t ′)] = δ(t − t ′).
�ci(t ) is the coherent information-gain rate which, together
with, say, the no-information backaction rate �ba(t ) and the
overall measurement decoherence rate �d (t ), is given by

�ci(t ) = κ|β(t )|2 cos2(ϕ − θβ ) , (2a)

�ba(t ) = κ|β(t )|2 sin2(ϕ − θβ ) , (2b)

�d (t ) = 4χ Im[α∗
1 (t )α2(t )] . (2c)

Here ϕ is the local oscillator’s (LO) phase in the homodyne
measurement, κ is the leaky rate of the microwave photon
from the cavity, and β(t ) = α2(t ) − α1(t ) ≡ |β(t )|eiθβ , with
α1(t ) and α2(t ) the cavity fields associated with the qubit
states |1〉 and |2〉, respectively.

More detailed discussions of the physical meanings of the
above rates can be found in Refs. [35–38]. Briefly speaking,
the information-gain rate �ci is associated with inferring the
qubit state |e〉 or |g〉 from the output current of measurement,
while �ba characterizes the backaction of measurement not
associated with the qubit-state information gain but rather
with the qubit-level fluctuations. �d corresponds to the overall
decoherence rate after ensemble averaging a large number
of quantum trajectories. The sum of the former two rates,
�m = �ci + �ba, is the total measurement rate. If �m = �d ,
the measurement is ideally quantum limited, with quantum
efficiency η = �m/�d = 1. Otherwise, if �m < �d , the mea-
surement is not ideal, implying some information loss.

In steady state, the cavity fields read

ᾱ1,2 = −εm[(�r ± χ ) − iκ/2]−1 , (3)

where �r is the frequency offset between the measuring
microwave (with amplitude εm) and the cavity mode. In this
work, rather than considering a general setup of the circuit-
QED system [34–36], we restrict considerations to the bad-
cavity and weak-response limits. Under this condition, the
transient process of α1(t ) and α2(t ) is not important. All the
rates shown above can be calculated with the steady-state
fields ᾱ1,2 given by Eq. (3).

Corresponding to the qubit state |1〉 (|2〉) and after aver-
aging the continuous current over time interval τ , i.e., Im =
(1/τ )

∫ t+τ

t dt ′I (t ′), the coarse-grained output current Im is a
stochastic variable centered at Ī1(2) = ∓√

�ci and satisfies the
Gaussian distribution with probability

P1(2)(τ ) = (2πV )−1/2 exp[−(Im − Ī1(2))
2/(2V )], (4)

where V = 1/τ is the distribution variance.
Now consider an arbitrary quantum superposed state ρ(t )

(at the moment t). Based on the subsequent (coarse-grained)
current Im, the quantum Bayesian rule updates the qubit state
as follows [33–36]. For the diagonal elements,

ρ j j (t + τ ) = ρ j j (t ) Pj (τ )/N (τ ) , (5a)

where j = 1, 2 and N (τ ) = ρ11(t )P1(τ ) + ρ22(t )P2(τ ). This
is nothing but the Bayes’ theorem in probability theory. For
the off-diagonal elements, which are unique in quantum the-
ory,

ρ12(t + τ ) = ρ12(t )[
√

P1(τ )P2(τ )/N (τ )]

× D(τ ) exp {−i[�1(τ ) + �2(τ )]} . (5b)

In this result, the purity factor reads D(τ ) = e−(�d −�m ) τ/2. We
remind the reader that the measurement rate is given by �m =
�ci + �ba. Using the steady-state solutions, Eq. (3), one can
easily prove that �d = �m. Thus, in the bad-cavity limit (no
transient dynamics of the cavity field), the intrinsic D factor
in the successive Bayesian update can be approximated by
unity. In order to account for decoherence of external origins
(such as photon loss and/or amplifier’s noise), one can simply
introduce an extra rate �ϕ , thus D(τ ) = e−�ϕ τ/2.

The first phase factor in Eq. (5b), e−i�1(τ ), is associated
with an ac-Stark-shift–modified unitary phase accumulation,
i.e., with �1(τ ) = (�q + B)τ , where the ac Stark shift of the
qubit energy (�q) reads B = 2χRe(ᾱ1ᾱ

∗
2 ). Of more interest
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is the second phase factor e−i�2(τ ) = ei�ba (Imτ ), which is as-
sociated with the accumulated random “charge” and reflects
the no-information-gain backaction on the qubit. For a more
detailed discussion on this stochastic phase factor, the reader
is referred to Refs. [33–36].

III. METHOD

We assume now that the superconducting qubit is subject
to a Rabi drive and at the same time subject to continuous
measurement. Our goal is to estimate the Rabi frequency
from the output current of the continuous measurement. The
stochastic evolution of the qubit (the quantum trajectory) is
governed by the following iterative rule:

ρ(t j ) = U jM j[ρ(t j−1)] , with j = 1, 2, . . . N . (6)

Here we have discretized the evolution with time interval τ ,
with thus a total measurement time T = N τ . The super-
operator M j accounts for the measurement-induced change
of the qubit state, whose performance is explicitly given by
the quantum Bayesian rule. The superoperator U j in Eq. (6)
describes the unitary evolution caused by the Rabi drive, i.e.,
U j (· · · ) = e−iLqτ (· · · ) = e−iH̃qτ (· · · )eiH̃qτ , with H̃q the qubit
Hamiltonian under Rabi drive and renormalized by the mea-
surement (i.e., with the ac Stark shift). For small τ , the action
order of U j and M j is irrelevant.

Based on the rule of Eq. (6), we know the qubit state ρ(t j )
after the jth step evolution, conditioned on the coarse-grained
current I j . Meanwhile, for this jth step of measurement, the
probability of getting I j is

P (I j ) = ρ11(t j−1)P1(τ ) + ρ22(t j−1)P2(τ ) , (7)

with P1(τ ) and P2(τ ) given by Eq. (4). Then, straight-
forwardly, the joint probability of getting the results
{I1, I2, . . . IN } is simply a product of the individual proba-
bilities

P ({I1, I2, . . . IN }|�) =
N∏

j=1

P (I j ) . (8)

Here we explicitly indicate that this probability depends on
the parameter � (the possible Rabi frequency).

We expect, from simple intuition, that the true Rabi fre-
quency �R will be most compatible with the output results
{I1, I2, . . . IN }, leading thus to maximum probability. There-
fore, it is plausible that we get an estimate value �ML for
�R from the location of the maximum of the probability
function P ({I1, I2, . . . IN }|�), referred to in the literature as
the likelihood function. Using a different � (rather than �R) to
calculate P ({I1, I2, . . . IN }|�), based on Eqs. (6)–(8), should
result in a smaller probability. This constitutes the basic idea
of the maximum-likelihood-estimation (MLE) method.

Essentially, the MLE method is a Bayesian approach for
parameter estimation. One may imagine, to start with, a
uniform distribution P (�) over a certain range. The uniform
distribution means that we have no knowledge about �R.
After getting the data record of measurement and performing
the Bayesian inference, the knowledge about �R changes to
a new probability P (�|I1, . . . , IN ). The peak of this new
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FIG. 1. Illustration of the estimation method. The likelihood
function is calculated [with un-normalized probability functions
P1,2(τ ) in Eq. (7), “separated” from Eq. (4)] using the quantum
Bayesian rule by choosing the coarse-grained time τ = 1000 dt =
10−3τR, while dt = 10−6τR is set for simulating the quantum tra-
jectory equation to generate the continuous output current (for time
T = N τ with N = 105). Through the whole work we assume the
true Rabi frequency �R/2π = 1.0 (in arbitrary dimensionless units),
and accordingly, we use the Rabi period τR = 2π/�R as the units of
time. In this plot we set the measurement strength �m = 0.25�R and
obtain the estimated value �ML = 0.992�R from the position of the
maximum of the peak.

distribution can also be an estimate for �R, which should
correspond to the estimated value �ML from the MLE method.

In practice, the following log-likelihood function is used for
the parameter estimation

L(�) = ln P ({I1, I2, . . . IN }|�) , (9)

in order to make the maximum peak more prominent. In
Fig. 1, we plot this function to illustrate the MLE method
(using dimensionless units here and in the remainder of this
work). L(�) is computed using the single realization of
continuous measurement current I (t ) over (0, T ), by coarse-
graining it into {I1, I2, . . . , IN } with N = T/τ . Notice that
this splitting can be rather arbitrary, i.e., with L(�) not
influenced by the choice of τ . The only requirement is that
τ should not be too large to violate the precision of the
Bayesian update (in the presence of Rabi oscillation). In all the
simulations of this work, we choose τ = 1000 dt = 10−3τR,
while the time increment dt = 10−6τR is set for simulating
the quantum trajectory equation [35–38] to generate the con-
tinuous output current. Throughout this work, the Rabi period
(τR = 2π/�R) is used as the unit of time. Again, we mention
that the � dependence of L(�) is introduced through the
unitary operator e−iLqτ in each step of state update.

We consider a resonant Rabi drive with true Rabi fre-
quency �R/2π = 1 (in arbitrary dimensionless units). In
the present proof-of-principle simulation, we assume �r = 0
(thus θβ = 0) and consider the maximal information gain with
LO phase ϕ = 0. Therefore we have �ba = 0, �m = �ci, and
�d = �m (owing to the bad-cavity limit). Except for the data
shown in Fig. 4, we also do not account for any external
decoherence in our simulation (setting �ϕ = 0).
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FIG. 2. Measurement strength dependence of the estimation er-
rors (rms variance). Owing to competition between information gain
and measurement backaction, there exists an optimal measurement
strength. The optimal strength is of T dependence, as shown in
(a) and (b) for T/τR = 50 and 100 (τR is the Rabi period). However,
for longer T as shown in (b), the suboptimal �m (near the optimal
strength) can result in good estimation with precision not very
sensitive to �m (in the suboptimal range).

Indeed, as shown in Fig. 1, we get an estimation for the
Rabi frequency at �ML = 0.992�R from the maximum peak
position of L(�). In this plot, we show only the log-likelihood
function for a relatively small range of �, indicating that we
already have some prior knowledge about �R. If we had poor
knowledge about �R, we should calculate L(�) for a wider
range. In this case, more peaks may appear in L(�). An even
worse situation would arise if the maximum peak would not
occur near �R. This would imply a failure of the estimation
and the result should be discarded.

Another point is that in order to get a convergent estima-
tion, one should sample a relatively large number of currents
{I1, I2, . . . , IN }, i.e., with large N or more precisely large
T by noting that T = Nτ . Actually, it has been noted that
the MLE result can saturate the Cramér-Rao bound when
N is large enough [13–16]. However, the classical Cramér-
Rao bound is determined by the classical Fisher information,
which is associated with specific schemes of measurement. It
has been well understood that the more sensitive dependence
of the output results on the parameter will result in better
precision. Searching for an optimal measurement protocol in
practice is thus of crucial importance but is unclear in general.
In the following, in Fig. 2, we will further discuss this point.

A final remark is that possible quantum correlation effect
may be contained in the likelihood function L(�). This is in
some sense similar to the reason for violating the Leggett-
Garg inequality (a type of Bell’s inequality in time) [41], as
demonstrated in this same circuit-QED system via continuous
measurements [42]. We will come back to this point later after
displaying the result beyond the standard quantum limit.

IV. RESULTS

To characterize the estimation errors, we introduce the rms
variance

δ� =
(

M∑
k=1

(
�

(k)
ML − �̄ML

)2
/ M

)1/2

, (10)

where �̄ML = 1
M

∑M
k=1 �

(k)
ML, with �

(k)
ML the estimated result of

the kth realization based on {I1, . . . , IN }(k). To extract the rms
variance, we simulate M = 2000 trajectories for each given
measurement time (T = Nτ ).

Let us analyze the problem of appropriate measurement,
in a sense to make the measurement results more sensitive to
the parameter under estimation. First, as mentioned above,
we should eliminate the “realistic” (no information gain)
backaction in order to maximize the information-gain rate
(�ci → �m) by adjusting the LO phase ϕ = θβ = 0. Second,
we search for an optimal strength for the continuous measure-
ment, which can be characterized by the measurement rate �m.

In Fig. 2(a) we show the estimation rms variance versus
the measurement strength. Importantly, we observe the exis-
tence of an optimal strength of the continuous measurement.
We understand the reason as follows. From the continuous
output current Eq. (1), we know that for weak strength of
measurement, the noise component (the second term) will be
much larger than the information-carrying term (the first one).
In other words, the output current carries little information
of the qubit state, which is governed by the parameter of
Rabi frequency. In the other extreme, for strong strength of
measurement, while the state-information-carrying compo-
nent [the first term in Eq. (1)] is enhanced, the Rabi oscillation
of the qubit state will be more seriously destroyed by the
measurement backaction, thus making the first term of Eq. (1)
not well correlated with the Rabi frequency. That is, the
enhanced strength of measurement will gradually force the
evolution into the so-called Zeno regime, resulting in output
current of telegraphic type, which is poorly correlated with the
unitary Rabi drive. Therefore, it is the competition between
the information gain and measurement backaction that results
in the optimal measurement strength as revealed in Fig. 2(a).
From Fig. 2(b), we also find this “optimal” strength not uni-
versal but weakly depending on the measurement time T (the
size of the collected current). For longer measurement times,
the optimal strength of measurement is smaller. However,
from Fig. 2(b) we see that the “suboptimal” strength (e.g.,
�m/�R = 0.25 rather than 0.1) has little importance for the
precision of the estimation.

In quantum estimation, one of the most important problems
is how the precision scales with the “size” of the quantum
resource (e.g., the entangled photon numbers in the opti-
cal phase estimation). For the quantum estimation based on
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FIG. 3. Estimate precision (rms variance) vs the measurement
time (scaled by the Rabi period τR). In particular, we compare the
simulated results (open circles) with the SQL (∼1/

√
T , solid line)

and HL (∼1/T , dashed line) scaling behaviors. In (a), by properly
choosing the measurement strength (near the optimal one), we find
that the precision can evidently exceed the SQL. In (b) and (c), we
show that for measurement strengths deviating from the optimal or
suboptimal value, either the smaller or the larger values of �m cannot
violate the SQL precision.

continuous measurement (without introducing special pro-
cedures such as feedback), the existing studies assumed an
SQL scaling (∼1/

√
T ) with the measurement time T [13–17].

Below we reexamine this issue in the context of continuous
measurement in circuit QED. We find that, remarkably, it is
possible to violate the SQL.

Let us formally denote the rms variance as δ� = 1√
M

f (T ),
where the specific M dependence is simply from the central-
limit-theorem. Our interest is to examine the T dependence,
especially, to compare it with the SQL and HL scalings. As
a clear comparison, in Fig. 3 we compare the simulated rms
variance with the SQL C1/

√
T (solid line) and HL C2/T

(dashed line). Here we set the constants C1 and C2 by making

the SQL and HL curves coincide with the simulated rms
variance at T = 10. The two curves simply imply that if the
scaling is governed by SQL (HL), the simulated results should
follow the solid (dashed) curve with increasing T .

In Fig. 3 we show results for different measurement
strengths. Remarkably, as seen in Fig. 3(a), we find that by
properly choosing the measurement strength (near the optimal
one), the precision can evidently exceed the SQL. We notice
that in the studies by Mølmer et al. [13–16], only the 1/

√
T

scaling is obtained for the Fisher information associated
with the homodyne detection for the fluorescence radiation.
This result was qualitatively understood by the measurement
backaction, which results in a vanished correlation between
the output signals. In the work by Cortez et al. [17], the
1/

√
T scaling is also briefly mentioned, despite that the T

scaling plotted there in Fig. 2(c) is a bit worse than SQL. In
Appendix we further support the scaling behavior in Fig. 3(a)
by numerically computing the Fisher information.

We may understand the result in Fig. 3(a) from differ-
ent perspectives as follows. First, the “inconsistency” with
Refs. [13–16] may originate from the different schemes
of measurement. There, the measurement operator σϕ =
cos ϕσx − sin ϕσy has randomly flipping backaction on the
qubit. Compared to σz measurement, this type of measurement
has stronger destructive influence on the qubit, i.e., making
the population (superposition) less associated with the Rabi
frequency.

Second, for the continuous σz measurement of the Rabi
oscillation, quantum correlation exists between the measure-
ment outcomes. Actually, this type of quantum correlation
has inspired the study of the Bell inequality in time, say, the
Leggett-Garg inequality [41]. In particular, this quantum cor-
relation has been experimentally demonstrated in the circuit-
QED system based on the continuous σz measurement [42].
Therefore, it seems that the argument of vanished correlation
in Refs. [13–16], leading to the 1/

√
T scaling, may not apply

to our situation.
Third, for the simple estimation scheme based on continu-

ous measurement (not involving any special techniques), the
possibility of reaching the Heisenberg limit is not ruled out.
(i) For instance, at the end of Ref. [14] it was pointed out
that the Fisher information can scale with T 2 for undamped
system evolution, for example, as is the case if the system
superposition state does not couple to the environment and the
measurement is performed on the system rather than on the
emitted radiation. (ii) In Ref. [43], via analyzing the quantum
Markov chain defined by a sequence of successive passage of
atoms through a cavity, it was found that the quantum Fisher
information scales quadratically rather than linearly with the
number of atoms at the limit of weak unitary interaction.
(iii) Another example of interest is making the system (e.g.,
a driven atom under photon emissions) approach a dynamical
phase transition [44,45]. In that case, the quantum Fisher
information may become quadratic in times shorter than the
correlation time of the dynamics. This becomes valid for all
times at the point of dynamical phase transition.

Therefore, our result in Fig. 3(a) does not contradict any
basic physics but rather can fall into the category of quan-
tum correlation. As a tradeoff between information gain and
measurement backaction, a proper strength of the continuous
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FIG. 4. Further examination of the result in Fig. 3(a). Setting still
the suboptimal measurement strength �m = 0.25�R but introducing
extra decoherence (�ϕ) owing to photon loss and/or amplifier’s noise
during the measurement, we find that the result can no longer exceed
the SQL precision. This further supports the understanding based on
quantum correlation to the remarkable result in Fig. 3(a).

measurement is required. As seen in Figs. 3(b) and 3(c),
values deviating from the optimal and/or suboptimal measure-
ment strength, whether for smaller or larger values of �m, will
not lead to a violation of the SQL precision. In addition to the
proper measurement strength, sufficient quantum coherence is
another condition for the result in Fig. 3(a). In Fig. 4, we fur-
ther account for the effect of decoherence owing to nonideal
quantum measurement, e.g., photon loss and/or amplifier’s
noise during the measurement. From Figs. 4(a) and 4(b), we
observe that the estimate precision becomes worse with the
increase of decoherence and can no longer violate the scaling
of SQL by varying the measurement strength. This further
supports our quantum-correlation-based understanding to the
result in Fig. 3(a), since decoherence indeed suppresses the
quantum correlation, as shown in Fig. 4.

V. SUMMARY AND DISCUSSION

We have reexamined the problem of quantum estimation of
the Rabi frequency of qubit oscillations based on continuous
measurement. We specified our research to the superconduct-
ing circuit-QED system, which may provide an attractive plat-
form for experimental examination. Our central result is that,
by proper design of the measurement strength, the estimate
precision can scale with the measurement time beyond the
standard quantum limit. We understood this result by quantum
correlation between the output signals, which is supported by
checking the effect of quantum efficiency of the measurement.
Our conclusion is also supported by the scaling behavior of
the associated Fisher information, as shown in Appendix. We
expect this preliminary result to inspire further studies on this

interesting problem, including searching for better schemes
of continuous measurement and special techniques such as
feedback and quantum smoothing.

As a final remark, we mention again that the present work
is an extension of previous studies on the quantum estimation
of parameters by continuous measurements [12–19]. In par-
ticular, the effective measurement operator (σz) for the Rabi
oscillation is essentially the same as considered in Ref. [17],
where the main interest was focused on accelerating the
likelihood-estimation method and the estimation of drifting
parameters. This focus may have caused an overlook of the
T (measurement time) scaling behavior of the estimate pre-
cision. Probably affected by the 1/

√
T scaling concluded by

Mølmer et al. [13–16], this scaling was also briefly mentioned
in Ref. [17] below Eq. (16) associated with Fig. 2(c) [despite
that the result in Fig. 2(c) is a bit worse than the 1/

√
T

scaling]. This difference, compared to our Fig. 3(a), may
originate from not finding a proper measurement strength and
simulating fewer numbers of trajectories there. As a further
support, in Appendix we include the result of our simulated
Fisher information and find similar scaling behavior beyond
the SQL, being consistent with that shown in Fig. 3(a).

Another point is that the measurement time we simulated
may be not long enough to reach the asymptotic behavior.
However, the scaling behavior even for this “intermediate”
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FIG. 5. Scaling behavior of the Fisher information FT (�)
against the measurement time T for measurement strength �m/�R =
0.25 corresponding to Fig. 3(a). In (b) we compare the time scaling
of the Fisher information (blue curve) with the SQL (black curve)
and the rms variance δ� [orange circles, taken from Fig. 3(a)].
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regime is relevant in a practical sense to the estimation prob-
lem under study. We notice that the scaling behavior even for
a relatively short time has been considered with interest. For
instance, in Refs. [44,45] it was found that the quantum Fisher
information can become quadratic in times shorter than the
correlation time of the dynamics.
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APPENDIX: SCALING BEHAVIOR OF
THE FISHER INFORMATION

In this Appendix, we carry out the Fisher information
associated with the present continuous measurement scheme.
The Fisher information is given by

FT (�) =
∫

dx P (x|�)

(
∂ lnP (x|�)

∂�

)2

. (A1)

Here the shorthand notation x = {I1, I1, . . . , IN } is intro-
duced for simplicity, and the integration is in principle over
all the possible output currents from measurement realizations
over time T .

In practice, we compute the Fisher information by numer-
ically averaging 20 000 trajectories (realizations). For each
trajectory, we compute the derivative ∂ lnP/∂� from the
likelihood function at the real value �. In Fig. 5 we show the
result of Fisher information against the measurement time T
for the measurement strength �m/�R = 0.25 corresponding
to Fig. 3(a). In particular, in Fig. 5(b) we compare the result
with the scaling behaviors of the rms variance δ� and the
SQL. As in the plots of Figs. 3 and 4 in the main text, here we
plot ∼1/

√
FT by equating it with the simulated rms variance

δ� at the starting point. Then, from this type of plotting and
if we assume FT ∼ T n, we can deduce the scaling index
n > 1, which exceeds the SQL scaling. Moreover, in Fig. 5(b)
we find satisfactory agreement between the T scalings
of the Fisher information and the rms variance δ�. This
further supports the conclusion we achieved in the main
text.
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